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Abstract We study the phase structure and phase transi-
tion of cold dense QCD matter via the Dyson–Schwinger
equation approach. We take the rainbow approximation and
the Gaussian-type gluon model. In order to guarantee that
the quark number density begins to appear at the nuclear
liquid-gas phase transition chemical potential, we propose
a chemical potential dependent modification factor for the
gluon model. We find that for the iso-symmetric quark mat-
ter, the modification reduces the chemical potential of the
phase coexistence region of the first-order phase transition.
We also implement the relativistic mean field theory to
describe the hadron matter, and make use of the Maxwell
and Gibbs construction method to study the phase transition
of β-equilibrium and charge neutral matter in compact stars.
The results show that the phase transition will not happen in
case of the Gaussian-type gluon model without any modifica-
tion. The results also indicate that the upper boundary of the
coexistence region should be larger than the current Nambu
solution existing region. We also calculate the mass-radius
relation of the compact stars, and find that the hadron-quark
phase transition happens at too high chemical potential so that
the maximum mass of the compact star is hardly affected by
the hadron-quark phase transition.

1 Introduction

The quantum-chromodynamics(QCD) is an asymptotic the-
ory. In vacuum, the quarks, which are the fundamental par-
ticles of the theory, are confined inside hadrons and can-
not be detected directly. At high temperature or/and high
density, however, the interaction becomes weak, the quarks
can be released from hadrons. The interaction responsible
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for the confinement also generates over 98% mass of visi-
ble matter, and this effect is known as the dynamical chi-
ral symmetry breaking (DCSB) (see, e.g., Refs. [1–8]). The
complexity of QCD leads to an abundance of phase struc-
tures. At zero chemical potential and finite temperature, it is
believed that the transition from hadron matter to quark mat-
ter is a crossover [9–26]. At low temperature and high chemi-
cal potential, although there are arguments that the transition
may also be a crossover [27–31], most model calculations
show that this phase transition is of first-order [15,25,26,32–
36]. Therefore, there should exist a critical end point (CEP)
on the T − μ plane, which connects the crossover region
with the first-order phase transition, and the searching for
the CEP is a hot topic in the study of QCD phase struc-
ture [15–26,37,38]. At low temperature and high chemical
potential, the phase structure is even more complicated. At
baryon chemical potential μB ∼ 923 MeV, there is a first-
order liquid-gas phase transition where the nuclear matter
emerges from vacuum [39–45]. After that, there is the phase
transition from nuclear matter to quark matter. It is also pos-
sible that the hadron-quark phase transition will lead to color-
superconducting quark phase (see Ref. [46] for review and
some recent works in Refs. [47–51]).

At sufficiently high temperature or/and large chemical
potential, since the interaction is weak, the perturbative
QCD approach can provide reliable results on the prop-
erty of QCD matter [52,53]. However, in the phase tran-
sition region, the interaction is strong, and perturbative
approach becomes invalid. One must then implement non-
perturbative approaches to study the phase structure. There
are phenomenological models such as NJL model, the quark
meson model and their Polyakov loop improved versions
[35,54–60]. Also, there are first-principle methods such as
lattice QCD [9–14,61,62], functional renormalization group
theory [7,8,22–24,63–66] and Dyson–Schwinger equation
approach (for some reviews, see, e.g., Refs. [21,67,68]).
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It is well known that lattice QCD is principally only
valid at zero chemical potential, since it endures the noto-
rious “sign problem” at finite chemical potential. Although
there are extrapolation methods such as the Taylor expan-
sion [69–73], the imaginary chemical potential [74–80], and
other approach (e.g., Ref. [81]), the lattice QCD can still only
deal with small chemical potential μ/T < 2. Therefore, the
theoretical study of the phase transition at zero temperature
and finite chemical potential is not as clear as that in zero
chemical potential.

The problem also exists on the experimental side. There
are colliders such as RHIC, FAIR, NICA and HIAF which
aim at studying the structure of hot or warm dense QCD
matter, but terrestrial experiments are now not able to cre-
ate cold dense QCD matter. The possible way to study the
phase transition at large chemical potential is by resorting to
the astronomical observations. There have been several very
heavy compact stars with a mass over ∼ 2M� discovered
[82–87], and the detection of gravitational wave from binary
neutron star merger also provides constraints on the equation
of state (EOS) and hence the possible phase transition inside
compact stars [88–97]. Still, the detail of the phase transition
is hidden inside compact stars.

It has been known that the Dyson–Schwinger (DS) equa-
tions approach (see, e.g., Refs. [67,68,98–101]) is a contin-
uous field theory of QCD, which can simultaneously deal
with the confinement and dynamical chiral symmetry break-
ing, and is available on the entire T −μ plane as well as zero
current quark mass limit. The DS equations include in fact an
infinite number of coupled integral equations, and in order to
solve them, one must take truncation [102–109] and model
the dressed gluon propagator [110–113]. The DS equation
approach has been taken to study the phase transition and the
CEP [15–22,25,26,114–120], and also been used to study
the cold dense matter [121–127].

However, in spite of the fact that the DS equation approach
recovers successfully many properties of the DCSB phase, it
is still far from being able to describe the real-world hadron
matter. For example, one of the most important properties
of hadron matter is the emergence of matter from vacuum,
which corresponds to the first-order nuclear liquid–gas phase
transition. In DS equation calculations, it has been shown
that the quark number density and quark condensate remains
the same as in vacuum up to a critical chemical potential
[21,47,128,129], but this critical chemical potential is not
in accordance with the liquid–gas phase transition chemical
potential. Therefore, in this paper, we propose that a chemi-
cal potential dependent modification should be applied on the
coupling strength of the model in DSE approach. We con-
sider two types of the modification function. The first one
is a monotonically decreasing function, which has already
been used in previous works [122–124,126,127]. However,
in the earlier works, the modification function includes a

free parameter which controls the speed of quark matter
approaching the asymptotic freedom. In this work, we will
make use of the liquid–gas phase transition to determine the
parameter. We will also propose a second type of modifica-
tion function, which allows for a non-monotonic behavior of
the chemical potential dependence.

Even if we correctly recover the liquid–gas phase transi-
tion chemical potential, the DSE results is not as accurate as
the hadron model in describing the properties of hadron mat-
ter. Therefore, in this paper, we will use the hadron model for
the hadron sector, and take different construction schemes to
describe the phase transition in the cold dense matter. We
will also construct the EOS of the hybrid star matter, and we
will show that the mass-radius relation of the highly massive
compact star can be described well.

The remainder of this paper is organized as follows. After
this introduction, in Sect. 2, we reiterate briefly the DS equa-
tion approach at zero temperature and finite chemical poten-
tial, and propose the chemical potential dependent modifica-
tion on the model. In Sect. 3, we present the numerical results
with the DS equation being solved, including the phase tran-
sition of iso-symmetric matter as well as the β-equilibrium
and charge neutral cold dense matter. We also calculate the
EOS and the mass-radius relation of the compact star. In
Sect. 4, we give a summary and some remarks.

2 Dyson–Schwinger equation approach

2.1 Gap equation at zero temperature and finite chemical
potential

In this section, we describe briefly the DS equation approach
at zero temperature and finite chemical potential.

