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T. Csörgő1,2,a, I. Szanyi1,3,b

1 Wigner FK, POB 49, Budapest 114 1525, Hungary
2 MATE Institute of Technology, Károly Róbert Campus, Mátrai út 36, Gyöngyös 3200, Hungary
3 Eötvös University, Pázmány P. s. 1/A, Budapest 1117, Hungary

Received: 6 August 2020 / Accepted: 25 June 2021 / Published online: 13 July 2021
© The Author(s) 2021

Abstract The unitarily extended Bialas–Bzdak model of
elastic proton–proton scattering is applied, without modifi-
cations, to describe the differential cross-section of elastic
proton–antiproton collisions in the TeV energy range, and to
extrapolate these differential cross-sections to LHC energies.
In this model-dependent study we find that the differential
cross-sections of elastic proton–proton collision data at 2.76
and 7 TeV energies differ significantly from the differential
cross-section of elastic proton–antiproton collisions extrap-
olated to these energies. The elastic proton–proton differ-
ential cross-sections, extrapolated to 1.96 TeV energy with
the help of this extended Bialas–Bzdak model do not dif-
fer significantly from that of elastic proton–antiproton colli-
sions, within the theoretical errors of the extrapolation. Taken
together these results provide a model-dependent, but statis-
tically significant evidence for a crossing-odd component of
the elastic scattering amplitude at the at least 7.08 sigma level.
From the reconstructed Odderon and Pomeron amplitudes,
we determine the

√
s dependence of the corresponding total

and differential cross-sections.

1 Introduction

Recently the TOTEM experiment measured differential
cross-sections of elastic proton–proton collisions in the TeV
energy range, from

√
s = 2.76 through 7 and 8 to 13 TeV,

together with the total, elastic and inelastic cross-sections
and the real to imaginary ratio of the scattering amplitude
at vanishing four-momentum transfer. These measurements
provided surprizes and unexpected results. First of all, the
shape of the differential cross-section of elastic scattering at√
s = 7 TeV was different from all the predictions.
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The total cross-section increases with increasing
√
s

according to theoretical expectations based on Pomeron-
exchange, corresponding experimentally to the production of
large rapidity gaps in high energy proton–proton and proton–
antiproton collisions. These events correspond to large angu-
lar regions where no particle is produced. Their fraction, in
particular the ratio of the elastic to the total proton–proton
cross-section is increased above 25% at LHC energies.

In the language of quantum chromodynamics (QCD), the
field theory of strong interactions, Pomeron-exchange corre-
sponds to the exchange of even number of gluons with vac-
uum quantum numbers. In 1973, a crossing-odd counterpart
to the Pomeron was proposed by Lukaszuk and Nicolescu,
the so-called Odderon [1]. In QCD, Odderon exchange cor-
responds to the t-channel exchange of a color-neutral gluonic
compound state consisting of an odd number of gluons, as
noted by Bartels, Vacca and Lipatov in 1999 [2].

The Odderon effects remained elusive for a long time, due
to lack of a definitive and statistically significant experimen-
tal evidence.

A direct way to probe the Odderon in elastic scattering
is by comparing the differential cross-section of particle–
particle and particle–antiparticle scattering at sufficiently
high energies [3,4]. Such a search was published at the ISR
energy of

√
s = 53 GeV in 1985 [5], that resulted in an

indication of the Odderon, corresponding to a 3.35σ signif-
icance level obtained from a simple χ2 calculation, based
on 5 pp and 5 p p̄ data points in the 1.1 ≤ |t | ≤ 1.5 GeV2

range (around the diffractive minimum). This significance
is smaller than the 5σ threshold, traditionally accepted as a
threshold for a discovery level observation in high energy
physics. Furthermore, the colliding energy of

√
s = 53 GeV

was not sufficiently large so the possible Reggeon exchange
effects were difficult to evaluate and control. These difficul-
ties rendered the Odderon search at the ISR energies rather
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inconclusive, but nevertheless inspiring and indicative, moti-
vating further studies.

In a series of recent papers, the TOTEM Collaboration
published results with important implications for the Odd-
eron search. These papers studied elastic proton–proton col-
lisions in the LHC energy range between

√
s = 2.76 and

13 TeV [6–9]. The total cross section, σtot(s) was found to
increase, while the real-to-imaginary ratio, ρ0(s), is found to
decrease with increasing energy, first identified at

√
s = 13

TeV [6,7]. These experimental results at vanishing four-
momentum transfer were consistent with a possible Odd-
eron effect and triggered an intense theoretical debate (see
e.g. Refs. [10–27]). For example, Ref. [28] demonstrated that
such an indication at t = 0 is not a unique Odderon signal,
as such a behaviour can be attributed to secondary Reggeon
effects. In spite of the rich experimental results and the hot
theoretical debate, the Odderon remained rather elusive at
vanishing four-momentum transfer even in the TeV energy
range [29].

However, at larger four-momentum transfers, in the inter-
ference (diffractive dip and bump or minimum–maximum)
region, the Odderon signals are significant at LHC energies.
Let us mention here only two of them: the four-momentum
transfer dependent nuclear slope parameter B(t) and the scal-
ing properties of elastic scattering at the TeV energy region.

Two independent, but nearly simultaneous phenomeno-
logical papers suggested that the four-momentum trans-
fer dependence of the nuclear slope parameter, B(t) is
qualitatively different in elastic proton–proton and proton–
antiproton collisions [12,22]. The TOTEM experiment has
demonstrated in Ref. [9] that indeed in elastic pp collisions
at

√
s = 2.76 TeV, the nuclear slope B(t) is increasing

(swings) before it decreases and changes sign in the inter-
ference (diffractive dip and bump or minimum–maximum)
region. After the diffractive maximum, the nuclear slope
becomes positive again. In contrast, elastic p p̄ collisions
measured by the D0 collaboration at the Tevatron energy
of

√
s = 1.96 TeV did not show such a pronounced diffrac-

tive minimum–maximum structure, instead an exponentially
decreasing cone region at low −t with a constant B(t) is fol-
lowed by a shoulder structure, without a pronounced diffrac-
tive minimum and maximum structure. The TOTEM col-
laboration presented its results on the elastic pp differential
cross-section at

√
s = 2.76 TeV and concluded in Ref. [9]

that “under the condition that the effects due to the energy
difference between TOTEM and D0 can be neglected, these
results provide evidence for a colourless 3-gluon bound state
exchange in the t-channel of the proton–proton elastic scat-
tering”.

This energy gap has been closed recently, in a model-
independent way, based on a re-analysis of already published
data using the scaling properties of elastic scattering in both
pp and p p̄ collisions at TeV energies: Refs. [30–32] reported

about a statistically significant Odderon signal in the compar-
ison of the H(x, s) scaling functions of elastic pp collisions
at

√
s = 7.0 TeV to that of p p̄ collisions at

√
s = 1.96 TeV.

The difference between these scaling functions carries an at
least 6.26 σ Odderon signal, if all the vertical and horizon-
tal, point-to-point fluctuating and point-to-point correlated
errors are taken into account. If the interpolation between
the datapoints at 7 TeV is considered as a theoretical curve,
the significance of the Odderon signal goes up to 6.55 σ .
Instead of comparing the cross sections directly, this method
removes the dominant s dependent quantities, by scaling out
the s-dependencies of σtot(s), σel(s), B(s) and ρ0(s), as well
as the normalization of the H(x, s) scaling function, that
also cancels the point-to-point correlated and t-independent
normalization errors.

The model-independence of the results of Refs. [12,
30–32] is an advantage when a significant and model-
independent Odderon signal is searched for. The domain
of the signal region can also be determined with model-
independent methods. Both the signal and its domain can be
directly determined from the comparison of D0 and TOTEM
data. However, a physical interpretation or a theoretical con-
text is also desired, not only to gain a better understanding
of the results, in order to have a more physical picture, but
also to gain a predictive power and to be able to extrapolate
the results to domains where experimental data are lacking,
or, to regions where the scaling relations are violated. To
provide such a picture is one of the goals of our present
manuscript. In this work, we continue a recent series of theo-
retical papers [33–36]. These studies investigated the differ-
ential cross-section of elastic pp collisions, but did not study
the same effects in elastic p p̄ collisions. The framework
of these studies is the real extended and unitarized Bialas–
Bzdak model, based on Refs. [37–40]. This model considers
protons as weakly bound states of constituent quarks and
diquarks, or p = (q, d) for short (for a more detailed sum-
mary of the model see Appendix A). In a variation on this
theme, the diquark in the proton may also be considered to be
a weakly bound state of two constituent quarks, leading to the
p = (q, (q, q)) variant of the Bialas–Bzdak model [37,38].
The model is based on Glauber’s multiple scattering theory
of elastic collisions [41–43], assuming additionally, that all
elementary distributions follow a random Gaussian elemen-
tary process, and can be characterized by the corresponding
s-dependent Gaussian radii. These distributions include the
parton distribution inside the quark, characterized by a Gaus-
sian radius Rq(s), the distributions of the partons inside the
diquarks, characterized by the Gaussian radius Rd(s) and the
typical separation between the quarks and the diquarks char-
acterized by the Gaussian radius Rqd(s). In Refs. [33,34,36]
it was shown that the p = (q, (q, q)) variant of the Bialas–
Bzdak model gives too many diffractive minima, while exper-
imentally only a single diffractive minimum is observed in

123



Eur. Phys. J. C (2021) 81 :611 Page 3 of 33 611

pp collisions. This is a result that is consistent with the ear-
lier detailed studies of elastic nucleus-nucleus collisions in
Ref. [44], that observed that a single diffractive minimum
occures only in elastic deuteron-deuteron or (p, n) + (p, n)

collisions, so the number of diffractive minima increases as
either of the elastically colliding composite objects develops
a more complex internal structure.

In the original version of the Bialas–Bzdak model, the
scattering amplitude was assumed to be completely imag-
inary [37]. This structure resulted in a completely vanish-
ing differential cross-section at the diffractive minima. This
model was supplemented by a real part, first perturbatively
[33–35], subsequently in a non-perturbative and unitary man-
ner [36]. This way a new parameter called α(s) was intro-
duced, that controls the value of the differential cross-section
at the diffractive minimum (it is not to be confused with the
strong coupling constant of QCD, that we denote in this work
as α

QCD
s ). Our α(s) is a kind of opacity parameter, that mea-

sures the strength of the real part of the scattering amplitude,
so it is responsible for both for filling up the dip region of the
differential cross-sections and for the description of the real
to imaginary ratio ρ at vanishing four-momentum transfer.

The structure of this unitary, real extended Bialas–Bzdak
model (abbreviated as ReBB model) is thus very interesting
as there are only four s-dependent physical parameters: Rq ,
Rd , Rqd and α. However three out of these four parameters
is a geometrical parameter, characterizing the s dependence
of parton distributions inside the protons. Hence, it is natural
to assume, that these distributions are the same inside pro-
tons and anti-protons, while the opacity parameter α may be
different in elastic pp and p p̄ collisions.

So it is natural to expect, that thisα(s)parameter may carry
an Odderon signal as its excitation function might be very
different in elastic pp collisions, that feature a pronounced
dip at every measured energy even in the TeV energy range
[9], while in elastic p p̄ collisions, a significant dip is lacking
even in measurements in the TeV energy range [45].

In this manuscript, we thus extend the applications of the
ReBB model from elastic pp to elastic p p̄ collisions using
the model exactly in the same form, as it was described in
Ref. [36]. We fit exactly the same four physical parameters
to describe the differential cross-section of elastic proton–
antiproton (p p̄) scattering. Later we shall see that at the same
energy, the geometrical parameters in pp and p p̄ collisions
are apparently consistent with one another, within the system-
atic errors of the analysis we obtain the same Rq(s), Rd(s)
and Rqd(s) functions for pp and p p̄ reactions.

In this manuscript, we thus can investigate also the fol-
lowing independent questions:

– Is the real extended Bialas–Bzdak model of Ref. [36] able
to describe not only elastic pp but also p p̄ collisions?

– Is it possible to characterize the Odderon with only one
physical parameter: the difference of the opacity param-
eter α(s) in pp and in p p̄ collisions: α pp(s) �= α p p̄(s)?

We shall see that the answer to both of these questions is
a definitive yes.

The structure of the manuscript is as follows. In Sect. 2
we recapitulate the definition of the key physical quantities in
elastic scattering and mention their main relations. In Sect. 3
we present the various error definitions and the evaluated
χ2 formulae of both pp and p p̄ datasets. Subsequently, in
Sect. 4 we detail the optimization method and summarize the
fit results in terms of four physical parameters determined
at four different energies as listed in Table 1, that form the
basis of the determination of the energy dependencies of the
model parameters in Sect. 5. The energy dependencies of
both proton–proton and proton–antiproton elastic scattering
in the TeV energy range are determined by a set of 10 phys-
ical parameters only, as listed in Table 2. As a next step for
establishing the reliability of this s-dependence of the model
parameters, we have performed also the so called valida-
tion or sanity tests in Sect. 6: we have cross-checked that
the obtained trends reproduce in a statistically acceptable
manner each of the measured data also those, that were not
utilized so far to establish the s-dependencies of the ReBB
model parameters. After establishing that the excitation func-
tion of the ReBB model reproduces the measured data, we
predict the experimentally not yet available large-t differ-
ential cross-section of pp collisions at

√
s = 0.9, 4, 5 and

8 TeV and we present the extrapolations of the pp differ-
ential cross-sections measured at the LHC energies of 2.76
and 7.0 TeV to the Tevatron energy of 1.96 TeV. Vice versa,
we also extrapolate the p p̄ differential cross-sections from
the SPS and Tevatron energies of 0.546 and 1.96 TeV to the
LHC energies of 2.76 and 7.0 TeV in Sect. 7. These results
are discussed in detail and put into context in Sect. 8. We
summarize the results and conclude in Sect. 9.

This work is closed with four Appendices. For the sake
of completeness, the unitary, real part extended Bialas–
Bzdak model of Ref. [36] is summarized in Appendix A.
In Appendix B we derive and detail the relations between
the opacity parameter α of the ReBB model and the real-
to-imaginary ratio ρ0. The main properties of Odderon and
Pomeron exchange including the corresponding differential
and total cross-sections in the TeV energy range are summa-
rized in Appendix C. Two small theorems are also given here:
Theorem I indicates that if the differential cross-sections of
elastic pp and p p̄ collisions are not the same in the TeV
energy range, then the crossing-odd component of the elastic
amplitude (Odderon) cannot vanish, while Theorem II proves
that in the framework of the ReBB model, this is indeed due
to the difference between the opacity parameters α(s) for pp
and p p̄ collisions, linking also mathematically the difference
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Table 1 The values of the fitted
ReBB model parameters to pp
and p p̄ data from SPS to LHC
energies. The errors and the
values are rounded up to three
valuable decimal digits. For 7
TeV, the parameter error values
shown in parenthesis do not
include the contribution from
the parameter correlations, i.e.,
are less than the MINOS errors

√
s (TeV) 0.546 (p p̄) 1.960 (p p̄) 2.760 (pp) 7.000 (pp)

|t | (GeV2) (0.375, 1.210) (0.380, 1.200) (0.372, 0.741) (0.377, 1.205)

χ2/NDF 44.49/33 8.22/9 17.32/16 80.29/52

CL (%) 8.74 51.12 36.52 0.713

Rq (fm) 0.349 ± 0.003 0.396 ± 0.006 0.419 ± 0.011 0.438 ± 0.005 (± 0.001)

Rd (fm) 0.825 ± 0.004 0.869 ± 0.012 0.877 ± 0.014 0.920 ± 0.009 (± 0.002)

Rqd (fm) 0.284 ± 0.010 0.294 ± 0.029 0.197 ± 0.084 0.333 ± 0.026 (± 0.002)

α 0.117 ± 0.002 0.163 ± 0.005 0.126 ± 0.006 0.125 ± 0.002 (± 0.001)

εb1 – – −0.094 ± 0.946 0.001 ± 0.003

εc1 −0.398 ± 0.911 −0.013 ± 0.834 0.059 ± 0.985 −0.091 ± 0.866

εc2 −0.090 ± 0.416 – – –

Table 2 Summary of the parameter values which determine the energy
dependence by fitting a linear logarithmic model according to Eq. (10).
The values of the parameters are rounded up to three valuable decimal

digits. For Rq , Rd and Rqd , the values of the parameters p0 and p1
are given in units of femtometers (fm). For the parameters α(pp) and
α(p p̄), the parameters p0 and p1 are dimensionless

Parameter Rq ( f m) Rd ( f m) Rqd ( f m) α (pp) α (p p̄)

χ2/NDF 1.596/2 0.469/2 2.239/2 0.760/2 1.212/2

CL (%) 45.03 79.10 32.65 0.68 54.54

p0 0.131 ± 0.010 0.590 ± 0.015 0.158 ± 0.035 0.167 ± 0.060 −0.103 ± 0.027

p1 0.017 ± 0.001 0.019 ± 0.001 0.010 ± 0.002 −0.003 ± 0.003 0.018 ± 0.002

in the dip-filling property of the differential cross-sections of
elastic scattering to the measurement of ρ at the t = 0 within
the ReBB model. The non-linear corrections to the linear in
ln(s) excitation functions are also determined with the help
of ISR pp data at

√
s = 23.5 GeV energy. These results are

discussed in Appendix D, and found to have negligible effects
on our results presented in the main body of the manuscript,
corresponding to the TeV energy range.

