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Abstract As part of a programme to develop parton show-
ers with controlled logarithmic accuracy, we consider the
question of collinear spin correlations within the PanScales
family of parton showers. We adapt the well-known Collins–
Knowles spin-correlation algorithm to PanScales antenna
and dipole showers, using an approach with similarities to
that taken by Richardson and Webster. To study the impact
of spin correlations, we develop Lund-declustering based
observables that are sensitive to spin-correlation effects both
within and between jets and extend the MicroJets collinear
single-logarithmic resummation code to include spin correla-
tions. Together with a 3-point energy correlation observable
proposed recently by Chen, Moult and Zhu, this provides
a powerful set of constraints for validating the logarithmic
accuracy of our shower results. The new observables and their
resummation further open the pathway to phenomenological
studies of these important quantum mechanical effects.

1 Introduction

One of the most striking properties of Quantum Mechanics
is that the spin angular momentum of two or more particles
can be created in an entangled state [1]. As a consequence,
when measuring the spin of the individual particles, or more
generally the angular distributions of particle decays and
branchings, long-distance correlations will be found depend-
ing on the degree of entanglement. At colliders, spin correla-
tions are most widely studied in the context of heavy particle
decays (see e.g. Refs. [2–17]). However they play a signif-
icant role also in the pattern of QCD branchings that occur
in jet fragmentation, as studied for example at LEP [18,19].
The quantum mechanical nature of the problem is reflected in
the need to sum coherently over the spin states of intermedi-
ate particles in the jet fragmentation, similarly to the need to
sum coherently over the spins of an electron-positron pair in

a e-mail: alexander@erikkarlberg.dk (corresponding author)

an Einstein–Podolsky–Rosen (EPR) experiment [1]. It was
recognised long ago [20–22] that the core tools for simulat-
ing jet fragmentation, i.e. parton showers, should incorporate
such effects.

In this article we consider collinear spin correlations in
the context of the PanScales programme [23–25] of QCD
parton-shower development. The core aim of the programme
is to develop parton showers with well-understood logarith-
mic accuracy. A first step on that path is to achieve so-
called next-to-leading logarithmic (NLL) accuracy. There are
many senses in which a shower can be NLL accurate and we
choose two broad criteria [24]. The logarithmic phase-space
for QCD branching involves two dimensions, correspond-
ing to the logarithms of transverse momentum and of angle,
which can conveniently be represented using Lund diagrams
[26]. To claim NLL accuracy, we firstly require a shower to
reproduce the correct matrix element for any configuration
of emissions where all branchings are well separated from
each other in the Lund diagram. Secondly, for all observables
where suitable resummations exist (e.g. event shape distribu-
tions), the shower should reproduce the resummation results
up to and including terms αn

s L
n . Here L is the logarithm of

the value of the observable and terms αn
s L

n are NLL in a
context where αn

s L
n+1 terms exponentiate [27].

Until now, the PanScales shower development has been
based on unpolarised splitting functions, as is common in
dipole and antenna showers. According to our accuracy cri-
terion, however, spin correlations are a crucial part of NLL
accuracy, because in configurations with successive branch-
ings at disparate angles, they are required in order to repro-
duce the correct azimuthal dependence of the matrix ele-
ments. The core purpose of this article, therefore, is to start
the implementation of spin correlations, specifically as con-
cerns nested collinear emissions. The algorithm that we will
adopt is based on the well-established proposal by Collins
[21], used notably in the Herwig series of angular ordered
showers [28–31]. Our adaptation for the PanScales antenna
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and dipole showers bears similarities with the implementa-
tion for the Herwig7 dipole shower by Richardson and Web-
ster [32,33] (for work in other shower frameworks, see Refs.
[34–37]). One class of configuration that is not addressed by
the Collins algorithm is that of two or more commensurate-
angle energy-ordered soft emissions followed by a collinear
splitting of one or more of them. Strictly these configura-
tions should also be addressed for NLL accuracy, however
we defer their study to future work.

Whilst the techniques to implement parton-shower spin
correlations are relatively well established, our philosophy
is that a parton shower implementation is only complete if
one has a set of observables, resummations and associated
techniques to validate the implementation. The PanScales
shower development in Refs. [24,25] has been able to draw
on a rich set of event shapes and associated resummed cal-
culations. However for testing spin correlations there was
no such set of observables. Recently, while our work was
in progress, Chen et al. [38] introduced and resummed a
3-point energy-energy correlator that is spin-correlation sen-
sitive. Here we introduce a new set of spin-correlation sen-
sitive observables based on Lund declustering. We extend
the MicroJets collinear resummation code [39,40] to allow
for the treatment of azimuthal structure, so as to obtain αn

s L
n

numerical predictions for all of these observables (in the pro-
cess, confirming the analytic results of Ref. [38]). These new
observables, and our study of their properties, are of potential
interest also in their own right for practical measurements of
spin correlations in jets.