The starting point of the DS equation approach is the gap
equation:

S(p;μ)−1 = Z2[iγ · p + iγ4 p̃4 + mq ] + �(p;μ), (1)

where S(p;μ) is the quark propagator, p̃4 = p4 + iμ,
�(p;μ) is the renormalized self-energy of the quark:

�(p;μ) = Z1

∫ � d4q

(2π)4 g
2(μ)Dρσ (p − q;μ)

×λa

2
γρS(q;μ)	a

σ (q, p;μ), (2)

where
∫ � is the translationally regularized integral, � is the

regularization mass-scale. g(μ) is the strength of the cou-
pling, Dρσ is the dressed gluon propagator, 	a

σ is the dressed
quark-gluon vertex, λa is the Gell–Mann matrix, and mq is
the current mass of the quark. Z1,2 are the renormalization
constants. In this paper, we take a model that ultraviolet inte-

123



Eur. Phys. J. C (2021) 81 :612 Page 3 of 16 612

gration is finite, so we can move the renormalization point to
infinity and take Z1,2 = 1.

At finite chemical potential, the quark propagator can be
decomposed according to the Lorentz structure as:

S(p;μ)−1 = iγ · pA(p2, p̃2
4) + B(p2, p̃2

4)

+iγ4 p̃4C(p2, p̃2
4). (3)

A complete decomposition should include another term pro-
portional to σμν , but this term contributes little, and is usually
omitted [21,67].

At zero chemical potential, a commonly used ansatz for
the dressed gluon propagator and the dressed quark-gluon
interaction vertex is:

Z1g
2Dρσ (p − q)	a

σ (q, p)

= G((p − q)2)Dfree
ρσ (p − q)

λa

2
	σ (q, p), (4)

where

Dfree
ρσ (k ≡ p − q) = 1

k2

(
δρσ − kρkσ

k2

)
, (5)

G(k2) is the effective interaction to be introduced in the
model, and 	σ is the quark-gluon vertex. In this paper,
we adopt the rainbow approximation which is the leading-
order term in a symmetry preserving approximation scheme
[130,131],

	σ (q, p) = γσ . (6)

Even though the rainbow approximation does not repre-
sent the complicated nature of the strong interaction com-
pletely, when one studies the properties of cold dense matter,
the effect of the tensor and other higher order vertices can be
absorbed into the parameter for the gluon model, as shown in
Ref. [124]. However, the effect of the higher order vertices on
the liquid-gas phase transition has not yet been considered in
Ref. [124], we will leave this to our future work and restrict
ourselves to the rainbow approximation in this paper.

For the effective interaction, G(k2) plays the role of the
dressing of gluon propagator. Ideally, it should be determined
by solving the DSEs of the gluon and the ghost, together
with the quark’s gap equation. However, for simplicity, it is
also quite common to take an analytic function to model this
effective interaction. One of the most widely used model is
the Maris-Tandy model [112]:

G(k2)

k2 = 4π2D

ω6 k2e−k2/ω2 + 4παpQCD, (7)

where D and ω are the parameters of the model. αpQCD is
the ultraviolet perturbation term. At zero temperature, con-
tributions of the infrared region dominates, and one could
neglect the perturbation term. To distinguish from the full
Maris–Tandy model, we will, in this paper, denote our model
as “Gaussian type” model. The parameters of the model are

ω = 0.5 GeV and D = 1.0 GeV2 which are determined
with the pion mass mπ = 0.14 GeV and decay constant
fπ = 0.091 GeV withmq = 5 MeV for u and d quark [132].
And the current mass of the strange quark is mq = 115 MeV
by fitting the kaon mass mK = 0.492 GeV [133].

The parameters of our model is fixed by fitting the proper-
ties of mesons in vacuum. At finite chemical potential, how-
ever, it is certain that this approximation loses its accuracy
and requires modification. We will discuss the modification
in Sect. 2.3.

The DS equation has multiple solutions. In chiral limit
(zero current quark mass) and zero chemical potential, there
is a solution with B(p) ≡ 0, and a solution with B(p) > 0,
which are called Wigner solution, Nambu solution, respec-
tively. The Wigner solution corresponds to the dynamical
chiral symmetry (DCS) phase, where the quarks are mass-
less. The Nambu solution corresponds to dynamical chiral
symmetry breaking (DCSB) phase, since the mass function
M(p) = B(p)/A(p) acquires a non-zero value. Although
there are hints that there might exist a quarkyonic phase
where the quark is confined but the chiral symmetry is pre-
serving, it is usually believed that the DCSB (Nambu) solu-
tion corresponds to the confined hadron phase, and the DCS
(Wigner) solution corresponds to the deconfined quark phase.
For both the DCSB and DCS solutions, the scalar functions
A(p) and C(p) have values of order 1 for all momentum p,
and A(p) = C(p) = 1 when p approaches infinity. At finite
chemical potential, all the three functions A, B andC become
complex, but their imaginary part is significantly smaller than
the real part. We still have ReA(|p|, p4) ∼ ReC(|p|, p4) ∼
1, and the ReB(|p| = 0, p4 = 0) can be used to distinguish
the DCSB solution from the DCS one.

At zero temperature and small quark chemical potential,
the DCSB phase should stay in the vacuum ground state until
the chemical potential is larger than some critical value. This
property is known as “Silver–Blaze” property of QCD. At
baryon chemical potential μB = 923 MeV, which is the
proton mass minus the binding energy, there will be a liquid–
gas phase transition where nucleons begin to emerge from
vacuum, and the Silver–Blaze property will be broken beyond
this chemical potential.

2.2 Quark number density and Silver–Blaze property

After solving the DS equation at some quark chemical poten-
tial, the number density of the quarks can be obtained through
[121]:

nq(μ) = 6
∫

d3 p

(2π)3 fq(|p|;μ), (8)
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where fq is the distribution function and reads

fq(|p|;μ) = 1

4π

∫ ∞

−∞
dp4trD[−γ4Sq(p;μ)], (9)

where the trace is for the spinor index.
The integration in Eq. (9) can be converted to a contour

integral on the complex plane of p̃4:

fq (|p|;μ) = 1

π

∫ ∞

−∞
dp4

i (p4 + iμ)C
(| p|2, (p4 + iμ)2)
M

= 1

π

∫ ∞+iμ

−∞+iμ
d p̃4

i p̃4C(| p|2, p̃2
4)

M

= 1

π

( ∮
(−∞+iμ)→(∞+iμ)→(∞)→(−∞)→(−∞+iμ)

−
∫ −∞

∞
−

∫ −∞+iμ

−∞
−

∫ ∞

∞+iμ

)
i p̃4C(| p|2, p̃2

4)d p̃4

M ,

(10)

where

M = p2A2(| p|2, p̃2
4) + p̃2

4C
2(| p|2, p̃2

4) + B2(| p|2, p̃2
4).