2 Formalism

The elastic amplitude T (s, t) (where s is the squared central
mass energy, and t is the squared four-momentum transfer) is
defined in Ref. [36] by Eq. (6), Eq. (9) and Eq. (29), further-
more summarized also in Appendix A. The experimentally
measurable physical quantities, i.e. the elastic differential
cross section, the total, elastic and inelastic cross sections
and the ratio ρ0 are defined, correspondingly, as:

dσ

dt
(s, t) = 1

4π
|T (s, t)|2 , (1)

σtot (s) = 2ImT (s, t = 0) , (2)

σel(s) =
∫

dt
dσ

dt
(s, t), (3)

σin(s) = σtot (s) − σel(s) (4)

and

ρ0(s) = Re T (s, t = 0)

Im T (s, t = 0)
. (5)

The earlier results show that the ReBB model gives sta-
tistically acceptable, good quality fits with CL ≥ 0.1% to
the pp differential cross section data at the ISR energies of
23.5 and 62.5 GeV as well as at the LHC energy of 7 TeV,
in the −t ≥ 0.377 GeV2 kinematic region [36]. Continuing
that study, in this work we apply exactly the same formal-
ism, without any change, to the description of the differential
cross-sections of proton–antiproton (p p̄) scattering.

This allows us to search for Odderon effects by comparing
the pp and p p̄ differential cross sections at same energies
and squared momentum transfer. Any significant difference
between the pp and p p̄ processes at the same energy at the
TeV scale provides an evidence for the Odderon exchange. In
order to make this manuscript as self-contained and complete
as reasonably possible, we have provided a derivation of this
well-known property, in the form of Theorem I of Appendix
C.

3 Fitting method

Compered to the earlier ReBB study [36], in order to more
precisely estimate the significance of a possible Odderon
effect, here we use a more advanced form of χ2 definition
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which relies on a method developed by the PHENIX Collab-
oration and described in detail in Appendix A of Ref. [46].
This method is based on the diagonalization of the covari-
ance matrix, if the experimental errors can be separated to
the following types of uncertainties:

– Type A errors which are point-to-point fluctuating (uncor-
related) systematic and statistical errors;

– Type B errors which are point-to-point varying but cor-
related systematic uncertainties, for which the point-to-
point correlation is 100%;

– Type C systematic errors which are point-independent,
overall systematic uncertainties, that scale all the data
points up and down by exactly the same, point-to-point
independent factor.

In what follows we index these errors with the index of the
data point as well as with subscripts a, b and c, respectively.

In the course of the minimization of the ReBB model we
use the following χ2 function:

χ2 =
⎛
⎝ M∑

j=1

( n j∑
i=1

(
di j + εbj σ̃bi j + εcj di jσcj − thi j

)2

σ̃ 2
i j

)

+ε2
bj + ε2

cj

⎞
⎠ +

(
dσtot − thσtot

δσtot

)2

+
(
dρ0 − thρ0

δρ0

)2

.

(6)

This definition includes type A, point-to-point uncorrelated
errors, type B point-to-point dependent but correlated errors
and type C, point independent correlated errors. Further-
more, not only vertical, but the frequently neglected horizon-
tal errors are included too. Let us detail below the notation
of this χ2 definition, step by step:

– M is the number of sub-datasets, corresponding to sev-
eral, separately measured ranges of t , indexed with sub-
script j , at a given energy

√
s. Thus

∑M
j=1 n j gives the

number of fitted data points at a given center of mass
energy

√
s;

– di j is the i th measured differential cross section data point
in sub-dataset j and thi j is the corresponding theoretical
value calculated from the ReBB model;

– σ̃i j is the type A, point-to-point fluctuating uncertainty of
the data point i in sub-dataset j , scaled by a multiplicative
factor such that the fractional uncertainty is unchanged
under multiplication by a point-to-point varying factor:

σ̃ 2
i j = σ̃ai j

(
di j + εbj σ̃bi j + εcj di jσcj

di j

)
(7)

where the terms

σ̃ki j =
√

σ 2
ki j + (d ′

i jδk ti j )
2, k ∈ {a, b}, (8)

include also the A and B type horizontal errors on t fol-
lowing the propagation of the horizontal error to the χ2

as utilized by the so-called effective variance method of
the CERN data analysis programme ROOT; d ′

i j denotes
the numerical derivative in point ti j with errors of type
k ∈ {a, b}, denoted as δk ti j . The numerical derivative is
calculated as

d ′(ti j ) = d(i+1) j − di j
t(i+1) j − ti j

; (9)

– The correlation coefficients for type B and C errors are
denoted by εb and εc, respectively. These numbers are
free parameters to be fitted to the data, their best values
are typically in the interval (−1, 1);

– The last two terms in Eq. (6) are to fit also the measured
total cross-section and ratio ρ0 values along the differ-
ential cross section data points; dσtot and dρ0 denote the
measured total cross section and ratio ρ0 values, δσtot and
δρ0 are their full errors, σtot,th and ρ0,th are their theoret-
ical value calculated from the ReBB model;

This scheme has been validated by evaluating the χ2 from
a full covariance matrix fit and from the PHENIX method
of diagonalizing the covariance matrix of the differential
cross-section of elastic pp scattering measured by TOTEM
at

√
s = 13 TeV [6], using the Lévy expansion method of

Ref. [12]. The fit with the full covariance matrix results in
the same minimum within one standard deviation of the fit
parameters [32], hence in the same significance, as the fit
with the PHENIX method. Based on this validation, we apply
the PHENIX method in the data analysis described in this
manuscript.

Let us note also that in case of the
√
s = 7 TeV TOTEM

data set, analysed below, the B type systematic errors, that
shift all the data points together up or down with a t-
dependent value are measured to be asymmetric [47]. This
effect is handled by using the up or down type B errors
depending on the sign of the correlation coefficient εb: for
positive or negative sign of εb, we utilized the type B errors
upwards, or downwards, respectively. Note that the type A
errors, that enter the denominator of the χ2 definition of
Eq. (6), are symmetric even in the case of this

√
s = 7 TeV

pp dataset. The χ2 distribution assumes symmetric type A
errors that enter the denominators of the χ2 definition. Thus,
even in this case of asymmetric type B errors, that enter the
numerators of Eq. (6) at

√
s = 7 TeV, the χ2 distribution

can be utilized to estimate the significances and confidence
levels of the best fits.
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4 Fit results

The ReBB model was fitted to the proton–proton differential
cross section data measured by the TOTEM Collaboration
at

√
s = 2.76, 7.0 and 13 TeV, based on Refs. [6,9,47] as

well as to differential cross section data of elastic proton–
antiproton scattering measured at

√
s = 0.546 and 1.96 TeV

in Refs. [45,48,49], respectively.
Similarly to earlier studies of Refs. [34–37,40], the model

parameters Aqq = 1 and λ = 1
2 were kept at constant values

throughout the fitting procedure. Here Aqq corresponds to
a normalization constant and λ describes the mass ratio of
constituent quarks to diquarks in the p = (q, d) version of
the real extended Bialas–Bzak model of Ref. [36]. Thus the
number of free parameters of this model, for a fixed s and
specific collision type is reduced to four: Rqd , Rq , Rd and
α. It is natural to expect that Rq(s), Rd(s) and Rqd(s) are
the same functions of s, both for pp and p p̄ collisions, as
the distribution of partons inside protons at a given energy
is expected to be the same as that of anti-partons inside anti-
protons. In this section, this is however not assumed but tested
and the parameters of the ReBB model are determined at four
different colliding energies in the TeV region, using pp data
sets at

√
s = 2.76 and 7 TeV, and p p̄ datasets at

√
s = 0.546

and 1.96 TeV. These fits were performed in the diffractive
interference or dip and bump region, with datapoints before
the diffractive minimum and after the maximum as well, in
each case the limited range is not greater than 0.372 ≤ −t ≤
1.2 GeV2. In this kinematic range, the ReBB model provided
a data description with a statistically acceptable fit quality,
with confidence levels CL ≥ 0.1% in each case.

In this manuscript, our aim is to extrapolate the differential
cross-section of elastic pp and p p̄ collisions to exactly the
same energies, in order to conclude in a model dependent way
about the significance of a crossing-odd or Odderon effect in
these data. For this purpose, a model that can be used to study
the excitation function of the pp and p p̄ differential cross-
sections in the 0.5 ≤ √

s ≤ 7 TeV domain is sufficient.
The results of such kind of statistically acceptable quality
fits are summarized in Table 1 and detailed below. Other
data sets, that do not have sufficient amount of data in this
interference region were utilized for cross-checks only, to test
the extracted energy dependencies of the model parameters as
detailed in Sect. 6. Additionally, we also describe the current
status of our fits to describe the differential cross-section at√
s = 13 TeV at the end of this section.
We thus describe three fits to pp differential cross section

data sets at
√
s = 2.76, 7 and 13 TeV as well as two fits

to p p̄ differential cross section datasets at
√
s = 0.546 and

1.96 TeV, respectively. Our fit results are graphically shown
in Figs. 1, 2, 3, 4 and 5.

The minimization of the χ2 defined by Eq. (6) was done
with Minuit and the parameter errors were estimated by using

0.0 0.5 1.0 1.5 2.0 2.5

5−10

4−10

3−10

2−10

1−10

1

10
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Fig. 1 The fit of the ReBB model to the p p̄ SPS
√
s = 0.546 TeV

data [48,49] in the range of 0.37 ≤ −t ≤ 1.2 GeV2. The fit includes
the published errors, that are statistical (type A) and the normalization
(type C) uncertainties, as well as the experimental value of the total cross
section with its full error according to Eq. (6). The fitted parameters are
shown in the left bottom corner and their values are rounded up to
three decimal digits. The fit quality parameters and the values of the
total, inelastic and elastic cross-sections as well as the value of the ρ0
parameter are summarized in the top right part of the plot

the MINOS algorithm which takes into account both param-
eter correlations and non-linearities. We accept the fit as a
successful representation of the fitted data under the condi-
tion that the fit status is converged, the error matrix is accu-
rate and the confidence level of the fit, CL is ≥ 0.1%, as
indicated on Figs. 1, 2, 3 and 4. As these criteria are not
satisfied on Fig. 5, the parameters of this fit were not taken
into account when determining the excitation functions or
the energy dependence of the physical fit parameters in the
few TeV energy range.

Let us now discuss each fit in a bit more detail.
The Sp p̄S differential cross section data on elastic p p̄

collisions [48,49] were measured in the squared momentum
transfer range of 0.03 ≤ |t | ≤ 1.53 GeV2 which in the fitted
range has been subdivided into two sub-ranges with different
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Fig. 2 The fit of the ReBB model to the p p̄ D0
√
s = 1.96 TeV

data [45] in the range of 0.37 ≤ −t ≤ 1.2 GeV2. The fit includes
the t-dependent statistical and systematic uncertainties added together
quadratically and treated as type A errors as well as the normalization
(type C) uncertainty according to Eq. (6). The values of the total cross
section and parameter ρ0 used in the fit are the predicted values from
the COMPETE Collaboration [51]. Otherwise, same as Fig. 1

normalization uncertainties (type C errors): for 0.37 ≤ |t | ≤
0.495 GeV2 σc = 0.03 and for 0.46 ≤ |t | ≤ 1.2 GeV2

σc = 0.1. In case of this data set, the vertical type A errors
σai are available but the horizontal type A errors (δati ) and
the type B errors either vertical (σbi ) or horizontal (δbti ) were
not published. The measured total cross section with its total
uncertainty is σtot = 61.26 ± 0.93 mb [50] while the ρ0 =
0.135 ± 0.015 value was measured at the slightly different
energy of

√
s = 0.541 GeV. The total, elastic and inelastic

cross sections and the parameter ρ0 are calculated according
to Eqs. (2)–(5). The fit is summarized in Fig. 1. The fit quality
is satisfactory, CL = 8.74%. Compared to the available data in
the literature [50] (σin = 48.39±1.01 mb and σel = 12.87±
0.3 mb) the model reproduces the experimental values of the
forward measurables within one σ , thus these fit parameters
represent the data in a statistically acceptable manner.
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Fig. 3 The fit of the ReBB model to the pp TOTEM
√
s = 2.76 TeV

data in the range of 0.37 ≤ −t ≤ 0.74 GeV2 [9]. The fit includes the
t-dependent statistical (type A) and systematic (type B) uncertainties,
the normalization (type C) uncertainty and the experimental value of
the total cross section with its full error according to Eq. (6). Otherwise,
same as Fig. 1

The elastic p p̄ differential cross section data is available
at

√
s = 1.96 TeV in the range of 0.26 ≤ |t | ≤ 1.20 GeV2,

as published by the D0 Collaboration in Ref. [45], with a type
C normalization uncertainty of σc = 0.144. For this data set,
the vertical type A and type B errors were not published
separately. Actually, the quadratically added statistical and
systematic uncertainties were published, and as the statisti-
cal errors are point to-point fluctuating, type A errors, in our
analysis the combined t dependent D0 errors were handled as
type A, combined statistical and systematic errors. Horizon-
tal type A and type B errors were not published in Ref. [45].
At this energy, we do not find published experimental σtot and
ρ0 values. The values of the total cross section and parameter
ρ0 at this energy, that we utilized in the fitting procedure, are
the predicted values from the COMPETE Collaboration [51]:
σtot = 78.27±1.93 mb and ρ0 = 0.145±0.006. The quality
of the corresponding fit, shown in Fig. 2, is satisfactory, CL =
51.12%, and the COMPETE values of forward measurables
are reproduced within one standard deviation. We conclude
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Fig. 4 The fit of the ReBB model to the pp TOTEM
√
s = 7 TeV

data in the range of 0.37 ≤ −t ≤ 1.2 GeV2 [47]. The fit includes the
t-dependent statistical (type A) and systematic (type B) uncertainties,
the normalization (type C) uncertainty and the experimental values of
the total cross section and parameter ρ0 with their full error according
to Eq. (6). Otherwise, same as Fig. 1

that the corresponding ReBB model parameters represent the
data in a statistically acceptable manner.