The paper is structured as follows. In Sect. 2 we give
details of the algorithm used to implement spin correlations
in the PanScales showers. We introduce an azimuthal observ-
able based on the Lund plane picture in Sect. 3, and discuss
general features of spin correlations in the strictly collinear
limit.1 In Sect. 4 we validate our implementation and show
that it achieves NLL accuracy. In Sect. 5 we conclude.

2 The Collins–Knowles algorithm and its adaptation to
dipole showers

An efficient algorithm to include spin correlations in angular-
ordered MC generators was proposed by Collins [21] for

1 Reference [24] also used azimuthal observables for testing showers,
however for the case of emissions with commensurate kt that are widely
separated in angle. That is a region dominated by independent soft
emission and is free of spin correlations. The recoil effects in traditional
dipole showers that cause that region to be incorrect at NLL accuracy
can also introduce azimuthal correlations that obfuscate the genuine
spin correlations that we discuss here, as is visible in Appendix D.1,
though an understanding of the logarithmic structure associated with
this effect would require further work. This issue was discussed also in
Ref. [32].

final-state showers and subsequently extended by Knowles
[22,41,42] to include initial-state radiation and backwards
evolution. It is based on the factorisation of the tree-level
matrix element in the collinear limit, and can be generalised
to include spin correlations in the matching of the parton
shower to a hard matrix element, between initial and final
state radiation, as well as in decays [43].

The Collins–Knowles algorithm can be readily applied to
showers that first generate a full branching tree with inter-
mediate virtualities and momentum fractions at each stage
of the splitting, and then only subsequently assign azimuthal
angles and reconstruct the full event kinematics. However,
in dipole showers the azimuthal angle needs to be chosen at
each stage of the branching, because it affects the phase space
for subsequent branchings. This requires a reordering of the
steps in the Collins–Knowles algorithm. Furthermore, in an
angular-ordered shower, it is straightforward to identify the
mapping between the shower kinematics and the azimuthal
angle as needed in the Collins–Knowles algorithm. In dipole
(and antenna) showers the corresponding mapping can be
less straightforward. In this section we therefore introduce
a modified version of the Collins–Knowles algorithm that is
applicable to any parton shower, including those of the dipole
or antenna kind. We first develop a collinear branching for-
malism in terms of boost invariant spinor products and then
show how to apply these in the context of dipole and antenna
showers.

Our work here is not the first to adapt the Collins–Knowles
algorithm to showers with dipole-like structures, see for
example Refs. [32–35]. Our approach is inspired by and bears
a number of similarities with that by Richardson and Webster
[32,33], as used in the Herwig7 [31] framework. That algo-
rithm continuously boosts between the lab frame and frames
specific to each individual collinear splitting, where individ-
ual Collins–Knowles steps may be applied directly. In our
implementation of the algorithm no such boost is necessary,
as our expressions are formulated in terms of boost-invariant
spinor products.

2.1 Collinear branching amplitudes

To determine the appropriate azimuthal distribution of
shower branchings, the Collins–Knowles algorithm makes
use of collinear branching amplitudes Mλaλbλc

a→bc for a split-
ting a → bc with spin labels λ = ±1. As an example,
consider the situation of Fig. 1, where an unpolarised parton
0 emits a gluon 2, which subsequently splits into a q ′q̄ ′ pair,
2 → 34. In the collinear limit, the azimuthal distributions
are determined by the factorised matrix element

|M |2 ∝ Mλ0λ1λ2
0→12 M∗λ0λ1λ

′
2

0→12 Mλ2λ3λ4
2→34 M∗λ′

2λ3λ4
2→34 , (1)
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Fig. 1 Two subsequent collinear splittings 0 → 12, 2 → 34

where summation over repeated spin indices is implied.2

Ultimately we will test our approach in the PanScales shower
framework, which currently only supports massless particles
in its kinematic maps. Accordingly, we work in the mass-
less quark limit, though the extension to massive quarks is
straightforward, as discussed in Ref. [32]. In the massless
quark limit, the branching amplitudes may be written as

Mλaλbλc
a→bc = 1√

2

gs
pb·pcF

λaλbλc
a→bc (z)Sτ (pb, pc), (2)

where the functions Fλaλbλc
a→bc (z), listed in Table 1, are the

(colour-stripped) helicity-dependent Altarelli–Parisi split-
ting amplitudes that depend on the collinear momentum frac-
tion z carried by parton b. They are related to the usual unreg-
ularised splitting functions through3

Pa→bc(z) ∝ 1

2

∑

λa ,λb,λc

[
Fλaλbλc
a→bc (z)

]2
. (3)

The function Sτ (pb, pc) is a spinor product, where the label
τ = ±1 indicates the sign of the complex phase associated
with the spinor product. It is given by

τ = λ̃b + λ̃c − λ̃a where λ̃ =
{

λ/2 for a quark,

λ for a gluon.
(4)

The derivation of these branching amplitudes can be found in
Appendix A, together with our convention for spinor prod-
ucts.