(11)

The first equality in Eq. (10) is obtained by carrying out
the trace in Eq. (9), and the second one in Eq. (10) is simply
a replacement of the dummy variable. The integration path
of the second line of Eq. (10) is a horizontal line on the
complex plane. It corresponds to the horizontal solid red line
with non-zero imaginary value in the upper panel of Fig. 1.
This horizontal line is part of the rectangular contour, given in
the third line in Eq. (10), which corresponds to the red solid
rectangular in the upper panel of Fig. 1. The value of the
contour integral can be calculated using the residue theorem,
and the value of the integral in the second line of Eq. (10)
equates the contour integral minus the other three edges of
the rectangular. This leads to the third equality of Eq. (10).

In the last line of Eq. (10), the integral
∫ −∞
∞ is zero since

the kernel is an odd function, and the last two integrals are
also zero because the denominator M diverges at infinity.
Therefore, the value of distribution function fq is determined
by the poles inside the contour.

The pole corresponds to the zero in the denominator M:

p̃4 = ± i
√

p2A2 + B2

C
. (12)

A schematic figure of the pole and the contour is shown in
the upper panel of Fig. 1. For Nambu solution, since B is non-
zero, and C is of order 1, we can see from Eq. (12) that the
imaginary part of the first pole, μa , is finite for arbitrary value
of p2, and for the chemical potential μ < μa , the integral
in Eq. (10) is zero since there is no singularities inside the
contour, and the quark number density remains zero. When
μ > μa , the contour begins to include the pole, and the
number density becomes nonzero. This is a manifestation of
the Silver–Blaze property.

Fig. 1 Schematic feature of the contour and the singularities. Upper
panel: by increasing the chemical potential, the contour may include
the pole, and the number density becomes nonzero. Lower panel: for
a fixed chemical potential, by decreasing the coupling constant D, the
imaginary part of the pole becomes small and moves inside the contour,
and the number density becomes nonzero

2.3 Modification for the Gluon model

In DS equation calculations, the Silver–Blaze property is
maintained. The condensation and number density of the
Nambu solution remains the same as in vacuum for small
quark chemical potential (see, e.g. Refs. [121,129,134]).
However, the critical chemical potential where quark number
density becomes non-zero relies on the vertex and the gluon
model, and is usually not in accordance with the nuclear
liquid-gas phase transition chemical potential.

We notice that, by altering the coupling constant D in
Eq. (7), the critical chemical potential can be changed. The
schematic characteristic of the procedure is shown in the
lower panel of Fig. 1. For a fixed chemical potential, the
pole may lie outside the contour of Eq. (10), and the number
density is zero. However, by decreasing the coupling constant
D, the imaginary part of the pole should also decrease. When
the pole moves into the contour, the number density will
become nonzero.

In order to correctly recover the liquid-gas phase transition
chemical potential, we are going to add a chemical potential
dependence to the coupling D by multiplying a modification
function h(μ) to the coupling constant D defined in Eq. (7),
and we have

D(μ) = D(μ = 0)h(μ), (13)

where D(μ = 0) = 1.0 GeV2.
There are three constraints on the modification function

h(μ): First, we should have h(μ = 0) = 1 since the vacuum
value is fixed by meson properties. Second, h(μ = ∞) = 0
to take into account the asymptotic freedom at large chemical
potential. And we also require that h(μ) guarantees that the
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critical chemical potential is μB,c = 923 MeV which is in
accordance with the emergence of nuclear matter.

Previously, in the study of compact star matter, an expo-
nentially damping function was proposed [122–124,126,
127] as:

hα(μq) = exp(−αμ2
q/ω

2), (14)

where α is a parameter and ω is the same as in the origi-
nal gluon model. This function is a monotonically decreas-
ing function. In general, a larger coupling constant D corre-
sponds to a larger quark mass function M(p), and a larger
critical chemical potential. Meanwhile, it reduces the value
μB,c for the phase transition to happen [127].

However, for some vertex and gluon propagator, the μB,c
might be less than 923 MeV (see, e.g. Ref. [134]), which indi-
cates that a non-monotonic modification function is required.
In this work, we introduce another type of modification func-
tion:

hβ(μq) =
(

1 + μ2
q

μ2
q,c

)
exp(−βμ2

q/ω
2), (15)

The value of the parameters α and β are fixed by requiring
μB,c = 923 MeV (i.e., μq,c = 307.6 MeV). In the follow-
ing, we will denote the modification function in Eq.(14), in
Eq.(15) as α type, β type, respectively.

2.4 Numerical calculation

Since what we need to solve are the functions A, B and C in
terms of the momentum, the momentum must be discretized
at first. The most direct way to carry out the discretion is tak-
ing |p1|, |p2|, · · · |pN | and p4,1, p4,2, · · · p4,N with average
spacing. However, since the main feature of the propagator
is in the infrared domain, we take then the logarithmic spac-
ing to guarantee enough grid points in the infrared, i.e., we
choose log |p1|, · · · log |pN | and log p4,1, · · · log p4,N to be
average spacing. The smallest, largest momentum point is
|p|min = p4,min = 0.01 GeV, |p|max = p4,max = 100 GeV,
respectively. The number of the momentum points N varies
for different chemical potential, and ranges from N ∼ 50 at
μ = 1 GeV to N ∼ 100 near the phase boundary.

There is another way to discretize the momentum. The A,
B and C can also be regarded as functions of P and cos θ ,

where P =
√

p2 + p2
4 is the module of the four momen-

tum, and θ = arccos(p4/P) is the angle between the four
momentum and its 4th-direction projection. In our calcula-
tion, P is discretized with logarithmic average spacing on
the range (0.01, 100) GeV, the cos θ is discretized averagely
on the range (−1, 1). The number of points for P is about
NP ∼ 200, and the number of points for cos θ is about
Nθ ∼ 50.

In this paper, we make use of the first discretion method
to searching the Wigner solution, since it has a better numer-
ical behavior when calculating the number density. And we
implement the second discretion method to determine the
Nambu solution, since this method preserves the O(4) sym-
metry of the vacuum.

In order to solve the gap equation, Eq. (1) is usually sim-
plified with some trace technique.

From Eq. (3) and the properties of gamma matrix, we have:

trD

[
S−1(p, p4;μ)

]
= 4B( p2, p̃2

4),

trD

[
iγ · pS−1(p, p4;μ)

]
= −4p2A( p2, p̃2

4),

trD

[
iγ4 p̃4S

−1(p, p4;μ)
]

= −4 p̃2C( p2, p̃2
4),

(16)

and by multiplying gamma matrix and taking trace on both
side of Eq. (1), the gap equation becomes:

B( p2, p̃2
4) = mq + 1

4
trD

[
�(p, p4;μ)

]
,

A( p2, p̃2
4) = 1 − 1

4 p2 trD
[
iγ · p × �(p, p4;μ)

]
,

C( p2, p̃2
4) = 1 − 1

4 p̃2
4

trD
[
iγ4 p̃4 × �(p, p4;μ)

]
.

(17)

Then, after discretizing the momentum, we can choose
arbitrary initial values for A, B and C , and implement
Eq. (17) to do iteration with proper algorithm (for example,
Broyden iteration), until the solution reaches some required
precision.

3 Results and discussions

3.1 Determination of parameter

The Nambu solution of the quark’s DS equation has a rel-
atively large mass function. Therefore, at small chemical
potential, the number density of quark in Nambu solution
should be zero. The mass function is related to the coupling
constant D, so for a fixed chemical potential, the quark num-
ber density relies definitely on the coupling strength D.