Based on the successful description of these two p p̄
datasets at

√
s = 0.546 and 1.96 TeV, we find that the form

of the ReBB model as specified for pp collisions in Ref. [36]
is able, without any modifications, to describe the differen-
tial cross-section of elastic p p̄ collisions in the TeV energy
range. Let us now discuss the new fits of the same model to
elastic pp collisions in the TeV energy range.

At
√
s = 2.76 TeV, the differential cross section data

of elastic pp collisions was measured in the t range of
0.072 ≤ −t ≤ 0.74 GeV2 by the TOTEM Collaboration
[9]. Actually, this measurement was performed in two sub-
ranges: 0.072 ≤ |t | ≤ 0.462 GeV2 and 0.372 ≤ |t | ≤ 0.74
GeV2. Both ranges had the same normalization uncertainty of
σc = 0.06. During the fit the t-dependent vertical statistical
(type A) and vertical systematic (type B) errors, the normal-
ization (type C) errors and the experimental value of the total
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Fig. 5 The fit of the ReBB model to the pp TOTEM
√
s = 13 TeV

data in the range of 0.37 ≤ −t ≤ 1.2 GeV2 [8]. The fit includes the
t-dependent statistical (type A) and systematic (type B) uncertainties,
the normalization (type C) uncertainty and the experimental values of
the total cross section and parameter ρ0 with their full error according
to Eq. (6). The fit parameters do not represent the data in a statisti-
cally acceptable manner, given that CL � 0.1%. Otherwise, same as
Fig. 1

cross section with its total uncertainty (σtot = 84.7 ± 3.3 mb
[6]) were taken into account. Horizontal type A and type B
errors are not published at this energy. The fit quality of the
ReBB model is demonstrated on Fig. 3: the fit is satisfac-
tory, with CL = 36.52%. The experimental values of the for-
ward measurables (σin = 62.8 ± 2.9 mb, σel = 21.8 ± 1.4
mb [6,52]) are reproduced within one standard deviations.
Experimental data is not yet available for parameter ρ0, how-
ever the value for ρ0, calculated from the fitted ReBB model,
is within the total error band of the COMPETE prediction
[51]. We thus conclude that the corresponding ReBB model
parameters represent the pp data at

√
s = 2.76 TeV in a

statistically acceptable manner.
At

√
s = 7 TeV, the pp differential cross section data was

published by the TOTEM Collaboration [47], measured in
the range of 0.005 ≤ |t | ≤ 2.443 GeV2. The measurement
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was performed in two subranges: 0.005 ≤ |t | ≤ 0.371 GeV2

and 0.377 ≤ |t | ≤ 2.443 GeV2. Both ranges had the same
normalization uncertainty of σc = 0.042. The fit includes
only the second subrange with the t-dependent (both ver-
tical and horizontal) statistical (type A) and systematic (type
B) errors (both vertical and horizontal ones), the normaliza-
tion (type C) error and the experimental values of the total
cross section and the parameter ρ0 with their total uncertain-
ties (σtot = 98.0 ± 2.5 mb and ρ0 = 0.145 ± 0.091 [53]).
The quality of the corresponding fit, shown in Fig. 4, is sta-
tistically acceptable with a CL = 0.71%. The experimental
values of the forward measurables (σin = 72.9 ± 1.5 mb,
σel = 25.1±1.1 mb [53]) are reproduced by the fitted ReBB
model within one sigma (the experimental and calculated
values overlap within their errors). We thus conclude that the
corresponding ReBB model parameters represent these pp
data at

√
s = 7.0 TeV in a statistically acceptable manner,

in the fitted range of 0.377 ≤ |t | ≤ 1.205 GeV2, before and
after the diffractive minimum.

At
√
s = 8 TeV, the TOTEM collaboration did not yet pub-

lish the final differential cross-section results in the range of
the diffractive minimum and maximum. However, prelimi-
nary results were presented at conferences [54], and the dif-
ferential cross-section in the low −t region was published in
Ref. [55]. We thus use this dataset for a cross-check only, but
the lack of the data in the diffractive minimum prevents us
to do a full ReBB model fit. Additional data at very low –t ,
in the Coulomb-Nuclear Interference region is also available
from TOTEM at this particular energy [56], however, in the
present study we do not discuss the kinematic range, where
Coulomb effects may play any role.

At
√
s = 13 TeV, the differential cross section data

was measured by the TOTEM collaboration in the range of
0.03 ≤ |t | ≤ 3.8 GeV2 [8] with a normalization (type C)
uncertainty of σc = 0.055. As far as we know, the only sta-
tistically acceptable quality fit with CL ≥ 0.1% to this dataset
so far was obtained by some of us with the help of the model-
independent Lévy series in Ref. [12]. We also note that sev-
eral new features show up in the soft observables of elastic
scattering, with a threshold behaviour around

√
s = 5 − 7

TeV, certainly below 13 TeV [57].
We have cross-checked, if the ReBB model, that works

reasonably well from
√
s = 23.5 GeV to 7 TeV, is capa-

ble to describe this data set at
√
s = 13 TeV in statisti-

cally acceptable manner, or not? The result was negative, as
indicated in Fig. 5. This fit includes the t-dependent statis-
tical (type A) and systematic (type B) errors, the normaliza-
tion (type C) error and the experimental values of the total
cross section and the parameter ρ0 with their total uncertain-
ties (σtot = 110.5 ± 2.4 mb and ρ0 = 0.09 ± 0.01 [7]).
The quality of the obtained fit (Fig. 5) is not satisfactory,
CL = 3.17 × 10−11% and neither the experimental values
of the cross sections (σin = 79.5 ± 1.8 mb, σel = 31.0 ± 1.7

mb [6] ) are reproduced by the fitted ReBB model within one
sigma at 13 TeV. However, the value of ρ0 was described
surprisingly well. This TOTEM dataset is very detailed and
precise and changes of certain trends in B(s) and the ratio
σel(s)/σtot(s) are seen experimentally [57]. Theoretically, a
new domain of QCD may emerge at high energies, possi-
bly characterised by hollowness or toroidal structure, corre-
sponding to a black ring-like distribution of inelastic scat-
terings [58–61]. A statistically significant, more than 5 σ

hollowness effect was found at
√
s = 13 TeV within a model-

independent analysis of the shadow profile at these energies,
using the technique of Lévy series [12]. We conclude that
the ReBB model needs to be generalized to have a stronger
non-exponential feature at low −t to accommodate the new
features of the differential cross-section data at

√
s = 13

TeV or larger energies. This work is currently in progress,
but goes well beyond the scope of the current manuscript.
Most importantly, such a generalization is not necessary for
a comparison of the differential cross-sections of elastic pp
and p p̄ collisions in the few TeV range, as we have to bridge
only a logarithmically small energy difference between the
top D0 energy of

√
s = 1.96 TeV and the lowest TOTEM

energy of
√
s = 2.76 TeV.

We thus find, that the Real Extended Bialas - Bzdak model
describes effectively and in a statistically acceptable manner
the differential cross-sections of elastic pp and p p̄ collisions
in the few TeV range of 0.546 ≤ √

s ≤ 7 TeV and in the
squared four-momentum transfer range of 0.37 ≤ −t ≤
1.2 GeV2. Its physical fit parameters represent the data and
their energy dependence thus can be utilized to determine the
excitation function of these model parameters, as detailed in
Sect. 5.

The values of the physical fit parameters and their errors
obtained from the above discussed physically and statisti-
cally acceptable fits are summarized in Table 1, where four
datasets are analyzed and four different physical parameters
are extracted at four different energies. These sixteen phys-
ical parameters form the basis of the determination of the
energy dependencies, that are determined to be consistent
with affine linear functions of ln(s). Three scale parameters
are within errors the same in elastic pp and p p̄ collisions,
while the opacity parameters are different for pp and p p̄ col-
lisions. Thus the excitation functions, the energy dependence
of the differential cross-sections both for pp and p p̄ elastic
scattering is determined by 5 × 2 = 10 physical parameters
in this framework of calculations. These 10 parameters are
summarized in Table 2.

We thus conclude, that this real extended Bialas–Bzdak
model is good enough to extrapolate the differential cross-
section of elastic pp collisions down to

√
s = 0.546 and 1.96

TeV, and to extrapolate the same of elastic p p̄ collisions up
to

√
s = 2.76 and 7 TeV. We duly note that, in order to

evaluate similar observables at
√
s = 13 TeV or at even
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(a) (b)

(c) (d)

Fig. 6 The energy dependence of the parameters of the ReBB model, Rq , Rd , Rqd and α, collected in Table 1 and determined by fitting a linear
logarithmic model, Eq. (10), to each of them one by one

higher energies in a realistic manner, this model needs to be
generalized and further developed.

5 Excitation functions of the fit parameters

The values of the physical fit parameters and their errors
obtained from the above discussed physically and statisti-
cally acceptable fits are summarized in Table 1. This table
contains a list of five different physical parameters. Out of
them the three scale parameters called Rq , Rd and Rqd can
be determined at four different energies, providing 12 num-
bers, while the opacity parameters α pp and α p p̄ describing
pp and p p̄ collisions can both be determined at two different
energies only, providing additional 4 numbers, all-together
16 physical input parameters. These 16 physical parameters
form the basis of the determination of the energy dependen-
cies, that are determined to be consistent with affine linear
functions of ln(s).

Namely, we fitted the s-dependence of the model parame-
ters one by one, using the affine linear logarithmic function,

P(s) = p0 + p1 · ln (s/s0), P ∈ {Rq , Rd , Rqd , α}, (10)

where p0 and p1 are free parameters, s0 is fixed at 1 GeV2.
We obtain good quality fits, with methods and results similar
to that of Ref. [36], with confidence levels CL 	 0.1%, as
detailed in Table 2. Three scale parameters are within errors
the same in elastic pp and p p̄ collisions, while the opacity
parameters are different for pp and p p̄ collisions. Thus the
excitation functions, the energy dependence of the differen-
tial cross-sections both for pp and p p̄ elastic scattering is
determined by 5 × 2 = 10 physical parameters in the frame-
work of the ReBB model.

The energy dependence of the scale parameters, Rq , Rd ,
and Rqd are graphically shown in Fig. 6a–c. These figures
clearly indicate that the energy dependence of the geomet-
rical scale parameters consistent with the same evolution,
namely the same linear rise in ln(s) for both pp and p p̄
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scattering: when we fitted these parameters together, with a
linear logarithmic function, we have obtained a statistically
acceptable fit in each of these three cases. This result extends
and improves the earlier results published in Ref. [36] for
elastic pp scattering to the case of both pp and p p̄ collisions
in a natural manner. For a comparision, these earlier results
are also shown with a dotted red line on the panels of Fig.
6, indicating the improved precision of the current analysis,
due to more data points are included in the TeV energy range.

For the opacity parameter α, seen on panel (d) of Fig. 6,
the situation is different: the pp and p p̄ points are not on the
same trend, because the α parameters that characterize the
dip in the ReBB model, are obtained with great precision both
in the pp and in the p p̄ cases. The difference between the
excitation functions of α pp(s) and α p p̄(s) corresponds to the
qualitative difference between the differential cross-section
of elastic pp and p p̄ collisions in the few TeV energy range:
the presence of a persistent dip and bump structure in the dif-
ferential cross-section of elastic pp collisions, and the lack
of a similar feature in elastic p p̄ collisions. Thus in the case
of parameter α we have to consider, that there are only two,
rather precisely determined data points in both pp and p p̄
collisions from the presented ReBB model studied so far. We
can already conclude that they cannot be described by a sin-
gle line as an affine linear fit with Eq. (10) would fail. Without
additional information, we cannot determine the trends and
its uncertainties as two points can always connected with
a straight line, so an affine linear description of both the
two pp and the two p p̄ data points would have a vanishing
χ2 and an indeterminable confidence level. This problem,
however, is solved by utilizing the results of Appendix B on
the proportionality between the model parameter α and the
experimentally measurable real-to-imaginary ratio ρ0. This
proportionality is shown graphically in Fig. 7. The constant
of proportionality in the few TeV region is an almost energy
independent constant value, ρ0/α = 0.85±0.01, well within
the errors of the ρ0 measurements, in agreement with a the-
oretically obtained function, showed with a red solid line on
Fig. 7 and derived in Appendix B. This proportionality allows
one to add new datapoints to the trends of α(s) both for the
pp and for the p p̄ cases by simply rescaling the measured
ρ0 values.

We found three additional published experimental data of
ρ0 for p p̄ collisions, ρ0 = 0.135 ± 0.015 at

√
s = 0.541

by the UA4/2 Collaboration in Ref. [62] and 1.8 TeV by the
E-710 and the E811 collaborations in Refs. [63,64], respec-
tively. At

√
s = 1.8 TeV, we have utilized the combined value

of these E-710 and E811 measurements [64], corresponding
to ρ0(p p̄) = 0.135 ± 0.044. The constancy of these ρ0(s)
values in the few TeV energy range, when converted with
the help of Fig. 7 to the opacity parameter α(p p̄) of the
Bialas–Bzdak model, leads to the lack of diffractive minima
hence an Odderon signal in elastic p p̄ collisions, leading to
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Fig. 7 The dependence of ρ0/α on λ in the TeV energy range. The data
points are generated numerically by using the trends of the ReBB model
parameters, Rq , Rd , Rqd , shown in Fig. 6a–c and the experimentally
measured ratio ρ0 values. The red curve represents the result of the
analytical calculation showing a good agreement with the numerical
calculations

an α(p p̄) ≈ 0.16 ± 0.06 which is within its large errors
the same as the α = 0.163 ± 0.005 value obtained from the
ReBB model fit to D0 data at

√
s = 1.96 TeV, summarized

on Fig. 2. Similarly the α parameter extracted from ρ0 at√
s = 0.541 TeV is α ≈ 0.16 ± 0.02 which is within twice

the relatively large errors of the ρ0 analysis the same as the
value of α(p p̄) = 0.117 ± 0.002 obtained from the analy-
sis of the differential cross-section, shown on Fig. 1. These
indicate a slowly rising value for α(p p̄) or correspondingly,
ρ0(p p̄) in the TeV energy range. The final values of these dat-
apoints together with the corresponding errors are connected
with a long-dashed line in Panel (d) of Fig. 6. Table 2 indi-
cates that for α(p p̄) the coefficient p1(p p̄) = 0.018±0.002
is a significantly positive number.

For the opacity coefficient in elastic pp collisions, α(pp)
on the other hand an opposite effect is seen, when the ρ0 mea-
surements at

√
s = 7 and 8 TeV are also taken into account,

based on the data of the TOTEM Collaboration published
in Refs. [56,65]. As by now it is very well known, these
values indicate a nearly constant, actually decreasing trend,
and based on the fits of the extracted four data points of
α(pp) we find that in the few TeV energy range, this trend
is nearly constant, indicated by the solid red line of panel
(d) of Fig. 6. Table 2 indicates that for α(pp) the coeffi-
cient of increase with ln(s) is consistent with zero in this
energy range, p1(pp) = −0.003 ± 0.003, which is sig-
nificantly less from the above quoted positive number for
p1(p p̄) = 0.018 ± 0.002. Thus it is easy to see, that the
Odderon signal in this analysis can be an estimated 6 − 7σ

effect, as a consequence of the unequality p1(pp) �= p1(p p̄)
alone.

In the subsequent sections we first test if the excitation
functions, determined with the help of the p0 and p1 param-
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eters of Table 2 indeed reproduce the data at all the measured
energies in the relevant kinematic range, then we proceed
carefully to determine the significance of a model depen-
dent Odderon signal. We perform these cross-checks against
all kind of available data, including those data that were
not utilized in the determination of the trends for example
because their acceptance was too limited to determine all the
fit parameters of the ReBB model.