For D/D0 = 1, where D0 = 1.0 GeV2 is the coupling
strength in vacuum and fixed with the meson properties,
the number density should be zero [121], which satisfies the
Silver-Blaze property. However, because of numerical error,
the calculated number density is non-zero and numerically
unstable. Therefore, it is hard to determine the critical cou-
pling strength via the number density directly.

Another way to determine the critical coupling strength
is by searching for the mass pole. As we have stated in the
last section, the emergence of the quark number density cor-
responds to a mass pole in the propagator. The denominator
M, as defined in Eq. (11), is a function of | p| and p4, for a
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fixed value of μ = μq,c. When the pole enters the contour
of the integral in Eq. (10), as illustrated in the lower panel of
Fig. 1, there should be a zeroM for a certain value of | p| and
p4, or equivalently, the maximum value of 1/|M| should be
divergent. The obtained maximum value of the 1/|M| as a
function of coupling constant is shown in Fig. 2. From the
figure, it is apparent that 1/|M| has a pole at Dc = 0.716D0,
where the quark number density begins to appear.

The parameter α and β in Eqs. (14) and (15) is fixed by
requiring that h(μq,c) × D0 = Dc, and we have α = 0.883
and β = 2.714. The calculated variation behavior of the
modification coefficient h with respect to the quark chemi-
cal potential μq (i.e., μB/3) is shown in Fig. 3. The black
solid line corresponds to the result with the α-type mod-
ification function defined in Eq. (14) and the red dashed
line corresponds to the β-type modification function defined
in Eq. (15). Both of the two presently obtained modifica-
tion functions are monotonically decreasing. However, at
small chemical potential, the modification hα(μ) is smaller
than the hβ(μ), while at large chemical potential hβ(μ)

decreases to almost zero more rapidly. The two lines cross
at μq = 307.6 MeV, which is required by our assumption.
After fixing the parameters, we can solve the DS equations
with the Gaussian-type dressed gluon model defined in Eq.
(7) without any modification, with the α-type modification
and the β-type modification, respectively.

3.2 Phase transition of the iso-symmetric matter and the
coexistence region

Because of the asymptotic nature of QCD, there must exist a
deconfined phase transition at high density (chemical poten-
tial). Regardless of the possible existence of quarkyonic
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Fig. 3 Calculated quark chemical potential dependence of the mod-
ification coefficient h. The black solid line corresponds to the α-type
modification function defined in Eq. (14), and the red dashed line cor-
responds to the β-type modification function defined in Eq. (15)

phase, this phase transition is also the chiral phase transi-
tion from DCSB phase to DCS phase.

The order parameter of the chiral phase transition reads
usually the condensate of quark, which is the trace of the
quark propagator. The chiral susceptibility, which is the
derivative of the quark condensate with respect to the current
quark mass, is taken as the criteria of the phase transition.

The chiral susceptibility is related to the stability of the
system [15,26]. If the chiral susceptibility is positive, the
system is stable or meta-stable, and the system is unstable if
the chiral susceptibility is negative.

In vacuum, the chiral susceptibility of the Nambu solu-
tion, which corresponds to the DCSB phase, is positive, while
the chiral susceptibility of the Wigner solution, which cor-
responds to the DCS phase, is negative(see, e.g. Ref. [15]).
This means that the DCS quark matter is unstable in vacuum,
and the system should be described by the Nambu solution.
When the chemical potential gets large enough, the Nambu
solution will disappear, and the chiral susceptibility of the
Wigner solution is positive, this means that the quarks gets
deconfined from hadrons and the matter should be in quark
phase.

In chiral limit, the quark condensate and the chiral sus-
ceptibility is well-defined. In case of nonzero current quark
mass, however, both the quark condensate and the chiral sus-
ceptibility with the original definition in tracing the prop-
agator diverges drastically. There have been several sub-
traction scheme to eliminate the divergence (see, e.g., Refs.
[2,3,12,15,21,26,66]), but it is quite convenient to simply
make use of the Lorentz scalar part of the quark propagator
at zero momentum, i.e., taking B(p = 0) as a represen-
tative of the order parameter, and χm ≡ dB(p=0)

dm0
as chiral

susceptibility, as has been done in Refs. [15,26,121]. Specif-
ically, it has been shown that, for the phase transition at zero
chemical potential and high temperature, the value of the
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Fig. 4 Calculated chiral susceptibility with different gluon models.
The black lines correspond to the results in the Gaussian-type model
without modification, the red lines stand for the results implementing
the α-type modification function defined in Eq. (14), and the blue lines
represent the results using the β-type modification function defined in
Eq. (15). The solid lines correspond to that of the Nambu solution, and
the dashed lines correspond to that of the Wigner solution

pseudo-critical temperature would be slightly different by
using this criterion [26]. At zero temperature and high chemi-
cal potential, however, the chiral susceptibility will diverge at
the phase boundary, and the phase transition chemical poten-
tial determined with this definition is not different from those
fixed via other forms of the definition.

In Fig. 4, we show the calculated chiral susceptibilities
of both the Nambu and the Wigner solutions with the differ-
ent gluon models, and we have neglected the solution where
the chiral susceptibility is negative. As we can see from the
figure, for all the three models, there exists a (quark) chem-
ical potential region where both the Nambu solution and
the Wigner solution have positive chiral susceptibility, and
this region is usually referred to as the “phase coexistence
region”, where the DCSB hadron matter and the DCS quark
matter appear simultaneously.

In details, in case of the Gaussian-type gluon model with-
out chemical potential dependence, the coexistence region
is μq ∈ [0.322, 0.500] GeV. In case of the Gaussian-type
gluon model with the α-type modification, the coexistence
region is μq ∈ [0.271, 0.309] GeV, and for the gluon model
with the β-type modification, the coexistence region is μq ∈
[0.276, 0.308] GeV. The red solid and blue solid lines in
Fig. 4 are then not exactly the same, but appear very close
to each other. More concretely, at zero chemical potential,
the results in the α-type and β-type are exactly the same,
because there should be no modification in vacuum. And the
chiral susceptibilities in the two models both become diver-
gent soon at the liquid-gas phase transition. At low chemical
potential, the silver-blaze property guarantees that the system

is very similar to the vacuum state, and the two models give
similar results. Both the upper and lower boundaries of the
coexistence region are smaller than the corresponding one in
case of without the modification, and the coexistence region
gets narrower. This is because our modification coefficients
generally reduce the interaction strength, and it will be easier
for the quarks to be released from hadrons.

3.3 β-equilibrium quark matter

In the last subsection, we have shown the calculated phase
boundary and phase transition for the iso-symmetric matter,
i.e., the chemical potentials of the u and d quarks are the
same. However, it is now impossible for us to get high density
matter in terrestrial experiment. The most common way to
study the phase structure and phase transition in the high
density region is then to resort to the studying of the matter
in compact stars. The compact star matter is usually in β-
equilibrium and charge neutral. Therefore, we are now going
to study the β-equilibrium and charge neutral quark matter.

To study of the property of compact star matter composed
of both hadrons and quarks (hybrid matter), it is presently
common to implementing the theoretical approach of hadron
matter and that of quark model separately to study hadron,
quark phase, respectively, and combine them with construc-
tion schemes.

In this section, we calculate the property of quark matter by
solving the DS equation of quark, and only keep the Wigner
solution, since the Nambu solution should correspond to the
hadron phase. For the hadron phase, however, we take the
relativistic mean field (RMF) theory with TW-99 parameter-
ization [135], which is described in the appendix.

The calculated quark chemical potential dependence of
the number density of u and d quarks in the Wigner solution
is shown in Fig. 5. It is clear that the result with the β-type
modification has the largest number density. This is phys-
ically reasonable, because the β-type modification has the
smallest coupling strength in the relevant chemical potential
region, and the dressed mass is generally smaller correspond-
ing to a smaller coupling strength, and therefore the number
density of the quarks with smaller dressed mass is larger.

In the study of compact star matter, it is also necessary
to take into consideration the effect of strange quarks. The
study of the solutions of DS equation has revealed that,
for a fixed coupling strength, there exists a critical current
quark mass, above which the Wigner solution will disap-
pear [2,3,6]. For a coupling strength fixed in vacuum, the
strange quark mass is well above the critical mass, which
means that the strange quark does not have the Wigner solu-
tion for the Gaussian-type gluon model without modification,
whose coupling strength is the same as that in vacuum at any
chemical potential. In case of the gluon model with the mod-
ifications, however, since the Wigner solution must exist at
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Fig. 5 Calculated number density (in unit of the saturation nuclear
matter density nS) of the u and d quarks as a function of quark chem-
ical potential. The black solid line corresponds to the result using the
Gaussian-type gluon model without modification, the red dashed line
stands for the result by implementing the Gaussian-type gluon model
with the α-type modification, and the blue dotted line represents the
result with the β-type modification
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Fig. 6 Calculated number density (in unit of the saturation nuclear
matter density nS) of the s quark as a function of the quark chemi-
cal potential. The red dashed line corresponds to the result using the
Gaussian-type gluon model with the α-type modification, and the blue
dotted line stands for the result with the β-type modification

large enough chemical potential where the coupling strength
is quite small, we can then get the strange quark number
density above some critical chemical potential.

The calculated number density of the strange quarks as
a function of quark chemical potential is shown in Fig. 6.
One can notice from Fig. 6 that, in case of the gluon model
with the α-type modification, the critical chemical potential
for the strange quark to appear is μs,c = 0.461 GeV, while
for the gluon model with the β-type modification, the critical

chemical potential is μs,c = 0.420 GeV. The critical chem-
ical potential in case of the β type modification is smaller,
because it has smaller coupling strength in the relevant chem-
ical potential region. Also, the strange quark density for the
β-modification is larger, with the same reason for that the u
and d quark number density is larger for the β-type modifi-
cation.

After calculating the number density of the quarks, the
pressure of each flavor of the quark at zero temperature can
be obtained by integrating the number density:

Pq(μq) = Pq(μq,0) +
∫ μq

μq,0

dμnq(μ). (18)

Mathematically, the starting point of the integration μq,0 can
be any value, but in our calculation, it is more convenient
to choose μu/d,0 to be the value of the left boundary of the
coexistence region, and μs,0 to be the critical chemical poten-
tial where the Wigner solution for the s quark to appear.
In Ref. [121], the pressure difference between the Nambu
and Wigner solutions is calculated by using the “steepest-
descent” approximation, and since the Nambu solution cor-
responds to the vacuum at μq,0, the initial value of the inte-
gration can be chosen as Pq(μq,0) = PW (μq,0)− PN (μq,0),
where PW and PN is the pressure of the Wigner solution,
Nambu solution, respectively. By adopting the result from
Ref. [121], we have Pq(μq,0) = 2.58×10−4, 4.32×10−4 and
4.19×10−4GeV−4 in case of the Gaussian-type gluon model
without modification, with the α-type modification and with
the β-type modification, respectively. For the s quark, we
simply choose Ps(μs,0) = 0 as in Ref. [122].

The total pressure of the quark matter is the sum of the
pressure of each flavor of the quarks:

PQ(μu, μd , μs) =
∑

q=u,d,s

P̃q(μq) − BDS, (19)

where

P̃q(μq) ≡
∫ μq

μq,0

dμnq(μ), (20)

and

BDS ≡ −
∑

q=u,d,s

Pq(μq,0). (21)

In compact star matter, the contributions from leptons is
also important. Usually, the electron and muon are consid-
ered. The number density for the leptons is:

nl = k3
Fl

3π2 , (22)

where k2
Fl = μ2

l −m2
l for l = e−, μ−. In this work, we take

me = 0.511 MeV and mμ− = 105 MeV.
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The quark matter in a compact star should be in β-
equilibrium and electric charge neutral, so we have:

μd = μu + μe = μs,

μμ− = μe (23)

2nu − nd − ns
3

− ne − n
μ− = 0. (24)

And we have the baryon density and chemical potential as:

nB = 1

3
(nu + nd + ns), (25)

μB = μu + 2μd . (26)

With these relations, we can calculate the properties of the
β-equilibrium and charge neutral quark matter with a given
baryon chemical potential (baryon density).

Except for solving the DS equation for the quark matter
and the RMF for the hadron matter, we also need to make use
of some construction scheme to describe the hadron-quark
phase transition. The condition for the phase transition to
occur is the chemical potential and the pressure in the two
phases are equal, i.e.,

pH (μB) = pQ(μB), (27)

where the footnote H and Q denote the hadron and quark
sector, and the pressure as a function of baryon chemical
potential is determined by the hadron and quark model we
implemented. By solving the above equation, we can get the
chemical potential corresponding to the hadron-quark phase
transition.

The above described construction scheme is called the
“Maxwell construction”, which provides a straight forward
way to describe the phase transition, and is widely used.
However, it only considers one chemical potential, the baryon
chemical potential. In the compact star matter, there are two
conservation numbers, the baryon number and the charge
number. In turn, there are two chemical potentials, the baryon
chemical potential and the charge chemical potential. We
should then implement the Gibbs construction to take into
account both of the chemical potentials.

In Gibbs construction, it assumes that there is a mix phase
region (phase coexistence region) where both quark and
hadron exist simultaneously, and the baryon chemical poten-
tial (μB) and the charge chemical potential(μe) are the same
in both the quark and the hadron phases.

In the phase coexistence region, the pressure of the two
phases are the same. And though the two phases are no longer
charge neutral separately, there will be a global charge neutral
condition. If we define the quark fraction χ ∈ [0, 1], the
phase transition conditions can be expressed as:

pH (μB, μe) = pQ(μB, μe), (28)

(1 − χ)ncH (μB, μe) + χncQ(μB, μe) = 0, (29)
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Fig. 7 Calculated pressure as a function of baryon chemical potential.
The black solid line corresponds to the pressure of hadron matter without
hyperons using the RMF TW-99 model, the gray dotted line corresponds
to that of hadron matter with hyperons in the RMF TW-99 model, the
green line with diamond symbol corresponds to the quark matter with
DS equation calculation with the Gaussian-type gluon model without
modification, the red line with circle symbol stands for the quark matter
with the DS equation calculation with the α-type modification, the blue
line with star symbol represents that of the quark matter with the DS
equation calculation implementing the β-type modification, the orange
dashed line with circle symbol corresponds to the Gibbs construction
linking the RMF TW-99 hadron model and the DS equation using the
α-type quark model, and the pink dashed line with star symbol is that
via the Gibbs construction linking the RMF TW-99 hadron model and
the DS equation using the β-type quark model

where pH , pQ is the pressure of the hadron, the quark phase,
respectively, which is a function of both the μB and the μe.
ncH , ncQ is the charge density of each of the two phases, which
is determined by the corresponding hadron and quark model.