6 Sanity tests

In this section we show that the determined energy depen-
dence trends are reliable in the kinematic range of 0.546 ≤√
s ≤ 8 TeV and 0.37 ≤ −t ≤ 1.2 GeV2. For this pur-

pose we performed the so-called sanity tests: we have cross-
checked if the trends summarized in Table 2 indeed represent
all the available differential cross-section data on both pp and
p p̄ elastic scattering in the mentioned kinematic range. We
used both those data which were and which were not utilized
in the determination of the energy dependence trends for
example because their acceptance was too limited to deter-
mine all the fit parameters of the ReBB model.

To perform these cross-checks, the differential cross sec-
tions are fitted with all the four physical parameters of the
ReBB model, α(s), Rq(s), Rd(s) and Rqd(s), fixed to their
extrapolated value obtained with the help of the results sum-
marized in Table 2, while the correlation coefficients of the
type B and C errors, or the ε parameters in the χ2 definition
of Eq. (6) are fitted to the data as free parameters.

The results for the data at
√
s = 0.546, 0.63, 1.8, 1.96,

2.76 and 7 TeV are shown in Figs. 8, 9, 10, 11, 12 and 13.
All of these sanity tests resulted in the description of these
data with a statistically acceptable confidence level of CL >

0.1%.
As an additional sanity test, we have also cross-checked

if this ReBB model describes the pp and p p̄ total cross sec-
tion σtot(s) and real to imaginary ratio ρ0(s) data in a sta-
tistically acceptable manner, or not. These results are pre-
sented in Figs. 14 and 15, respectively. As the calculated
confidence levels are higher than 0.1% in all of these cases,
we can happily conclude that the energy dependent trends
of the ReBB model are really reasonable and reliable in
the investigated 0.541 ≤ √

s ≤ 8 TeV energy and in the
0.377 ≤ −t ≤ 1.2 GeV2 squared four-momentum transfer
range. Thus this model can be used reliably to extrapolate
both the pp and the p p̄ differential cross-sections in this
limited kinematic range of (s, t), based only on 10 physical
model parameters, summarized in Table 2.
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Fig. 8 Result of the sanity test for the 0.546 TeV p p̄ elastic differential
cross section data [48,49] in the range of 0.37 ≤ −t ≤ 1.2 GeV2. This
sanity test was performed as a fit during which the model parameters
Rq , Rd , Rqd and α were fixed to their s-dependent value based on
Table 2, while correlation coefficients ε-s in the χ2 definition, Eq. (6),
were fitted as free parameters. Thus the physical parameters Rq , Rd ,
Rqd and α are printed on the plot without error bars while the fitted
correlation coefficients are given with their errors. The best parameter
values are rounded up to three valuable decimal digits

7 Extrapolations

According to our findings in Sect. 5 the energy dependences
of the scale parameters Rq , Rd and Rqd are identical for pp
and p p̄ scattering, only the energy dependence of the opac-
ity parameter α differs. The statistically acceptable quality
of the fits shown in Fig. 6 and the success of the sanity tests
performed in the previous section allow for a reliable extrap-
olation of the differential cross-sections of elastic pp and p p̄
collisions with the help of the ReBB model [36], limited to
the investigated 0.541 ≤ √

s ≤ 8 TeV center of mass energy
and in the 0.377 ≤ −t ≤ 1.2 GeV2 four-momentum transfer
range.

We extrapolate, in the TeV energy range, the pp differ-
ential cross sections to energies where measured p p̄ data
exist and the other way round, the p p̄ differential cross sec-
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Fig. 9 Result of a sanity test, similar to Fig. 8, but for the
√
s = 0.63

TeV p p̄ elastic differential cross section data of Ref. [66], fitted in the
range 0.7 ≤ −t ≤ 1.2 GeV2

tions to energies where measured pp data exist. Thus three
of such extrapolations were performed: pp extrapolation to√
s = 1.96 TeV, to compare it to the 1.96 TeV D0 p p̄ dσ/dt

data, and p p̄ extrapolations to
√
s = 2.76 and 7 TeV, to

compare them to the dσ/dt pp data measured by TOTEM
at these energies.

Since the energy dependences of the scale parameters Rq ,
Rd and Rqd are identical for pp and p p̄ scattering, as dis-
cussed in Sect. 5, in the course of the extrapolations their
values are fixed at their fitted values given in Table 1, fur-
thermore, since the energy dependence of the α parameter
differs for pp and p p̄ scattering, the α(pp) and α(p p̄) val-
ues are fixed from their energy dependence trend seen in
Fig. 6d. In addition, during the extrapolations, the ε parame-
ters in the χ2 definition, Eq. (6), were optimized, furthermore
the last two terms in Eq. (6), i.e., the total cross section and
ρ0-parameter term, were not included. This way we handled
the type B and type C errors of the published pp differential
cross-section to match these data as much as possible to the
differential cross-section of elastic p p̄ collisions within the
allowed systematic errors, and vice versa.
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Fig. 10 Result of a sanity test, same as Fig. 8, but for the 1.8 TeV p p̄
elastic differential cross section data [67] in the range of 0.37 ≤ −t ≤
0.6 GeV2

The results of the extrapolations are shown in Figs. 16, 17
and 18. The error band around these extrapolations is also
evaluated, based on the envelope of one standard deviation
errors of the Rq(s), Rd(s), Rqd(s) model parameters and the
p0 and p1 parameters of α(s). As an example, the resulting
ten curves – considering that the values of the scale parame-
ters are taken from the original fit while the value α is taken
from the trend – are explicitly shown for 1.96 TeV in Fig. 16.

While at
√
s = 1.96 TeV no statistically significant dif-

ference is observed between the extrapolated pp and mea-
sured p p̄ differential cross sections, at

√
s = 2.76 and 7

TeV, remarkable and statistically significant differences can
be observed. In Figs. 17 and 18, even an untrained eye can
see, that the dip is filled in case of elastic p p̄ scattering, while
it is not filled in elastic pp scattering. Thus we confirm the
prediction of Ref. [69], that predicted, based on a three-gluon
exchange picture that dominates at larger values of −t , that
the dip will be filled in high energy p p̄ elastic collisions.

In this work, the differences between elastic pp and p p̄
collisions are quantified by the confidence levels obtained
from the comparision of the extrapolated curves to the mea-
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Fig. 11 Result of a sanity test, same as Fig. 8, but for the
√
s = 1.96

TeV p p̄ elastic differential cross section data [45] in the range of 0.37 ≤
−t ≤ 1.2 GeV2

sured data: at 2.76 TeV, the hypothesis that these extrap-
olations agree with the data is characterized by a CL =
1.092 × 10−10%, while at 7 TeV, CL = 0%. Theoretically
the observed difference can be attributed only to the effect of
a C-odd exchange, as detailed recently in Refs. [30–32]. At
the TeV energy scale, the secondary Reggeon exchanges are
generally known to be negligible. This effect has been also
specifically cross-checked and confirmed recently in Ref.
[70]. Thus in the few TeV energy range of the LHC, the only
source of a difference between the differential cross-sections
of elastic pp and p p̄ collisions can be a t-channel Odderon
exchange. In the modern language of QCD, the Odderon
exchange corresponds to the exchange of C-odd colorless
bound states consisting of odd number of gluons [2,69,71].

Thus the CL, calculated for the 2.76 TeV p p̄ extrapola-
tion, corresponds to an Odderon observation with a proba-
bility of P = 1 − CL = 1 − 1.092 × 10−12. This corre-
sponds to a χ2/NDF = 100.35/20 and to a 7.12 σ model
dependent significance for the observation of a t-channel
Odderon exchange, and the existence of the colorless bound
states containing odd number of gluons. When extrapolat-
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Fig. 12 Result of a sanity test, same as Fig. 8, but for the
√
s = 2.76

TeV pp elastic differential cross section data [9] in the range of 0.37 ≤
−t ≤ 0.7 GeV2

ing the pp differential cross-sections from 2.76 down to
1.96 TeV, however, significance is lost, corresponding to a
χ2/NDF = 24.28/13 and to a 2.19 σ effect, less than a 3 σ

effect in this comparison. However, these two significances
at 1.96 and 2.76 TeV can be combined, providing a combined
χ2/NDF = 124.63/33, that corresponds to a statistically
significant, 7.08 σ effect.

This 7.08 σ combined significance increases to an even
larger significance of an Odderon observation, when we
extrapolate the differential cross-section of elastic proton -
antiproton collisions to

√
s = 7.0 TeV, where the probabil-

ity of Odderon observation becomes practically unity. Given
that a 7.08 σ effect is already well above the usual 5 σ , statis-
tically significant discovery level, we quote this as the possi-
bly lowest level of the significance of our model-dependent
Odderon observation.

As already mentioned in the introduction we have also
been recently involved in a truly model-independent search
for Odderon effects in the comparision of the scaling prop-
erties of the differential cross-sections of elastic pp and p p̄
collisions in a similar s but in the complete available t range.
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Fig. 13 Result of a sanity test, same as Fig. 8, but for the pp elastic
differential cross section data at

√
s = 7 TeV from Ref. [47], in the

fitted range of 0.37 ≤ −t ≤ 1.2 GeV2
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Fig. 14 Result of the sanity test for pp [6,65,68] and p p̄ [50] total
cross section data. It was calculated from the model when the values of
the parameters Rq , Rd , Rqd and α were taken from Eq. 10 and Table 2,
corresponding to the linear curves shown on panels (a)–(d) of Fig.6

As compared to the model-dependent studies summarized
in this manuscript, the advantage of the model-independent
scaling studies of Refs. [30–32] is that they scale out all the
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Fig. 15 Sanity test result for pp [7,56,65] and p p̄ [50] parameter ρ0
data, as calculated from the model when the values of the parameters
Rq , Rd , Rqd and α were taken from Eq. (10) and Table 2, corresponding
to the linear curves shown on panels (a)–(d) of Fig.6. On this plot, a
model dependent Odderon effect is clearly identified: it corresponds to
ρ
pp
0 (s) �= ρ

p p̄
0 (s), the non-vanishing difference between the excitation

functions of ρ0 for pp and ρ0 for p p̄ collisions, as detailed in Appendix
C

effects from the differences between pp and p p̄ elastic colli-
sions due to possible differences in their σel(s), B(s) and their
product, the σel(s)B(s) = σ 2

tot(s)(1 + ρ2
0 (s)) functions. As

part of the Odderon signal in the ReBB model is apparently
in the difference between the ρ0(s) excitation functions for
pp and p p̄ collisions, the significance of the Odderon signal
is reduced in this model independent analysis. When consid-
ering the interpolations as theoretical curves, the significance
is reduced to a 6.55 σ effect [30], but when considering that
the interpolations between experimental data have also hori-
zontal and vertical, type A and type B errors, the significance
of the Odderon signal is further reduced to a 6.26 σ effect
[31,32]. Thus we conclude that the Odderon is now discov-
ered, both in a model-dependent and in a model-independent
manner, with a statistical significance that is well above the
5 σ discovery limit of high energy particle physics.

Finally we close this section with the predictions to the
experimentally not yet available large-t differential cross-
section of pp collisions at

√
s = 0.9, 4, 5 and 8 TeV shown

in Fig. 19.

8 Discussion

In the previous sections, we have investigated what happens
if we interpret the data in terms of a particular model, the Real
Extended Bialas–Bzdak Model. This allows also to consider
the Odderon signal in the excitation function of the model
parameter α. We have shown in Appendix B that this model
parameter is proportional to the experimentally measured
parameter ρ0, the ratio of the real to the imaginary part of
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Fig. 16 The ReBB model extrapolation for the pp dσ/dt at
√
s =

1.96 TeV compared to the p p̄ D0 dσ/dt data [45] measured at the same
energy. The yellow band is the uncertainty of the extrapolation. The
calculated CL value between the extrapolated model and the measured
data does not indicate a significant difference between the pp and p p̄
differential cross sections

the scattering amplitude at the optical point, and related the
coefficient of proportionality to the value of the imaginary
part of the scattering amplitude at vanishing impact param-
eter, λ(s) = Imtel(s, b = 0), for the

√
s ≤ 8 TeV elastic

proton–proton collisions, and we have shown that within the
framework of this ReBB model, the very different trend of
ρ0(s) in proton–proton and in proton–antiproton collisions
enhances the model-independent Odderon signal, from a 6.26
σ and 6.55 σ effect to a combined, at least 7.08 σ effect.

Recently, the TOTEM Collaboration concluded, that only
one condition is yet to be satisfied to see a statistically sig-
nificant Odderon signal: namely, the logarithmically small
energy gap between the lowest TOTEM energy of

√
s = 2.76

TeV at LHC and the highest D0 energy of 1.96 TeV at Teva-
tron needs to be closed. This energy gap has been closed in
a model-independent way in Refs. [30–32], using the scal-
ing properties of elastic scattering, and by comparing the
H(x) = 1

Bσel

dσ
dt scaling functions of elastic proton–proton
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Fig. 17 The ReBB model extrapolation for the p p̄ dσ/dt at
√
s =

2.76 TeV compared to the pp TOTEM dσ/dt data [9] measured at the
same energy. The yellow band is the uncertainty of the extrapolation.
The calculated CL value between the extrapolated model and the mea-
sured data indicates a significant difference between the pp and p p̄
differential cross sections, corresponding to a 7.1 σ significance for the
t-channel Odderon exchange

and proton–antiproton collisions, as a function of x = −t B
at

√
s = 1.96, 2.76 and 7.0 TeV. The advantages of that

method, with respect to comparing the cross sections directly
include the scaling out of the s-dependencies of σel(s), B(s)
and their product, σel(s)B(s) = σ 2

tot(s)(1 +ρ2
0 (s)), as well as

the normalization of the H(x) scaling function that cancels
the point-to-point correlated and t-independent normaliza-
tion errors. The validity of the H(x) scaling for pp collisions
and its violation in p p̄ collisions in the few TeV energy range
resulted in a discovery level statistical significance of an Odd-
eron signal, characterized in Refs. [30–32] to be at least 6.26
σ , model independently, based on a careful interpolation of
the experimental data-points, their point-to-point fluctuating,
point-to-point correlated and data point dependent as well as
point-to-point correlated and data point independent errors.
If these errors are considered as errors on a theory curve, then
the significance goes up to at least 6.55 σ [30].

123



Eur. Phys. J. C (2021) 81 :611 Page 17 of 33 611

4−10

3−10

2−10

1−10

1

10

210

310]2
/d

t [
m

b/
G

eV
σd

=7 TeVs

pp data

 extr.preBB p=(q,d) p

]2 1.205 [GeV≤ -t ≤Range: 0.377 
/NDF = 2811.46/56 = 50.202χ

CL = 0.000e+00 %

 = 94.54 [mb]totσ
 = 70.20 [mb]inσ
 = 24.34 [mb]elσ

 = 0.169 
0

ρ
= 0.500λ
 = 0.437 [fm]qR
 = 0.919 [fm]dR
 = 0.336 [fm]qdR
 = 1.000 qqA

= 0.208α
 0.138±= 2.256 b1∈
 0.952± = -0.649 c1∈

5−

0
5

/d
t-f

it)
/e

rr
or

σ
(d

0.0 0.5 1.0 1.5 2.0 2.5
]2-t [GeV

0.4−

0.2−

0.0

0.2

0.4

/d
t-f

it)
/fi

t
σ

(d
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same energy. The yellow band is the uncertainty of the extrapolation.
The calculated CL value between the extrapolated model and the mea-
sured data indicates a significant difference between the pp and p p̄
differential cross sections, hence a significant Odderon effect, that is
dominant around the dip region

0.0 0.5 1.0 1.5 2.0 2.5

]2-t [GeV

5−10

4−10

3−10

2−10

1−10

1

10

210

310]2
/d

t [
m

b/
G

eV
σd

pp reBB p=(q,d) pred.