Then, combining Eqs. (28) and (29), together with the
field equations of the two phases, we can obtain the μB and
μe with any given quark fraction χ . By taking χ = 0, 1, we
can calculate the phase boundary of the coexistence region
under the charge neutral and β-equilibrium condition.

The calculated baryon chemical potential dependence of
the pressure of each kind matter is shown in Fig. 7. From
the figure, we can see that, among the three quark models,
the one with the β-type modification has the largest pressure,
which is in accordance with that the β-type modification has
the largest quark number density.

In Fig. 7, the black solid line and gray dotted line represent
the results of the calculated hadron matter pressure via the
TW-99 RMF model described in the appendix. The black
solid line corresponds to the nuclear matter that only proton,
neutron and leptons are considered, while the gray dotted
line is the one with the contribution of the hyperons having
been taken into consideration. As we have mentioned, for
the hadron-quark phase transition to take place, the pressure
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and the chemical potential of hadron matter and those of the
quark matter must be simultaneously the same, respectively.
This means that the P–μB curve of the hadron matter and
that of the quark matter must have a cross point. However,
Fig. 7 manifests clearly that, in case of the Gaussian-type
gluon model without any modification, the pressure of the
quark matter is too small and there is no cross point with
the line of hadron matter. This means that, for the Gaussian-
type gluon model without modification, the coupling strength
in the relevant chemical potential region is too strong and
should be excluded, since the hadron-quark phase transition
is forbidden in the model, which is physically unlikely. This
further indicates the necessity of taking into consideration
the modification factor. For the Gaussian-type gluon model
with the α- and β-type modification, the phase transition
chemical potential for the β-equilibrium and charge neutral
matter is μB = 1.94 GeV, 1.71 GeV, respectively. And the
gray dotted line does not have cross point with all the quark
lines, which means that the phase transition will not happen
after the inclusion of hyperons. Therefore, we will not include
the hyperon effect in the following.

By implementing the Gibbs construction, we can obtain
that the phase coexistence region of the β-equilibrium and
global charge neutral matter is μB ∈ [1.69, 2.02] GeV, μB ∈
[1.48, 1.79] GeV in case of the model with the α-type, β-type
modification, respectively, as shown in Fig. 7.

The obtained phase coexistence region and the phase
boundary here is different from what we have shown in
Sect. 3.2, but with some simple relations:

3μW,c ≤ μG,1 ≤ μG,2 ≤ 3μN ,c, (30)

where μG,1, μG,2 is the baryon chemical potential corre-
sponding to the left, the right boundary of the coexistence
region from the Gibbs construction, μW,c is the quark chem-
ical potential corresponding to the divergence of the chiral
susceptibility of the Wigner solution (DCS phase), and μN ,c
corresponds to the divergence of the chiral susceptibility of
the Nambu solution (DCSB phase).

The first inequality in Eq. (30) is satisfied well in our
calculation, while the last inequality is not satisfied. This
deficiency comes from both the insufficiency of the hadron
model and the quark model.

By solving the DS equation of the quark(s), we are cal-
culating the property of uniform quark matter. However, the
quarks in the hadron matter is not uniformly distributed since
they are clustered as hadrons. So the Nambu solution of DS
equation is different from the real world hadron matter after
the appearance of quark number density.

The RMF model also has its deficiency. The parameters
of the hadron matter model are fixed by fitting the property
of the hadron matter at saturation density or lower densities
where terrestrial experiments are able to create. Beyond the
saturation density, different models give distinct results. Still,

the RMF model is more reliable than the Nambu solution
of the DS equation in describing the hadron matter, since
the solution of the DS equation has not taken into account
the effects of the non-uniform distribution of the quark, the
surface of the cluster, and so forth. We then conclude that the
right boundary of the phase coexistence region of the matter is
at μN ,c ≥ μG,2/3 = 0.673 GeV, μN ,c ≥ 0.597 GeV for the
α-type modified, β-type modified gluon model, respectively.

3.4 Equation of state and mass-radius relation of compact
star

In order to study the hadron-quark phase transition at zero
temperature and high chemical potential (density), one has
to make use of the compact star observations to check our
theoretical results since it is not possible to generate such
dense matter on earth.

The most important observable of compact stars is the
maximum mass, which is related directly to the EOS P =
P(ε) of the dense matter.

The energy density ε of the dense matter under Maxwell
construction is:

εMaxwell =
{

εH , if μB < μB,c,

εQ, if μB > μB,c.
(31)

εH and εQ is the energy density of the charge neutral hadron
matter and quark matter, respectively. μB,c is the phase tran-
sition baryon chemical potential. The pressure of the dense
matter under Maxwell construction is:

PMaxwell =
{
PH , if μB < μB,c,

PQ, if μB > μB,c.
(32)

PH is the pressure of the hadron matter and PQ is the pressure
of the quark matter.

For Gibbs construction, the EOS should be decomposed
into three parts: μB ≤ μG,1 region, μG,1 ≤ μB ≤ μG,2

region and μB ≥ μG,2 region, where μG,1 and μG,2 is the left
and right boundary of the phase coexistence region (mixed
phase).

The energy density of the mixed phase consists of the
contribution of the two phases.

εM = χεQ(μB, μe) + (1 − χ)εH (μB, μe), (33)

where the footnote M, Q and H corresponds to the mixed,
the quark, the hadron phase, respectively. For a fixed μB , μe

is calculated by solving Eqs. (28) and (29). And the pressure
for the mixed phase reads:

pM (μB) = pH (μB, μe(μB)) = pQ (μB, μe(μB)) . (34)
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Fig. 8 Calculated equation of state. The black solid line is the result
of the pure hadron matter via the TW-99 RMF model, the red lines with
circle symbol stand for the results using the α-type modification, the
blue lines with diamond symbol correspond the result implementing the
β-type modification. The solid lines with symbols represent the results
of the pure quark matter, the dashed lines with symbols correspond to
the results via the Gibbs construction, and the dotted lines with symbols
stand for the results with the Maxwell construction

The energy density and the pressure under the Gibbs con-
struction are:

εGibbs =
⎧⎨
⎩

εH if μB < μG,1,

εM if μG,1 ≤ μB < μG,2,

εQ if μB > μG,2,

(35)

PGibbs =
⎧⎨
⎩

PH if μB < μG,1,

PM if μG,1 ≤ μB < μG,2,

PQ if μB > μG,2.