=8 TeVs

=5 TeVs
=4 TeVs

=0.9 TeVs

Fig. 19 Predictions from the ReBB model, for the dσ/dt of elastic pp
collisions at

√
s = 8, 5, 4, and 0.9 TeV

In high energy particle physics, the standard accepted dis-
covery threshold corresponds to a 5σ effect. In the previous
section, we have shown, that the statistical significance of an
Odderon observation in the limited 0.541 ≤ √

s ≤ 8 TeV
center of mass energy and in the 0.377 ≤ −t ≤ 1.2 GeV2

four-momentum transfer range is at least a combined 7.08 σ

effect, corresponding to a statistically significant and model
dependent Odderon observation.

The
√
s = 7 TeV pp differential cross-sections are mea-

sured with asymmetric type B errors. In order to make sure
that our results are reliable and reproducible, we have per-
formed several cross-checks to test the reliability of our fit
at

√
s = 7 TeV. One of these tests related to the handling

of the asymmetric type B, t-dependent systematic errors. We
have performed cross-checks for taking at every point either
the smaller or the larger of the up and down type B errors
to have a lower or an upper limit on their effects. We found
that the parameters of the ReBB model remained stable for
such a symmetrization of the type B systematic errors, as the
modification of the fit parameters due to such a symmetriza-
tion was within the quoted errors on the fit parameters. Our
final fits, presented before, were done with asymmetric type
B errors, as detailed in Sect. 4. So we conclude that our fit
at

√
s = 7 TeV is stable even for the symmetrization of the

type B systematic errors.
We have also investigated the stability of our result for

the case, when the energy range is extended towards lower
values of

√
s, in the ISR energy range, detailed in Appendix

D. When the
√
s = 23.5 GeV energy data are included to

those summarized in Table 1, the energy dependence of the
model parameters becomes quadratic in ln(s). This provides
3×5 = 15 model parameters for this broader energy range, as
summarized in Table 3 and detailed in Appendix D. This way,
the non-linear terms are confirmed to be negligibly small in
the TeV energy range, where we find the significant Odderon
effects, with the help of as little as only 10 model parameters.
These 10 parameters are given in Table 2.

It turns out in Sect. 4, that the ReBB model as presented
in Ref. [36] does not yet provide a statistically acceptable
fit quality to the differential cross-section of

√
s = 13 TeV

elastic pp scattering. This might be due to the emergence
of the black-ring limit of elastic proton–proton scattering
instead of the expected black-disc limit. In what follows we
shortly discuss the earlier and more recent results on the black
ring shaped interaction region of the colliding protons.

A complementary way of studying the high-energy scat-
tering processes is by passing from the momentum transfer t
to the impact parameter b. In 1963 van Hove introduced the
inelasticity profile or the overlap function [72,73], which cor-
responds to the impact parameter distribution of the inelas-
tic cross section characterizing the shape of the interaction
region of two colliding particles. The natural expectation is
that the most inelastic collisions are central, i.e., the inelas-
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Table 3 Summary of the parameter values which determine the energy
dependence according to the quadratic dependence in ln(s) by Eq. (D.1).
The values of the parameters are rounded up to three valuable decimal
digits except for p2 that are rounded up to four valuable decimal digits.

These parameters are also shown on the panels of Fig. 30. For Rq , Rd
and Rqd , the values of the parameters p0, p1 and p2 are given in units of
femtometers (fm). For the parameters α(pp) and α(p p̄), the parameters
p0, p1 and p2 are dimensionless

Parameter Rq ( f m) Rd ( f m) Rqd ( f m) α (pp) α (p p̄)

χ2/NDF 2.829/2 0.273/2 1.870/2 0.760/2 1.212/2

CL (%) 24.31 87.23 39.25 0.68 54.54

p0 0.235 ± 0.010 0.651 ± 0.017 0.383 ± 0.037 −0.209 ± 0.031 0.060 ± 0.041

p1 0.004 ± 0.002 0.010 ± 0.003 −0.021 ± 0.008 0.048 ± 0.006 −0.005 ± 0.007

p2 0.0005 ± 0.0001 0.0003 ± 0.0001 0.0010 ± 0.0003 −0.0017 ± 0.0003 0.0008 ± 0.0003

ticity profiles have a maximum at b = 0 consistently with
the black disc terminology. The possibility of a minimum
at b = 0, i.e., the peripheral form of the inelastic function
was first considered in Ref. [74] which implies the shape of
a black ring rather than that of a black disc.

In Ref. [58], it was shown that the inelasticity profile of
protons is governed by the ratio of the slope of the diffrac-
tion cone to the total cross section through the variable
Z = 4πB/σtot and the evolution to values of Z < 1 at
LHC energies implies a transition from the black disk pic-
ture of the interaction region to a black ring (or torus-like)
shape. These results were reviewed in Reference [59] using
the unitarity relation in combination with experimental data
on elastic scattering in the diffraction cone. Reference [58]
concludes that the shape of the interaction region of colliding
protons could be reliably determined if the behavior of the
elastic scattering amplitude at all transferred momenta was
known.

The black ring shape of the interaction region can be inter-
preted as the presence of a hollow at small impact parameter
values.

In Refs. [75–78] the authors study the hollowness phe-
nomenon within an inverse scattering approach based on
empirical parameterizations. Reference [76] concludes that
the very existence of the hollowness phenomenon is quantum-
mechanical in nature. Hollowness has also been reported to
emerge from a gluonic hot-spot picture of the pp collision
at the LHC energies [60]. It is shown in Ref. [78] that the
emergence of such a hollow strongly depends on the phase
of the scattering amplitude. In Ref. [79] the authors demon-
strated the occurrence of the hollowness phenomenon in a
Regge model above

√
s ∼ 3 TeV.

Reference [61] discusses the absorptive (saturation of the
black disk limit) and reflective (saturation of the unitarity
limit) scattering modes of proton–proton collisions conclud-
ing that a distinctive feature of the transition to the reflec-
tive scattering mode is the developing peripheral form of the
inelastic overlap function. Reflective scattering is detailed
also in Refs. [80–82].

The authors of Ref. [29] argue that the presence of nonzero
real part of the elastic scattering amplitude in the unitarity
condition enables to conserve the traditional black disk pic-
ture refuting the existence of the hollowness effect. However,
as noted in Ref. [79], the criticism that has been raised in Ref.
[29] is based on an incorrect perception of the approxima-
tions involved and does not address the arbitrariness of the
t-dependence of the ratio ρ which is crucial for hollowness.

In Refs. [83,84] the hollowness effect is interpreted as a
consequence of fundamental thermodynamic processes.

Reference [57] notes that the onset of the hollowness
effect is possibly connected to the opening of a new channel
between

√
s = 2.76 and 7 TeV indicating by the measured

σel/σtot ratio and the slope parameter B0 data.
In Ref. [85] the model independent Lévy imaging method

is employed to reconstruct the proton inelasticity pro-
file function and its error band at different energies. This
method established a statistically significant proton hollow-
ness effect, well beyond the 5σ discovery limit. This con-
clusion is based on a model independent description of
the TOTEM proton–proton differential cross-section data at√
s = 13 TeV with the help of the Lévy imaging method,

that represents the TOTEM data in a statistically acceptable
manner, corresponding to a confidence level of CL = 2%.

9 Summary

Currently, the statistically significant observation of the elu-
sive Odderon is a hot research topic, with several interesting
and important results and contributions. In the context of this
manuscript, Odderon exchange corresponds to a crossing-
odd component of the scattering amplitude of elastic proton–
proton and proton–antiproton collisions, that does not van-
ish at asymptotically high energies, as probed experimen-
tally by the D0 Collaboration for proton–antiproton and by
the TOTEM Collaboration for proton–proton elastic colli-
sions in the TeV energy range. Theoretically, the observed
differences can be attributed only to the effect of a C-odd
exchange, as detailed recently in Refs. [30–32]. Those model
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independent studies resulted in an at least 6.26 σ statistical
significance of the Odderon exchange [30–32]. The goal of
the research summarized in this manuscript was to cross-
check, in a model-dependent way, the persistence of these
Odderon-effects, and to provide a physical picture to inter-
pret these results. Using the ReBB model of Ref. [36], devel-
oped originally to describe precisely the differential cross-
section of elastic proton–proton collisions, we were able to
describe also the proton–antiproton differential cross section
at

√
s = 0.546 and 1.96 TeV without any modification of

formalism. We have shown also that this model describes the
proton–proton differential cross section at

√
s = 2.76 and 7

TeV, also in a statistically acceptable manner, with a CL >

0.1%.
Using our good quality, statistically acceptable fits for the

0.5 ≤ √
s ≤ 8 TeV energy region, we have determined

the energy dependence of the model parameters to be an
affine linear function of ln(s/s0). We have verified this energy
dependence by demonstrating that the excitation functions of
the physical parameters of the Real Extended Bialas–Bzdak
model satisfy the so-called sanity tests: they describe in a
statistically acceptable manner not only those four datasets
that formed the basis of the determination of the excitation
function, but all other published datasets in the

√
s = 0.541–

8.0 TeV energy domain. We have also demonstrated that the
excitation functions for the total cross-sections and the ρ0

ratios correspond to the experimentally established trends.
Remarkably, we have observed that the energy depen-

dence of the geometrical scale parameters for pp and p p̄
scattering are identical in elastic proton–proton and proton–
antiproton collisions: only the energy dependence of the
shape or opacity parameter α(s) differs significantly between
pp and p p̄ collisions. After determining the energy depen-
dence of the model parameters we made extrapolations in
order to compare the pp and p p̄ differential cross sections in
the few TeV energy range, corresponding to the energy of D0
measurement at

√
s = 1.96 TeV in Ref. [45] and the TOTEM

measurements at
√
s = 2.76 and 7.0 TeV. Doing this, we

found evidence for the Odderon exchange with a high statis-
tical significance. We have cross-checked, that this evidence
withstands several reasonable cross-checks, for example the
possible presence of small quadratic terms of ln(s/s0) in the
excitation functions of the parameters of this model. Subse-
quently, we have also predicted the details of the diffractive
interference (dip and bump) region at

√
s = 0.9, 4, 5 and 8

TeV1

We have shown that within the framework of this ReBB
model, the very different trend of ρ0(s) in proton–proton
and in proton–antiproton collisions enhances the model-

1 Currently, TOTEM preliminary experimental data are publicly pre-
sented from an on-going analysis at

√
s = 8 TeV, see Ref. [54] for

further details.

independent Odderon signal, from a 6.26 σ and 6.55 σ effect
of Refs. [30–32] to an at least 7.08 σ effect. This gain of
significance is due to the possibility of extrapolating the dif-
ferential cross-sections of elastic p p̄ scattering from

√
s =

1.96 TeV to 2.76 TeV. It is important to note that in the evalua-
tion of the 7.08 σ Odderon effect, only p p̄ data at

√
s = 1.96

TeV and pp data at
√
s = 2.76 TeV were utilized, amounting

to a model dependent but successful closing of the energy gap
between D0 and TOTEM measurements. Let us also empha-
size that our Odderon observation is valid in the limited kine-
matic range of 0.541 ≤ √

s ≤ 8 TeV center of mass energy
and in the 0.377 ≤ −t ≤ 1.2 GeV2 four-momentum transfer
range.

When extrapolating the pp differential cross-sections
from 2.76 down to 1.96 TeV, however, significance is lost,
corresponding to a χ2/NDF = 24.28/13 and to a 2.19 σ

effect, which is less than a 3 σ effect at 1.96 TeV. However,
these two significances at 1.96 and 2.76 TeV can be com-
bined, providing a χ2/NDF = 124.63/33, that corresponds
to a statistically significant, combined 7.08 σ effect.

This 7.08 σ combined significance increases to an even
larger significance of an Odderon observation, when we
extrapolate the differential cross-section of elastic proton–
antiproton collisions to

√
s = 7.0 TeV. Given that a 7.08 σ

effect is already well above the usual 5 σ , statistically sig-
nificant discovery level, we quote this as the possibly lowest
level of the significance of our model-dependent Odderon
observation.

Concerning the direction of future research: Odderon is
now discovered both in a model-independent way, described
in Refs. [30–32], and in a model-dependent way, described
in this manuscript; so the obvious next step is to extract its
detailed properties, both in a model-independent and in a
model-dependent manner. The main properties of the Odd-
eron as well as the Pomeron, based on the ReBB model, are
already summarized in Appendix C.

Let us also note, that the ReBB model as presented in Ref.
[36] does not yet provide a statistically acceptable fit quality
to the differential cross-section of

√
s = 13 TeV elastic pp

scattering. This might be due to the emergence of the black-
ring limit of elastic proton–proton scattering instead of the
expected black-disc limit, as detailed in Sect. 8, or due to
the very strong non-exponential features of the differential
cross-sections in these collisions at low −t2, as shown in
Refs. [6,7].

So we conclude that the Real Extended Bialas–Bzdak
model needs to be further generalized for the top LHC
energies and above. This work is in progress, but it goes

2 We see that the ReBB model has a leading order exponential feature.
If we want to describe the significantly non-exponential features of
differential cross-section in the low-|t | range [7,55], the model has to
be generalized for a possible non-exponential behaviour at low |t |.
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clearly well beyond the scope of the current, already rather
detailed manuscript. Importantly, any possible outcome of
these follow-up studies is not expected to modify the model
behavior at the presently investigated energy range, and
hence our work is apparently completed, refinements are not
necessary from the point of view of the task solved in this
manuscript.

In short, we determined the model-dependent statistical
significance of the Odderon observation to be an at least
7.08 σ effect in the 0.5 ≤ √

s ≤ 8 TeV center of mass
energy and 0.377 ≤ −t ≤ 1.2 GeV2 four-momentum trans-
fer range. Our analysis is based on the analysis of published
D0 and TOTEM data of Refs. [6,9,45] and uses as a tool the
Real Extended Bialas–Bzdak model of Ref. [36]. We have
cross-checked that this unitary model works in a statistically
acceptable, carefully tested and verified manner in this par-
ticular kinematic range. Our main results are illustrated on
Figs. 17 and 18.
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Appendix A: Basics of the Bialas–Bzdak model and its
unitary extension

In the followings, let us shortly introduce the details of the
p = (q, d) ReBB model based on Refs. [36,39].

The elastic scattering amplitude in the b impact parameter
space can be written in the so called eikonal form as:

tel(s, b) = i
[
1 − e−Ω(s,b)

]
, (A.1)

where Ω(s, b) is the opacity or eikonal function. In gen-
eral this opacity is a complex valued function [42,86]. The
shadow profile function is given as

P(s, b) = 1 − | exp(−Ω)|2 = σ̃in(s, b), (A.2)

and this is the reason why the shadow profile function is
also frequently called as the inelastic profile function, as it
describes the probability distribution of inelastic collisions
in the impact parameter space. This way the inelastic pp
scattering may be characterized by a probability distribution.
However, let us stress that elastic scattering is an inherently
quantum process, as evidenced by a diffractive interference
that results in diffractive minima and maxima of the differen-
tial cross-sections. Probabilistic interpretation can be given
only to the inelastic scattering, or to the sum of elastic scat-
tering plus propagating without interactions.

If the real part of the scattering amplitude can be neglected,
then the Ω(s, b) has only a real part given as

Re Ω(s, b) = −1

2
ln

[
1 − σ̃in(s, b)

]
. (A.3)

The inelastic profile function was evaluated with the help
of Glauber’s multiple diffraction theory [42] for the colliding
protons consisting a constituent quark and diquark or p =
(q, d) picture in Section 2.2 of Ref. [36] and the results were
visualized in Figs. 5 and 9 of that paper.