(36)

The calculated EOSs of the pure hadron, pure quark and
hybrid (mixed phase) matter are illustrated in Fig. 8. As we
can recognize from Fig. 8, the pure quark matter has a softer
EOS than the pure hadron matter, and both the two different
construction schemes connect the EOSs of the hadron matter
and the quark matter. In case of the Maxwell construction,
there is a density region where the pressure is constant, which
corresponds to a phase transition with a constant chemical
potential. However, in compact stars, the pressure must have
a gradient in order to resist its own gravity, so that such a
constant pressure region will not appear inside compact star.
The phase transition under the Maxwell construction corre-
sponds to a sudden change in the energy density between the
quark core and the hadron shell.

The mass–radius relation of a compact star can be calcu-
lated by solving the Tolman–Oppenheimer–Volkov (TOV)
equation:
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Fig. 9 Calculated mass-radius relation of the compact star in the cases
we take consideration. The black solid line corresponds to the pure
hadron star, the solid lines with symbols stand for the results via the
Gibbs construction, the dashed lines with symbols represent the results
with the Maxwell construction, and the dotted lines with symbols cor-
respond to the results of the pure quark matter. The α, β in the legend
denotes the DS equation result by implementing the α-, β-type modifi-
cation, respectively

dP

dr
= −G

r2 (m(r) + 4π Pr3)(ε + P)(1 − 2Gm(r)/r)−1,

(37)

where G is gravitational constant and m(r) is the mass inside
a radius r :

m(r) =
∫ r

0
4πR2εdR. (38)

Then given the EOS as input, and with a given center density,
we can integrate the TOV equation from inside out to get the
mass and radius of the compact star.

For the pure hadron star and the hybrid star, at small den-
sity region, we make use of the Baym–Pethick–Sutherland
(BPS) EOS [136]. For the pure quark star, we integrate to the
surface where the pressure is zero.

The calculated mass-radius relations of the compact star
in the cases of our consideration are shown in Fig. 9. From
Fig. 9, one can notice apparently that the pure quark star has
a much smaller maximum mass than the pure hadron star and
hybrid star, and the maximum mass is 1.07M�, 0.95M� for
the α-, β-type modification, respectively.

For pure hadron star, the maximum mass is 2.06M�. From
Fig. 9, we can see that at large radius and small mass, the
mass-radius curves for hybrid star and pure hadron star are
exactly the same, because for hybrid star with relatively small
mass, the inner density is not large enough for the quark
matter to appear.

When the mass of the hybrid star is large enough, the quark
matter begins to appear in the composing matter of the star,
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and the mass–radius curves begin to deviate from the pure
hadron one. As can be seen from Fig. 9, for both α and β

modification, and for both Gibbs and Maxwell construction,
the deviation begin to appear at over ∼ 2M�, which means
that the hadron-quark phase transition happens at very high
density and the mass–radius relation is determined mainly by
the EOS of the hadron sector. If the quark sector is described
by DS equation with the α-type modification, the maximum
mass will be 2.06M� for both Gibbs and Maxwell construc-
tion. If the quark sector is described by DS equation with
the β-type modification, the maximum will be 2.00M� for
Gibbs construction and 2.05M� for Maxwell construction.

4 Summary

The Dyson-Schwinger equation has been implemented to
study the phase transition and the phase structure of QCD
matter. However, the possible dependence of coupling
strength on the quark chemical potential is not well stud-
ied. In this paper, we take into account several types of the
chemical potential dependence, and make use of the nuclear
liquid-gas phase transition to fix the parameter(s).

For the modification factor we propose, the boundary of
the phase coexistence region of the iso-symmetric matter is
reduced than that without modification. The phase coexis-
tence region is μq ∈ [0.322, 0.500] GeV for the Gaussian-
type gluon model without any modification, and becomes
μq ∈ [0.271, 0.309] GeV, [0.276, 0.308] GeV in case of the
α-, β-type modification, respectively.

However, by taking into account the β-equilibrium and
charge neutral condition for the matter inside compact stars,
and comparing the results from the DS equation calculation
for the quark sector and the RMF hadron model, we find that
the quark pressure is too low for the Gaussian-type gluon
model without any modification, and the hadron-quark phase
transition is prohibited, which is physically unlikely. This
means that the adoption of modification is necessary.

By implementing the RMF model for hadron matter and
the DS equation calculation for the quark sector, we find that
the phase transition chemical potential under the Maxwell
construction is μB = 1.94, 1.71 GeV for the α-, β-type
modification, respectively. The phase coexistence region
under the Gibbs construction is μB ∈ [1.69, 2.02] GeV,
[1.48, 1.79] GeV in case of the α-, β-type modification,
respectively. The upper boundary of this mixed phase region
is not compatible with the iso-symmetric result, and dis-
crepancy comes from the uncertainty of both the DS equa-
tion approach and the RMF model in the phase coexistence
region. Since the RMF model is more accurate in describ-
ing the hadron phase, we conclude that this boundary indi-
cates that μN ,c ≥ 0.673 GeV, 0.579 GeV, for the α- β-type

modification, respectively, where μN ,c is the quark chem-
ical potential at which the Nambu solution (DCSB phase)
disappears.

We also obtain the mass-radius relation for compact stars
in the cases we considered. The maximum mass of the pure
hadron star is 2.06M�. If the quark sector is described using
α-type modification, the maximum mass of the hybrid star
is the same as that of pure hadron star. If the quark sector is
described by implementing β-type modification, the maxi-
mum mass of the hybrid star is 2.00M� and 2.05M� for the
Gibbs construction, the Maxwell construction, respectively.
Therefore, for hybrid stars, the maximum mass is almost the
same since the phase transition happens at very high density.
However, the maximum mass of the pure quark star is only
about 1M�.

In this work, the possible appearance of hyperons in the
dense star matter is not considered, because it prevents from
the happening of the hadron-quark phase transition. This
problem can be fixed by implementing the 3-window con-
struction method instead of the Gibbs and Maxwell construc-
tions, as has been done in our previous work [127].

Although we have made use of the liquid-gas phase transi-
tion chemical potential to fix the parameters of the modifica-
tion function in our DS equation calculation, it is still impos-
sible to recover all the properties of the hadron matter from
first-principle calculation. For example, there should be a
density gap at liquid-gas phase transition. Also, the saturation
density of nuclear matter cannot be recovered by the Nambu
solution of the DS equation. To fix these problems, taking into
account the dressing effect of the quark-gluon interaction ver-
tex or/and the interface effect between quarks and hadrons
(clustered quarks) in the DS equation approach should be an
efficient way. The related work is under progress.
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Appendix A: Relativistic mean field theory

The relativistic mean field (RMF) theory [137–143] is
a successful theory which describes the property of the
hadron matter in the density region relevant in compact
stars [144,145]. There are many RMF models, with different
parameterization which are calibrated by the properties of
dense nuclear matter. However, most of the models satisfy
only a few experimental data. In Ref. [146], hundreds of RMF
models are taken to fit the experimental data, and the TW-99
model [135] is found to be one of the best model that can
reproduce most of the nuclear matter properties. Also, TW-
99 model generates an EOS that is stiff enough to support
a 2-solar-mass neutron star [147], and we have taken such
a model to construct a massive hybrid star in our previous
work [127].