The imaginary part of the opacity function in Ref. [36],
which generates the real part of the scattering amplitude, is
defined to be proportional to the inelastic scattering proba-
bility,

Im Ω(s, b) = −α · σ̃in(s, b) , (A.4)

were α, mentioned earlier, is a free parameter and propor-
tional to ρ0 (see Appendix B). This ansatz assumes that the
inelastic collisions at low four-momentum transfers corre-
spond to the cases when the parts of proton suffer elastic
scattering but these parts are scattered to different directions,
not parallel to one another. Other models were also tested
on TOTEM data in Ref. [36], but this physically motivated
assumption worked well and was shown to be consistent with
the experimental data at

√
s = 7 TeV in Ref. [36].
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Fig. 20 Visualization of the proton–proton scattering in the quark–
diquark BB model. The figure is taken from Ref. [33]

The inelastic scattering probability in the BB model [39]
for a fixed impact parameter b as a probability distribution,
given as

σ̃in(b) =
∫ +∞

−∞
· · ·

∫ +∞

−∞
d2sqd2s ′

qd
2sdd2s ′

d D(sq , sd )D(s ′
q , s ′

d )

×σ(sq , sd ; s ′
q , s ′

d ; b), (A.5)

where sq , s ′
q , sd and s ′

d are the transverse positions of the
quarks and diquarks in the two colliding protons (see Fig. 20).
D(sq , sd) denotes the distribution of quark and diquark inside
the proton which is considered to be Gaussian:

D
(
sq , sd

) = 1 + λ2

R2
qd π

e−(s2
q+s2

d )/R2
qd δ2(sd + λsq), (A.6)

where λ = mq/md is the ratio of the quark and diquark
masses, furthermore Rqd is the standard deviation of the
quark and diquark distance emerging as a free parameter.
The two-dimensional Dirac δ function fixes the center-of-
mass of the proton and reduces the dimension of the integral
in Eq. (A.5) from eight to four. The diquark positions can be
expressed by that of the quarks:

sd = −λ sq , s ′
d = −λ s ′

q . (A.7)

The term σ(sq , sd ; s ′
q , s ′

d; b) is the probability of inelastic
interactions at a fixed impact parameter and transverse posi-
tions of all constituents and given by a Glauber expansion as
follows:

σ(sq , sd; s ′
q , s ′

d; b) = 1 −
∏
a

∏
b

[
1 − σab(b + s ′

a − sb)
]

(A.8)

where a, b ∈ {q, d}. The terms σab (s) are the inelastic dif-
ferential cross-sections of the binary collisions of the con-

stituents having Gaussian shapes:

σab (s) = Aabe
−s2/S2

ab , S2
ab = R2

a + R2
b, a, b ∈ {q, d} .

(A.9)

where Rq , Rd and Aab are free parameters. The physical
meaning of the Rq and Rd parameters as well as the impact
parameter b and the coordinates sq and sd is illustrated on
Fig. 20 and detailed in Ref. [36].

The inelastic quark–quark, quark–diquark and diquark–
diquark cross sections are obtained by integrating Eq. (A.9):

σab,inel =
∫ +∞

−∞

∫ +∞

−∞
σab (s) d2s = π AabS

2
ab . (A.10)

The number of the free parameters of the model can be
reduced demanding that the ratios of the cross sections are

σqq,inel : σqd,inel : σdd,inel = 1 : 2 : 4 , (A.11)

expressing the idea that the constituent diquark contains
twice as many partons than the constituent quark and also
that the colliding constituents do not “shadow” each other.

Using Eq. (A.10) and the assumptions given by Eq. (A.11),
the Aqd and Add parameters can be expressed through Aqq :

Aqd = Aqq
4R2

q

R2
q + R2

d

, Add = Aqq
4R2

q

R2
d

. (A.12)

Counting the number of free parameters one finds that the
model now contains six of them: Rq , Rd , Rqd , α, λ and
Aqq . However, it was shown in Ref. [36] that the latter two
parameters can be fixed. λ = 0.5 if the diquark is very weakly
bound, so that its mass is twice as large as that of the valence
quark. The Real Extended Bialas Bzdak model describes the
experimental data in the

√
s ≤ 8 TeV region with Aqq = 1

fixed, assuming that head-on qq collisions are inelastic with
a probability of 1, corresponding to Eq. (A.9).

Substituting Eq. (A.3) and Eq. (A.4) to Eq. (A.1) one
obtains for the scattering amplitude:

tel(s, b) = i
(

1 − ei α σ̃in(s,b)
√

1 − σ̃in(s, b)
)

. (A.13)

This equation is, in fact, a special solution of the unitarity
relation, obtained from the optical theorem. The integral for
σ̃in(s, b) defined by Eq. (A.5) can be calculated analytically
with the methods described in Refs. [36,39].

In order to compare the theoretical model to the experi-
mental data, the amplitude in impact parameter space, given
by Eq. (A.13), has to be transformed into momentum space
by a Fourier–Bessel transformation:

T (s, t) = 2π

∞∫

0

J0 (Δ · b) tel(s, b)b db . (A.14)

In the above formula b = |b|, Δ = |Δ| is the transverse
momentum and J0 is the zeroth order Bessel-function of
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the first kind. Here the high energy limit is considered, i.e.,√
s → ∞ and then Δ(t) � √−t .
Substituting the expression for the elastic scattering ampli-

tude given by Eq. (A.14) into Eqs. (1)–(5) the model for fitting
the scattering data is complete. The Fourier–Bessel integral
in the amplitude can be calculated numerically during the
fitting procedure.

Appendix B: On the proportionality between ρ0(s) and
α(s) in the ReBB model

Let us first of all note that the detailed description of the Real
Extended Bialas–Bzdak (ReBB) model is given in Section
2.2 of Ref. [36] and also summarized in Appendix A. We
have utilized this formalism throughout the fits described
in the body of the manuscript, however in this Appendix,
we need to develop this formalism a bit further, as in the
earlier publications the details of the relations between the
ρ0 parameter (the ratio of the real to the imaginary part of
the scattering amplitude at t = 0) and the parameter α of the
ReBB model (that is responsible for filling up the singular
dip of the original Bialas–Bzdak model of Refs. [37–40]) has
not yet been detailed before.

Let us stress, that ReBB model is unitary, by definition.
Thus the elastic scattering amplitude in the ReBB model too
has unitary form given by Eq. (A.1), where the opacity func-
tion Ω(s, b) is, in general, a complex valued function.

In the ReBB model, the impact parameter dependent scat-
tering amplitude is given by Eq. (A.13). Now we develop
two small set of approximations that are based on the phys-
ical domain of the ReBB model parameters. From the fits
performed so far, we always find α � 0.165, corresponding
to Table 1 of Ref. [36] and Table 1 of the current manuscript.

In the physical case, when α σ̃in(s, b) � 1 is small, one
obtains for the real and imaginary parts of the scattering
amplitude, respectively,

Re tel(s, b) � α σ̃in(s, b)
√

1 − σ̃in(s, b) (B.1)

and

Im tel(s, b) � 1 −
√

1 − σ̃in(s, b). (B.2)

Given that the real part of the scattering amplitude is thus
proportional to α while the imaginary part is independent of
α, we indeed find that

ρ0 ∝ α, if α � 1. (B.3)

Based on Figs. 5 and 9. of Ref. [36] and the model-
independent results of the Levy series method detailed in Ref.
[85], if the colliding energy is in the

√
s ≤ 8 TeV domain, cor-

responding to the domain of our extrapolations, the shadow
profile function is nearly Gaussian. Such a behaviour can be
obtained easily as follows.

Let us approximate the imaginary part of the scattering
amplitude with a Gaussian, i.e.,

Im tel(s, b) � λ(s) exp

(
− b2

2R2(s)

)
, (B.4)

where λ(s) � Im tel(s, b = 0). Then the inelastic profile or
shadow profile function takes the form of

σ̃in(s, b) = 2λ(s) exp

(
− b2

2R2(s)

)
− λ(s)2 exp

(
− b2

R2(s)

)
.

(B.5)

This expression, up to second order terms, starts as a Gaus-
sian, but it actually corresponds to the subtraction of a broader
and smaller Gaussian from a narrower and larger Gaussian
in the physical domain of λ(s) ≤ 1.

As P0 ≡ P(s, 0) = σ̃inel(s, b = 0) is the value of the
profile or inelastic profile function at b = 0, we find the
following relation between P0 and λ(s):

P0(s) = 2λ(s) − λ2(s) ≤ 1. (B.6)

When performing the transformation from the impact
parameter space to momentum space, the result for the real
to imaginary part ratio of the forward scattering amplitude,
defined by Eq. (5), is

ρ0(s) = α(s)

(
2 − 3

2
λ(s) + 1

3
λ2(s)

)
. (B.7)

In the above equation, we may consider that λ ≡ λ(s) is
a function of P0(s) based on Eq. (B.6). Based on the for-
malism of Section 2.2 of Ref. [36], P0 ≡ P0(s) is a func-
tion of Rq(s), Rd(s) and Rqd(s) only, but otherwise it is
independent of the fourth physical parameter of the Real
Extended Bialas–Bzdak model, α(s). Hence the excitation
function of P0(s) is determined completely by the parame-
ters p1 and p0 of the excitation functions of the scale param-
eters (Rq , Rd , Rqd ), as summarized in Table 2. This way, the
P0 = P0

(
Rq(s), Rd(s), Rqd(s)

)
function is uniquely given

by with the help of Eq. (A.13), corresponding to Eq. (29) of
Ref. [36].

We have cross-checked the result of these analytic consid-
erations compared to the fit results on α(s) and the measured
values of ρ0(s) at the ISR energies and we find an excel-
lent agreement between the analytic approximations and the
numerical results at ISR, corresponding to the λ(s) range of
0.73 - 0.78, as illustrated in Fig. 32. The linear relationship
between ρ0 and the ReBB model parameter α is also indi-
cated at the ISR energy range, in Fig. 31. Similarly, we find
an excellent agreement between the analytic calculations of
Eq. (B.7) and the numerical and experimental results at the
energy scale of 0.5 ≤ √

s ≤ 8 TeV, as demonstrated on
Fig. 7, presented in the body of this manuscript.
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Appendix C: Pomeron and Odderon from the Real
Extended Bialas–Bzdak model

In this Appendix we summarize, for the sake of clarity, how
we can determine the crossing-even and crossing-odd com-
ponents of the scattering amplitude, based on the ReBB
model. In the TeV energy range, we indentify these com-
ponents with the Pomeron and the Odderon amplitude, given
that the Reggeon contributions in this energy range are gen-
erally expected to be negligibly small, as confirmed also by
explicit calculations for example in Ref. [79].

In this energy range, the proton–proton (pp) as well as the
proton–antiproton (p p̄) elastic scattering amplitudes can be
written as

T pp
el = T+

el − T−
el , (C.1)

T p p̄
el = T+

el + T−
el , (C.2)

where we have suppressed the dependence of these ampli-
tudes on the Mandelstam variables: T pp

el ≡ T pp
el (s, t) etc.

If the pp and the p p̄ scattering amplitudes are known,
then the crossing even and the crossing odd components of
the elastic scattering amplitude can be reconstructed as

T+
el = 1

2

(
T p p̄
el + T pp

el

)
, (C.3)

T−
el = 1

2

(
T p p̄
el − T pp

el

)
. (C.4)

In this manuscript, we have utilized the Real Extended
Bialas–Bzdak or ReBB model of Ref. [36], to determine the
elastic scattering amplitude for elastic pp and p p̄ scattering.
This model is based on Glauber’s theory of multiple diffrac-
tive scattering [41–43], and assumes that the elastic proton–
proton scattering is based on multiple diffractive scattering
of the constituents of the protons. Hence this ReBB model
has two main variants: the case when the proton is assumed to
have a constituent quark and a diquark component is referred
to as p = (q, d) model, while the case when the diquark is
assumed to be further resolved as a weakly bound state of
two constituent quarks is the p = (q, (q, q)) model. It was
shown before that this p = (q, (q, q)) variant predicts too
many diffractive minima for the differential cross-section,
hence in this paper we utilize the p = (q, d) variant as for-
mulated in Ref. [36], without any change.

With the help of the ReBB model of Ref. [36], we have
described in a statistically acceptable manner the pp and p p̄
differential cross-sections. In this ReBB model the pp elastic
scattering amplitude depends on s only through four energy
dependent parameters, that we denote here, for the sake of
clarity, as Rpp

q (s), Rpp
d (s), Rpp

qd (s) and α pp(s):

T pp
el (s, t) = F(Rpp

q (s), Rpp
d (s), Rpp

qd (s), α pp(s); t). (C.5)

Similarly, we described the amplitude of the elastic p p̄ scat-
tering with 4 energy dependent parameters, that we denote
here for the sake of clarity as Rp p̄

q (s), Rp p̄
d (s), Rp p̄

qd (s) and

α p p̄(s):

T p p̄
el (s, t) = F(Rp p̄

q (s), Rp p̄
d (s), Rp p̄

qd (s), α p p̄(s); t). (C.6)

Here F stands for a symbolic short-hand notation for a
function, that indicates how the left hand side of the pp
and p p̄ scattering amplitude depend on s through their s-
dependent parameters. The scale parameters Rq , Rd , and Rqd

correspond to the Gaussian sizes of the constituent quarks,
diquarks and their separation in the scattering (anti)protons.
Each of these parameters is s-dependent. Since the trends
of Rq(s), Rd(s) and Rqd(s) follow, within errors, the same
excitation functions in both pp and p p̄ collisions, as indi-
cated on panels a, b and c of Fig. 6, we have denoted these in
principle different scale parameters with the same symbols
in the body of the manuscript:

Rq(s) ≡ Rpp
q (s) = Rp p̄

q (s), (C.7)

Rd(s) ≡ Rpp
d (s) = Rp p̄

d (s), (C.8)

Rqd(s) ≡ Rpp
qd (s) = Rp p̄

qd (s). (C.9)

On the other hand, the opacity or dip parameters α(s) are
different in elastic pp and p p̄ reactions: if they too were
the same, then the scattering amplitude for pp and p p̄ reac-
tions were the same, correspondingly the differential cross-
sections were the same in these reactions, while experimental
results indicate that they are qualitatively different. Hence

α pp(s) �= α p p̄(s), (C.10)

corresponding to panel d of Fig. 6 and to Table 2.
In this form, the ReBB model of Ref. [36] provides a

statistically acceptable description of the elastic scattering
amplitude, both for pp and p p̄ elastic scattering, in the kine-
matic range that extends to at least 0.372 ≤ −t ≤ 1.2 GeV2

and 0.546 ≤ √
s ≤ 8 TeV. Now, for the sake of clarity, let

us note that the s-dependence of the Pomeron and Odderon
(crossing-even and crossing-odd) components of the scatter-
ing amplitude thus happens through the s-dependence of five
parameters only: Based on Eqs. (C.3, C.4), Eqs. (C.5, C.6)
and Eqs. (C.7, C.8,C.9) we find that

T P

el (s, t) = T+
el (s, t)

= G(Rpp
q (s), Rpp

d (s), Rpp
qd (s), α pp(s), α p p̄(s); t),

(C.11)
TO

el (s, t) = T−
el (s, t)

= H(Rpp
q (s), Rpp

d (s), Rpp
qd (s), α pp(s), α p p̄(s); t).

(C.12)
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Here G and H are just sympolic short-hand notations that
summarize how the left hand side of the above equations
depend on s through their s-dependent parameters.