The Lagrangian of the TW-99 model for the hadron matter
is

L = LB + Llep + LM + Lint, (A1)

where LB is the Lagrangian of free baryons, which reads

LB =
∑

i

�̄i (iγμ∂μ − mi )�i , (A2)

where i = p, n stands for proton and neutron. If we want to
take into consideration the effect of hyperons, we can take
i = p, n, �, �±,0, �−,0 for the baryon octet.

LM in Eq. (A1) is the Lagrangian of mesons,

LM = 1

2

(
∂μσ∂μσ − m2

σ σ 2
)

− 1

4
ωμνω

μν − 1

2
m2

ωωμωμ

−1

4
ρμνρ

μν − 1

2
m2

ρρμρμ, (A3)

where σ , ωμ, and ρμ are the isoscalar-scalar, isoscalar-
vector and isovector-vector meson field, respectively. ωμν =
∂μων − ∂νωμ, ρμν = ∂μρν − ∂νρμ.

TheLint in Eq. (A1) is the Lagrangian describing the inter-
actions between baryons which are realized by exchanging
the mesons:

Lint =
∑
B

gσ B�̄Bσ�B − gωB�̄Bγμωμ�B

−gρB�̄Bγμτ B · ρμ�B, (A4)

where gi B for i = σ , ω, ρ are the coupling strength param-
eters between baryons and mesons, which depend on the
baryon density.

In some other literatures, the self-interaction of σ -meson,
the cross interaction between different kind mesons and the
effect of the isovector-scalar δ-meson are included explicitly
(see, e.g., the review in Refs. [145,146]). In TW-99 parame-
terization, however, all these terms are taken zero, and their
effects are represented in the density dependence of the cou-

Table 1 Parameters of the mesons and their couplings (taken from Ref.
[135])

Meson i σ ω ρ

mi (MeV) 550 783 763

giN (ns) 10.72854 13.29015 7.32196

ai 1.365469 1.402488 0.515

bi 0.226061 0.172577

ci 0.409704 0.344293

di 0.901995 0.983955

pling constants. For nucleons, the coupling constants are

giN (nB) = giN (ns) fi (x), for i = σ, ω, ρ, (A5)

where nB is the baryon density, ns is the saturation nuclear
matter density and x = nB/ns . The density function can be
chosen as [135]:

fi (x) = ai
1 + bi (x + di )

2

1 + ci (x + di )
2 , for i = σ, ω, (A6)

fρ(x) = exp
[−aρ(x − 1)

]
, (A7)

where the parameters ai , bi , ci , di and giN (ρsat) are fixed by
fitting the properties of the nuclear matter at the saturation
density, and their values are listed in Table 1.

For hyperons, we represent them with the relation between
the hyperon coupling and the nucleon coupling as: χσ =
gσY
gσN

, χω = gωY
gωN

, χρ = gρY
gρN

. On the basis of hypernuclei

experimental data, we choose them as those in Refs. [144,
147]: χσ = 0.7, χω = χρ = 0.783.

The Llep is the Lagrangian for leptons, which are treated
as free fermions:

Llep =
∑
l

�̄l(iγμ∂μ − ml)�l , (A8)

and we include only the electron and muon in this paper.
The field equations can be derived by differentiating

the Lagrangian. Under RMF approximation, the system is
assumed to be in the static, uniform ground state. The partial
derivatives of the mesons all vanish, only the 0-component
of the vector meson and the 3rd-component of the isovector
meson survive and can be replaced with the corresponding
expectation values. The field equations of the mesons are
then:

m2
σ σ =

∑
B

gσ B〈�̄B�B〉, (A9)

m2
ωω0 =

∑
B

gωB〈�̄Bγ0�B〉, (A10)

m2
ρρ03 =

∑
B

gρB〈�̄Bγ0τ3B�B〉, (A11)

where τ3B is the 3rd-component of the isospin of baryon B.
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The equation of motion (EoM) of the baryon is:[
γ μ(i∂μ − �μ) − (mB − gσ Bσ)

]
�B = 0, (A12)

where

�μ = gωBωμ + gρBτ B · ρμ + �R
μ. (A13)

The �R
μ is called the “rearranging” term, which appears

because of the density-dependence of the coupling constant,
and reads

�R
μ = jμ

nB

(
∂gωB

∂nB
�̄Bγ ν�Bων

+∂gρB

∂nB
�̄Bγ ντ B · ρν�B − ∂gσ B

∂nB
�̄B�Bσ

)
,

(A14)

where jμ = �̄Bγμ�B is the baryon current.
Under the EoM of Eq. (A12), the baryons behave as quasi-

particles with effective mass

m∗
B = mB − gσ Bσ, (A15)

and effective chemical potential:

μ∗
B = μB − gωBω0 − gρBτ3Bρ03 − �R

μ. (A16)

One can then get the baryon (number) density:

nB ≡ 〈�̄Bγ 0�B〉 = γB

∫
d3k

(2π)3 = γB
k3
FB

6π2 , (A17)

where kFB =
√

μ∗2
B − m∗2

B is the Fermi momentum of the
particle, γB = 2 is the spin degeneracy. And the scalar den-
sity is:

ρs
B ≡ 〈�̄B�B〉 = γB

∫
d3k

(2π)3

m∗
B√

k2 + m∗2
B

= γB
m∗

B

4π2

[
kFBμ∗

i − m∗2
B ln

(
kFB + μ∗

B

m∗
B

)]
.

(A18)

The density of a kind of leptons is the same as that for
baryons, except that the effective mass and the effective
chemical potential should be replaced with the corresponding
mass and chemical potential of the lepton.

The matter in the star composed of hadrons should be
in β-equilibrium. Since there are two conservative charge
numbers: the baryon number and the electric charge number,
all the chemical potential can be expressed with the baryon
chemical potential and the electron chemical potential:

μi = BμB − Qμe, (A19)

where B and Q is the baryon number, electric charge number
for the particle i , respectively. Since neutron has one baryon
number and zero charge number, we can take μB = μn where
μn is the neutron chemical potential.

Then, combining Eqs. (A9), (A10), (A11), (A14), (A15),
(A16), (A17), (A18), (22) and (A19), together with the charge
neutral condition:

n p + n
�+ = ne + n

μ− + n
�− + n

�− , (A20)

one can determine the ingredients and the properties of the
hadron matter with any given baryon density nB .

The EOS of the hadron matter can be calculated from the
energy-momentum tensor:

Tμν =
∑
φi

∂L
∂(∂μφi )

∂νφi − gμνL. (A21)

The energy density ε is:

ε = 〈T 00〉 =
∑
i=B,l

εi + 1

2
m2

σ σ 2 + 1

2
m2

ωω2
0 + 1

2
m2

ρρ2
03,

(A22)

where the contribution of the baryon B to the energy density
is:

εB = γB

∫
d3k

(2π)3

√
k2 + m∗2

B

= γB
1

4π2

[
2μ∗3

B kFB − m∗2
B μ∗

BkFB − m∗4
B ln

(
μ∗
B + kFB
m∗

B

)]
.

(A23)

The contribution of the leptons to the energy density can
be written in the similar form as baryons with a spin degen-
eracy parameter γl = 2, except that the effective mass and
effective chemical potential should be replaced with those of
the leptons, respectively.

As for the pressure of the system, we can determine that
with the general formula:

P =
∑
i

μiρi − ε. (A24)
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