The differential cross section, Eq. (1), the total, elastic
and inelastic cross sections, Eqs.(2)–(4), as well as the real
to imaginary ratio, Eq. (5), and the nuclear slope parameter,

B(s, t) = d

dt
ln

dσ(s, t)

dt
, (C.13)

characterize experimentally the (s, t) dependent elastic scat-
tering amplitudes, Tel(s, t) discussed above. These quantities
can be evaluated for a specific process like the elastic pp or
p p̄ scattering. Given that we evaluate the elastic scattering
amplitude for both of them in the TeV energy range, that
yields also the (s, t) dependent elastic scattering amplitude
also for the Pomeron and the Odderon exchange, we have
the possibility to evaluate these quantities for the crossing-
even Pomeron (P) and for the crossing-odd Odderon (O)
exchange.

The momentum space dependent scattering amplitude
Tel(s, t), for spin independent processes, is related to a
Fourier–Bessel transform of the impact parameter dependent
elastic scattering amplitudes tel(s, b) as given by Eq. (A.14).

This impact parameter dependent amplitude is constrained
by the unitarity of the scattering matrix S,

SS† = I (C.14)

where I is the identity matrix. Its decomposition is S =
I + iT , where the matrix T is the transition matrix. In terms
of T , unitarity leads to the relation

T − T † = iT T † (C.15)

which can be rewritten in terms of the impact parameter or b
dependent amplitude tel(s, b) as

2 Im tel(s, b) = |tel(s, b)|2 + σ̃inel(s, b), (C.16)

where σ̃inel(s, b) is the impact parameter dependent proba-
bility of inelastic scattering. It can be equivalently expressed
from the above unitarity relation as

σ̃inel(s, b) = 1 − (Re tel(s, b))
2 − (Im tel(s, b) − 1)2.

(C.17)

It follows that

σ̃inel(s, b) ≤ 1, (C.18)

as a consequence of unitarity.
Given that the ReBB model of Ref. [36] is unitary, those

dispersion relations that are consequences of the unitarity
of the scattering amplitude are automatically satisfied. For
example, the dispersion relations discussed in Refs. [87,88]
are automatically satisfied by the unitary ReBB model.

The impact parameter dependent elastic scattering ampli-
tudes for elastic pp and p p̄ scatterings are given in terms

of the complex opacity or eikonal functions Ω(s, b). The
defining relations are

t ppel (s, b) = i (1 − exp
(−Ω pp(s, b)

)
, (C.19)

t p p̄el (s, b) = i (1 − exp
(
−Ω p p̄(s, b)

)
. (C.20)

As another consequence of the unitary relations, we have
√

1 − σ̃inel(s, b) = exp (−ReΩ(s, b)) . (C.21)

In Ref. [36], three different possibilities were considered
for the solution of the unitarity relation, using various func-
tions to model the imaginary part of the complex opacity
function Ω , that corresponds to the real part of the scattering
amplitude. Out of the considered three possible choices, the
assumption that was found to be consistent with the exper-
imental data on pp elastic scattering at the ISR and LHC
energies is defined by Eq. (A.13). At that time it was not yet
clear that a similar relation works also for p p̄ collisions. A
very important advantage of this particular solution to the
unitarity equation is that the multiple diffractive scattering
theory of R. J. Glauber predicts σ̃inel(s, b) to depend only on
the s-dependent geometrical scales (Rq(s), Rd(s), Rqd(s)).
Given that the Rq(s), Rd(s), Rqd(s) scales are found in pan-
els a, b, and c of Fig. 6 to be independent of the type of the
elastic collisions i.e. to be the same in elastic pp and p p̄
collisions in the body of this paper, the imaginary part of the
complex opacity function in elastic pp and p p̄ collisions has
the same b-dependent factor, but has an s-dependent pref-
actor that is in principle a different function in the cases of
elastic pp and p p̄ collisions:

ImΩ pp(s, b) = −α pp(s)σ̃inel(s, b), (C.22)

ImΩ p p̄(s, b) = −α p p̄(s)σ̃inel(s, b). (C.23)

These relations yield the following simple expressions for
the impact parameter dependent elastic pp and p p̄ scattering
amplitudes

t ppel (s, b) = i
(

1 − ei α pp(s) σ̃in(s,b)
√

1 − σ̃in(s, b)
)

,

(C.24)

t p p̄el (s, b) = i
(

1 − ei α p p̄(s) σ̃in(s,b)
√

1 − σ̃in(s, b)
)

.

(C.25)

It then clearly follows that in the ReBB model t ppel (s, b) ≡
t p p̄el (s, b) and tOel (s, b) ≡ 0 if, and only if α pp(s) ≡ α p p̄(s).

As detailed in Appendix B, α(s) ∼ ρ0(s) both for pp
and p p̄ elastic collisions. At the same time α(s) controls the
value of the differential cross section in the region of the
dip in these collisions. Thus, within the ReBB model there
is a deep connection between the t = 0 and the dip region.
This supports the findings that the recently observed decrease
in ρ0(s) around

√
s =13 TeV, the dip-bump structure in pp
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scattering and its absence in p p̄ scattering are both the conse-
quences of the Odderon contribution. In the ReBB model, this
Odderon contribution is encoded in the difference between
α pp(s) and α p p̄(s). This conclusion is supported also by the
detailed calculations of the ratios of the modulus squared
Odderon to Pomeron scattering amplitudes.

Thus if ρ
pp
0 (s) �= ρ

p p̄
0 (s), within the ReBB model it fol-

lows that α pp(s) �= α p p̄(s) or equivalently tOel (s, b) �= 0 in
the TeV region.

Within the framework of the ReBB model, we thus can
significantly sharpen an Odderon theorem noted in Ref. [30].
The weaker, original form of this theorem was formulated in
Ref. [30] as follows:

Theorem 1

– If the pp differential cross sections differ from that of p p̄
scattering at the same value of s in a TeV energy domain,
then the Odderon contribution to the scattering amplitude
cannot be equal to zero, i.e.

dσ pp

dt
�= dσ p p̄

dt
for

√
s ≥ 1 TeV �⇒ T O

el (s, t) �= 0 .

(C.26)

This theorem is model-independently true as it depends only
on the general structure of the theory of elastic scattering.
The outline of the proof is that the differential cross-section,
Eq. (1), is proportional to the modulus squared elastic scat-
tering amplitudes both for pp and p p̄ scattering. If the mod-
ulus square of two complex functions is different, then the
two complex functions, corresponding to the elastic scatter-
ing amplitudes of pp and p p̄ collisions, cannot be identical.
Hence their difference, proportional to the Odderon ampli-
tude in the TeV energy range, cannot be zero.

Within the ReBB model, this theorem can be significantly
sharpened. This sharpened, stronger version of the above the-
orem thus reads as follows:

Theorem 2: In the framework of the unitary Real
Extended Bialas–Bzdak (ReBB) model, the elastic pp differ-
ential cross sections differ from that of elastic p p̄ scattering
at the same value of s in a TeV energy domain, if and only if
the Odderon contribution to the scattering amplitude is not
equal to zero. This happens if and only if α pp(s) �= α p p̄(s)
and as a consequence, if and only if ρ

pp
0 �= ρ

p p̄
0 :

dσ pp

dt
�= dσ p p̄

dt
⇐⇒ T O

el (s, t) �= 0

⇐⇒ ρ
pp
0 (s) �= ρ

p p̄
0 (s)

⇐⇒ α pp(s) �= α p p̄(s)

for
√
s ≥ 1 TeV.

This theorem is proven by the explicit expressions for
the impact parameter dependent elastic scattering amplitude

for the C-even Pomeron and the C-odd Odderon exchange
in the ReBB model as detailed below. These relations are
consequences of the unitarity of the ReBB model.

tPel(s, b) = i

(
1 − 1

2

(
exp

(−Ω pp(s, b)
) + exp

(
−Ω p p̄(s, b)

)))
,

tOel (s, b) = i
1

2

(
exp

(−Ω pp(s, b)
) − exp

(
−Ω p p̄(s, b)

))
.

It is obvious to note that the Pomeron amplitude given above
is crossing-even, while the Odderon amplitude is crossing-
odd: CtPel(s, b) = tPel(s, b) and CtOel (s, b) = −tOel (s, b).

These relations can be equivalently rewritten for the
Pomeron amplitude, using the shorthand notation σ̃in ≡
σ̃in(s, b) and suppressing the s dependencies of α pp(s) and
α p p̄(s), as follows:

Im tPel (s, b) = 1 −
√

1 − σ̃in cos

(
α pp + α p p̄

2
σ̃in

)
cos

(
α p p̄ − α pp

2
σ̃in

)
,

Re tPel (s, b) =
√

1 − σ̃in sin

(
α pp + α p p̄

2
σ̃in

)
cos

(
α p p̄ − α pp

2
σ̃in

)
.

This form of the Pomeron amplitude is explicitly C-even,
as corresponding to the Pomeron amplitude in unitary,
Real Extended Bialas–Bzdak model. Thus if the difference
between the opacity parameters α for pp and p p̄ elastic colli-
sions is small, the Pomeron is predominantly imaginary, with

a small real part that is proportional to sin
(

α pp+α p p̄

2 σ̃in

)
.

Similarly, for the Odderon, we have in the ReBB model the
following amplitude

Re tOel (s, b) = √
1 − σ̃in sin

(
α p p̄ − α pp

2
σ̃in

)
cos

(
α p p̄ + α pp

2
σ̃in

)
,

(C.27)

Im tOel (s, b) = √
1 − σ̃in sin

(
α p p̄ − α pp

2
σ̃in

)
sin

(
α pp + α p p̄

2
σ̃in

)
.

(C.28)

This form of the Odderon amplitude is explicitly C-odd
and satisfies unitarity, corresponding to the Real Extended
Bialas–Bzdak model. If the difference between the opac-
ity parameters α for pp and p p̄ elastic collisions becomes
vanishingly small, both the real and the imaginary part of
the Odderon amplitude vanishes, as they are both propor-

tional to sin
(

α p p̄−α pp

2 σ̃in

)
. If this term is non-vanishing, but

(α p p̄+α pp)σin remains small, the above Odderon amplitude
remains predominantly real, with a small, leading order linear
in (α p p̄ + α pp)σ̃in imaginary part. Given that α(s) ∝ ρ0(s)
in the ReBB model, as detailed in Appendix B, and exper-
imentally ρ0(s) ≤ 0.15 at LHC energies, the ReBB model
Odderon amplitude is predominantly real at small values of
t .

Equations (C.27, C.28) complete the proof, that the Odd-
eron amplitude in the ReBB model vanishes if and only if the
opacity parameters α(s) for elastic pp and p p̄ scattering are
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Fig. 21 The differential cross-section of Pomeron exchange, as calcu-
lated from ReBB model of Ref. [36], based on the log-linear excitation
functions of α pp(s), α p p̄(s) and the scale parameters, Rq (s), Rd (s),
Rqd (s), corresponding to Fig. 6 as summarized in Table 2 in the body
of this manuscript. The top panel indicates the central values, while the
lower panel includes our first estimates on the systematic errors of this
reconstruction. The presented (over)estimates of the systematic error
bands were obtained by neglecting the possible correlations between
the parameters p0 and p1 for each of the excitation functions given in
Table 2

equal, corresponding to α p p̄(s) = α pp(s). Note that these
proofs are independent of the detailed calculations of the
inelastic scattering probability σ̃in = σinel(s, b), hence they
are valid both in the p = (q, d) and in the p = (q, (q, q))

variant of the ReBB model. In fact they are valid for possible
further generalized ReBB models as well, where for exam-
ple the distribution of the scattering by quarks or diquarks is
not assumed to be a Gaussian anymore, or if further parton
contributions get resolved in a future paper.

In the following plots, we have evaluated the differential
and total cross-sections of the Pomeron and the Odderon
exchange, as well as the ratios of these differential cross-
sections, to determine the main properties of these processes
with the help of the ReBB model of Ref. [36].
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Fig. 22 Same as Fig. 21, but for the differential cross-section of the
Odderon exchange

Figure 21 indicates the calculated differential cross-
section for Pomeron exchange based on the fits presented
in the body of this manuscript, utilizing the ReBB model of
Ref. [36]. This result is based on Table 2, that summarizes
the parameters of the excitation functions for the opacity
parameters α pp(s), α p p̄(s) and the scale parameters, Rq(s),
Rd(s), Rqd(s), corresponding to Fig. 6a–d in the body of this
manuscript. The top panel indicates the central values for the
differential cross-section of Pomeron exchange at various
colliding energies

√
s, while the lower panel includes our

first estimates on the systematic errors of this reconstruction.
These first error band estimates were obtained by neglecting
the possibly strong correlations between the parameters p0

and p1. These figures also indicate that Pomeron exchange
does not lead to a pronounced diffractive minimum structure,
in contrast to the experimental results for the diffractive mini-
mum in elastic pp collisions. This differential cross-section is
more similar to the neck and shoulder type of structure, exper-
imentally observed in elastic p p̄ collisions, as discussed in
the body of this manuscript.

Figure 22 is the same as Fig. 21, but for the C-odd Odderon
exchange as evaluated from the ReBB model of Ref. [36].
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Fig. 23 Same as Fig. 21, but for the ratio of the differential cross-
sections of Odderon to Pomeron exchange

The top panel indicates the central values for the differential
cross-section of Odderon exchange at various colliding ener-
gies

√
s in the TeV domain, while the lower panel includes

our first estimates on the systematic errors of this reconstruc-
tion, obtained by neglecting the possibly strong correlations
between the parameters p0 and p1. These figures also indi-
cate that Odderon exchange may lead even to two pronounced
diffractive minima, in contrast to the experimental results
for the diffractive minimum in elastic pp collisions. How-
ever, the interference between the Pomeron and the Odderon
exchange leads to a single well defined and experimentally
resolvable diffractive minimum in elastic pp collisions at the
TeV scale.

Figure 23 indicates the ratio of the differential cross-
sections for Odderon to Pomeron exchange. This figure indi-
cates that the Odderon contribution is important and rela-
tively large in three kinematic regions: near to the t = 0
optical point, near to the position of the diffractive mini-
mum of elastic pp collisions, tdip ≈ −0.5 GeV2, and then
at higher squared momentum transfer values, −t � 1 GeV2.
This figure also highlights with an explicit calculation, that
the Odderon contribution to the dip region is correlated with
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Fig. 24 Same as Fig. 21, but for the phase of the amplitude of Pomeron
exchange

the Odderon contribution at −t = 0, thus the Odderon sig-
nals at the dip region appear simultaneously with the Odderon
signals at −t = 0.

The last three figures characterize the modulus square of
the amplitude for Pomeron and for Odderon exchanges in
the ReBB model. A very important information, however, is
included to the phase of these amplitudes, that are shown on
the subsequent two figures.

The phase of Pomeron exchange is indicated on Fig. 24.
This indicates that at low −t , the Pomeron contribution is pre-
dominantly imaginary, with a real component of the Pomeron
exchange starting to be important near the diffractive mini-
mum of elastic pp collisions. On this plot, the principal value
of the phase of the Pomeron (C-even) amplitude is indicated
with a thin line, while the continuously varying phase evalu-
ated from the multi-valued inverse tangent function is shown
with the thick line.

The phase of Odderon exchange is indicated on Fig. 25.
This indicates that at low −t , the Odderon contribution is pre-
dominantly real, with an imaginary component of the Odd-
eron exchange starting to be important already at low −t near
to 0.1 GeV2. This phase starts to change quickly and the Odd-
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Fig. 25 Same as Fig. 21 but for the phase of the amplitude of Odderon
exchange

eron becomes predominantly real again near the diffractive
minimum of elastic pp collisions. On this plot, the principal
value of the phase of the Odderon (C-odd) amplitude is indi-
cated with a thin line, while the continuously varying phase
evaluated from the multi-valued inverse tangent function is
shown with the thick line.

Figure 26 indicates the value of the real to imaginary ratio
of the scattering amplitude ρ0(s) for elastic proton–proton,
proton–antiproton scattering and for Pomeron exchange.
Near to the optical point, all of these amplitudes are predom-
inantly imaginary, with a small real part and with an even
smaller C-odd contribution, that makes the ρ0(s) different
for elastic pp and p p̄ collisions, due to the contribution of
the C-odd Odderon exchange.

Figure 27 indicates the total cross-sections, as evaluated
with the help of Eq. (2), for the elastic pp and p p̄ scattering
as well as for the Pomeron exchange. The difference between
the excitation functions for the total cross-sections of pp and
p p̄ scattering seems to be less than the currently very small,
of the order of 2% relative experimental error on the total
cross-section measurements at LHC energies.
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Fig. 26 The real to imaginary ratio ρ0(s) for elastic pp and p p̄ colli-
sions and their Pomeron component evaluated from the log-linear exci-
tation functions of the opacity parameters α pp(s) and α p p̄(s) as well
as that of the scale parameters, Rq (s), Rd (s), Rqd (s), corresponding to
Table 2
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Fig. 27 Excitation function of the total cross-section for elastic pp,
p p̄ collisions and for the amplitude of Pomeron exchange, as evalu-
ated from the log-linear excitation functions of the opacity parameters
α pp(s) and α p p̄(s) as well as that of the scale parameters, Rq (s), Rd (s),
Rqd (s), corresponding to Table 2. The yellow band indicates our con-
servative estimates on the systematic errors of the total cross-section of
the Pomeron exchange

Finally, Fig. 28 indicates the total cross-section corre-
sponding to the Odderon component of the scattering ampli-
tude, as evaluated with the help of Eq. (2). This plot indi-
cates that the Odderon cross-section starts to increase in the√
s ≥ 1 TeV energy domain, but the total cross-section of

Odderon exchange is at least two orders of magnitude smaller
than the total cross-section for elastic pp scattering in the TeV
energy scale. Actually we find σ

O

tot ≤ 0.7 mb for
√
s ≤ 20

TeV.
Thus effectively, and within the framework of the ReBB

model, we conclude that the Odderon occupies at least an
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Fig. 28 Excitation function of the total cross-section obtained from the
optical theorem using the ReBB model amplitude of Odderon exchange,
as evaluated from the log-linear excitation functions of the opacity
parameters α pp(s) and α p p̄(s) as well as that of the scale parame-
ters, Rq (s), Rd (s), Rqd (s), corresponding to Table 2. The yellow band
indicates our conservative estimate on the systematic errors of the total
cross-section of this Odderon exchange. The result indicates that total
cross-section of the Odderon exchange is sharply increasing in the few
TeV energy range, but it is two orders of magnitude smaller than the
contribution of the Pomeron exchange that is dominant at the same
energy scale

order of magnitude smaller radius, as compared to the effec-
tive size of the Pomeron exchange. Thus we support the
observations of Refs. [28,89,90], suggesting that the contri-
bution of the Odderon exchange to the total pp cross-section
is rather small, of the order of 1 mb or less, even at the
currently available largest LHC energies. Nevertheless, we
also find that this currently rather small effect is statistically
significant, with a significance that is larger than the
discovery threshold of 5σ , as detailed in the body of this
manuscript.

Appendix D: ISR energies and quadratic corrections to
the excitation functions

In this Appendix we investigate the stability of the obtained
linear logarithmic energy dependencies of the ReBB model
parameters, discussed in Sect. 5, for the case, when the energy
range is extended towards lower values of

√
s. In order to do

this, we refitted the ISR data [91] at all the five available col-
lision energy (

√
s = 23.5, 30.7, 44.7, 52.8 and 62.5 GeV)

in the squared momentum transfer range 0.8 ≤ −t ≤ 2.5
GeV2 by using the χ2 definition determined by Eq. (6). The
fits included the t-dependent (both vertical and horizontal)
statistical (type A) and systematic (type B) errors, the nor-
malization (type C) error and the experimental values of the
total cross section and the parameter ρ0 with their total uncer-
tainties [92]. We have also tested the stability of the fit results
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Fig. 29 The fit of the ReBB model to the pp ISR
√
s = 23.5 GeV

data in the range of 0.8 ≤ −t ≤ 2.5 GeV2 [92]. The fit includes the
t-dependent statistical (type A) and systematic (type B) uncertainties,
the normalization (type C) uncertainty and the experimental values of
the total cross section and parameter ρ0 with their full error according
to Eq. (6). The fitted parameters are shown in the left bottom corner and
their values are rounded up to three decimal digits

for small variations of the fit range or the fitting method. The
only data set, where our results remained stable for the vari-
ation of the fit range around the selected range and for small
variations of the fitting procedure, and where the obtained
results were both statistically and physically acceptable fit
results describing not only the differential cross-section but
the measured value of the total cross-section σtot and the
value of the real to imaginary ratio ρ0 was the ISR dataset,
measured at

√
s = 23.5 GeV. The result of this satisfac-

tory fit is shown in Fig. 29. Our other results were similar
to the results presented in Ref. [36] and particularly resulted
in a rather fluctuating description of the excitation function
of the α(s) at those ISR energies higher than 23.5 GeV. In
the present study such fluctuating fits could not be used to
establish the trends and the excitation functions.

Taking the restricted opportunities, we utilized the only
reasonable ISR energy fit result, i.e., the result at 23.5 GeV to
cross-check the compatibility of the linear logarithmic trends
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obtained in Sect. 5 with the lower energy region. When the√
s = 23.5 GeV energy data are included to those summa-

rized in Table 1, the energy dependence of the model param-
eters can be determined satisfactorily if model parameters
are fitted one by one by applying a quadratic polynomial as
a function of ln(s/s0),

P(s) = p0 + p1 ln (s/s0) + p2 ln2 (s/s0),

P ∈ {Rq , Rd , Rqd , α}, (D.1)

where p0, p1, p2 are free parameters and s0 is fixed at 1
GeV2. The obtained results are summarized in Fig. 30. The
parameters of the excitation functions are indicated on the

subplots of Fig. 30 and also summarized in Table 3. To fit
the α parameter we used the same procedure described in
Sect. 5, i.e., utilizing also the measured and rescaled ρ0 val-
ues. As seen in Figs. 31 and 32 the linear dependence of
the ratio ρ0 on the parameterα is satisfied at ISR energies as
well.

In Fig. 30 the dotted curves show the result of the fits in
the energy range of 546 ≤ √

s ≤ 8000 GeV with the linear
logarithmic model determined by the parameters collected
in Table 2 and discussed in Sect. 5. Investigating Fig. 30,
one can conclude that although the energy dependence is not
linear logarithmic if the data at the ISR energy region are

(a) (b)

(c) (d)

Fig. 30 The energy dependence of the parameters of the ReBB model,
Rq , Rd , Rqd and α, taken from Fig. 29 and Table 1, determined by fit-
ting a second order logarithmic polynomial, Eq. (D.1), to each of them
one by one in the energy range of 23.5 ≤ √

s ≤ 8000 GeV. As a com-
parison these figures also show the result of the fit in the energy range

of 546 ≤ √
s ≤ 8000 GeV with the linear logarithmic model deter-

mined by the parameters collected in Table 2. It is clear that allowing
for quadratic corrections does not change significantly the linear trends
in the kinematic range of 0.5 ≤ √

s ≤ 8 TeV
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Fig. 31 Linearity between the ratio ρ0 and the α parameter of the
ReBB model in the few tens of GeV energy region calculated from the
trends of the scale parameters, Rq (s), Rd (s), Rqd (s), corresponding to
Fig. 30a–c. The square shaped markers in the figure are positioned to
the experimentally measured ρ0 values. In the ISR energy range, the
ratio ρ0(s)/α(s) is in an excellent agreement with the analytic approxi-
mations given by Eq. (B.7) of Appendix B, as also illustrated on Fig. 32
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Fig. 32 The dependence of ρ0/α on λ in the few tens of GeV energy
range. Filled and empty symbols correspond to the pp and p p̄ cases,
respectively. These values and the error-bars for ρ/α are obtained from
the ReBB model fits by using the excitation functions of the scale param-
eters Rq (s), Rd (s), Rqd (s), shown in Fig. 30a–c and summarized in
Table 2, as well as the experimentally measured ratio ρ0 values. The
red curve represents the analytic result, corresponding to Eq. (B.7) in
Appendix B, showing a good agreement between the analytic consid-
erations and the numerical results

included, the linear approximation in the energy region of
0.546 ≤ √

s ≤ 8.0 TeV is completely valid.
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12. T. Csörgő, R. Pasechnik, A. Ster, Odderon and proton substructure
from a model-independent Lévy imaging of elastic pp and p p̄
collisions. Eur. Phys. J. C 79(1), 62 (2019). https://doi.org/10.1140/
epjc/s10052-019-6588-8. arXiv:1807.02897 [hep-ph]

13. M. Broilo, E.G.S. Luna, M.J. Menon, Forward elastic scattering
and Pomeron models. Phys. Rev. D 98(7), 074006074006 (2018).
https://doi.org/10.1103/PhysRevD.98.074006. arXiv:1807.10337
[hep-ph]

14. G. Pancheri, S. Pacetti, Y. Srivastava, Analysis and impli-
cations of precision near-forward TOTEM data. Phys. Rev.
D 99(3), 034014 (2019). https://doi.org/10.1103/PhysRevD.99.
034014. arXiv:1811.00499 [hep-ph]

15. V.P. Gonçalves, P.V.R.G. Silva, The Phillips–Barger model for
the elastic cross section and the Odderon. Eur. Phys. J. C 79(3),
237 (2019). https://doi.org/10.1140/epjc/s10052-019-6768-6.
arXiv:1811.12250 [hep-ph]

16. O. Selyugin, J. Cudell, Odderon, HEGS model and LHC data.
Acta Phys. Pol. Suppl. 12(4), 741 (2019). https://doi.org/10.5506/
APhysPolBSupp.12.741. arXiv:1810.11538 [hep-ph]

17. V.A. Khoze, A.D. Martin, M.G. Ryskin, Black disk, maximal Odd-
eron and unitarity. Phys. Lett. B 780, 352–356 (2018). https://doi.
org/10.1016/j.physletb.2018.03.025. arXiv:1801.07065 [hep-ph]

18. M. Broilo, E.G.S. Luna, M.J. Menon, Soft Pomerons and the for-
ward LHC Data. Phys. Lett. B 781, 616–620 (2018). https://doi.
org/10.1016/j.physletb.2018.04.045. arXiv:1803.07167 [hep-ph]

19. S.M. Troshin, N.E. Tyurin, Implications of the ρ(s) measure-
ments by TOTEM at the LHC. Mod. Phys. Lett. A 33(35),
1850206 (2018). https://doi.org/10.1142/S0217732318502061.
arXiv:1805.05161 [hep-ph]

20. I.M. Dremin, Several effects unexplained by QCD. Universe 4(5),
65 (2018). https://doi.org/10.3390/universe4050065

21. E. Martynov, B. Nicolescu, Evidence for maximality of strong
interactions from LHC forward data. Phys. Lett. B 786,

123

https://doi.org/10.1007/BF02824484
https://doi.org/10.1007/BF02824484
https://doi.org/10.1016/S0370-2693(00)00221-5
https://doi.org/10.1016/S0370-2693(00)00221-5
http://arxiv.org/abs/hep-ph/9912423
https://doi.org/10.1142/S0217751X11054760
https://doi.org/10.1142/S0217751X11054760
http://arxiv.org/abs/1105.1202
https://doi.org/10.1103/PhysRevD.91.074018
http://arxiv.org/abs/1501.03860
https://doi.org/10.1103/PhysRevLett.54.2180
https://doi.org/10.1140/epjc/s10052-019-6567-0
https://doi.org/10.1140/epjc/s10052-019-6567-0
http://arxiv.org/abs/1712.06153
http://arxiv.org/abs/1812.04732
http://arxiv.org/abs/1812.08283
http://arxiv.org/abs/1812.08610
https://doi.org/10.1103/PhysRevD.97.034019
https://doi.org/10.1103/PhysRevD.97.034019
http://arxiv.org/abs/1712.00325
https://doi.org/10.1016/j.nuclphysa.2018.03.009
http://arxiv.org/abs/1708.02879
https://doi.org/10.1140/epjc/s10052-019-6588-8
https://doi.org/10.1140/epjc/s10052-019-6588-8
http://arxiv.org/abs/1807.02897
https://doi.org/10.1103/PhysRevD.98.074006
http://arxiv.org/abs/1807.10337
https://doi.org/10.1103/PhysRevD.99.034014
https://doi.org/10.1103/PhysRevD.99.034014
http://arxiv.org/abs/1811.00499
https://doi.org/10.1140/epjc/s10052-019-6768-6
http://arxiv.org/abs/1811.12250
https://doi.org/10.5506/APhysPolBSupp.12.741
https://doi.org/10.5506/APhysPolBSupp.12.741
http://arxiv.org/abs/1810.11538
https://doi.org/10.1016/j.physletb.2018.03.025
https://doi.org/10.1016/j.physletb.2018.03.025
http://arxiv.org/abs/1801.07065
https://doi.org/10.1016/j.physletb.2018.04.045
https://doi.org/10.1016/j.physletb.2018.04.045
http://arxiv.org/abs/1803.07167
https://doi.org/10.1142/S0217732318502061
http://arxiv.org/abs/1805.05161
https://doi.org/10.3390/universe4050065


611 Page 32 of 33 Eur. Phys. J. C (2021) 81 :611

207–211 (2018). https://doi.org/10.1016/j.physletb.2018.09.049.
arXiv:1804.10139 [hep-ph]

22. E. Martynov, B. Nicolescu, Odderon effects in the differ-
ential cross-sections at Tevatron and LHC energies. Eur.
Phys. J. C 79(6), 461 (2019). https://doi.org/10.1140/epjc/
s10052-019-6954-6. arXiv:1808.08580 [hep-ph]

23. Y.M. Shabelski, A.G. Shuvaev, Real part of pp scattering
amplitude in a additive quark model at LHC energies. Eur.
Phys. J. C 78(6), 497 (2018). https://doi.org/10.1140/epjc/
s10052-018-5979-6. arXiv:1802.02812 [hep-ph]

24. V.A. Khoze, A.D. Martin, M.G. Ryskin, Elastic and diffractive
scattering at the LHC. Phys. Lett. B 784, 192–198 (2018). https://
doi.org/10.1016/j.physletb.2018.07.054. arXiv:1806.05970 [hep-
ph]

25. Y. Hagiwara, Y. Hatta, R. Pasechnik, J. Zhou, Spin-dependent
Pomeron and Odderon in elastic proton-proton scattering.
arXiv:2003.03680 [hep-ph]

26. C. Contreras, E. Levin, R. Meneses, M. Sanhueza, QCD Odderon:
non linear evolution in the leading twist. arXiv:2004.04445 [hep-
ph]

27. E. Gotsman, E. Levin, I. Potashnikova, A new parton model for the
soft interactions at high energies: the Odderon. arXiv:2003.09155
[hep-ph]

28. E. Gotsman, E. Levin, I. Potashnikova, CGC/saturation approach:
secondary Reggeons and ρ = Re/Im dependence on energy. Phys.
Lett. B 786, 472–476 (2018). https://doi.org/10.1016/j.physletb.
2018.10.017. arXiv:1807.06459 [hep-ph]

29. V.A. Petrov, A.P. Samokhin, Is there a hollow inside the proton?
Int. J. Mod. Phys. Conf. Ser. 47, 1860097 (2018). https://doi.org/
10.1142/S2010194518600972. arXiv:1801.03809 [hep-ph]
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