Inserting an explicit expression for the spinor product,
Eq. (2) may alternatively be written as

Mλaλbλc
a→bc = τ

gs√
pb·pcF

λaλbλc
a→bc (z)eiτφ, (5)

where φ is the azimuthal angle as defined in a reference
frame where the parent is along a specific (e.g. z) direction.
Eq. (5) is useful in the context of a parton shower only when

2 Note the separate λ2 and λ′
2 indices in the amplitude and its complex

conjugate: this reflects the independent coherent sums over intermediate
particle spins in the amplitude and its conjugate.
3 In order to get the full unregularised splitting functions an appropriate
factor of CA, CF or TR has to be included.

this azimuthal angle is used to parameterise its phase space
directly. This can be the case when the azimuthal variable
φ for the shower’s phase space generation is defined with
respect to a fixed azimuthal reference direction. However, in
dipole or antenna showers, φ usually represents the azimuthal
direction of the transverse momentum with respect to the
plane of the dipole or antenna parent partons. As the Pan-
Scales showers are of the dipole/antenna type, we will use
Eq. (2) directly, and evaluate the spinor products numerically
using Eq. (39). This choice guarantees that the implementa-
tion of the algorithm remains independent of the type of par-
ton shower it is applied to. However one could also choose
to track the relation between the shower azimuths and the
collinear azimuths, as done in Refs. [32,33].

2.2 The algorithm

The purpose of the Collins–Knowles algorithm is to dis-
tribute the azimuthal degrees of freedom according to Eq. (1)
for an arbitrary number of collinear branchings, while main-
taining linear complexity in the number of particles. To that
end, a binary tree is tracked, where the nodes correspond to
collinear shower branchings. Figure 2 shows an example of
a shower history and the corresponding binary tree.

The algorithm is initialised from the hard scattering ampli-
tude Mλ1λ2

hard , where the outgoing hard partons 1, 2 have
spin indices λ1, λ2. The formalism is not limited to a par-
ticular number of final-state partons, but for readability we
restrict ourselves to a two-body hard scattering. Each particle
i (whether final or intermediate) is associated with a so-called

decay matrix, Dλiλ
′
i

i with two spin indices. At the start of the

shower the decay matrices are initialised to Dλ1λ
′
1

1 = δλ1λ
′
1

and Dλ2λ
′
2

2 = δλ2λ
′
2 .

The core of the algorithm consists of the rules for generat-
ing an azimuthal angle and adding nodes to and updating the
binary tree, as well as a subset of the decay matrices, each
time the shower adds an emission to the event. The shower
first selects a branching dipole or antenna and generates an
ordering scale and momentum-sharing variable4 according
to the regular spin-summed shower dynamics, in which the
azimuthal dependence does not appear.5 The branching par-
ton will correspond to one of the terminal nodes in Fig. 2, as
discussed in further detail below, and we refer to the node as
an , where the n index labels the depth of the node within the

4 The exact definitions of which depend on the shower implementation
at hand.
5 This may no longer be the case when accounting for subleading colour
effects, for example in the NODS method of Ref. [25]. That specific
algorithm may reject an emission after its azimuth has been chosen.
When combining it with our spin-correlation approach, we first choose
the azimuth according to the spin-correlation algorithm, and then apply
the colour rejection step.
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Table 1 The helicity-dependent Altarelli–Parisi splitting amplitudes Fλaλbλc
a→bc (z), where z = Eb/Ea

λa λb λc q → qg g → qq̄ g → gg

λ λ λ 1√
1−z

0 1√
z(1−z)

λ λ −λ z√
1−z

−z z3/2√
1−z

λ −λ λ 0 1 − z (1−z)3/2√
z

λ −λ −λ 0 0 0

Fig. 2 An example of a
Collins–Knowles binary tree,
and a corresponding shower
history. The root node
corresponds with the hard
scattering matrix element.
Nodes that correspond to
partons that have already split
store a decay matrix and a
branching amplitude. Nodes that
have not split only store a
Kronecker delta decay matrix

Mλ1λ2
hard

Dλ1λ′
1

1

Mλ1λ5λ6
1→56

Dλ2λ′
2

2

Mλ2λ3λ4
2→34

δλ3λ′
3

δλ4λ′
4

δλ5λ′
5

Dλ6λ′
6

6

Mλ6λ7λ8
6→78

δλ7λ′
7

δλ8λ′
8

Mhard 12
3

4
5

6
7

8

tree. Then, to determine the azimuthal angle, the algorithm
proceeds with the following rejection-sampling procedure:

1. Compute the spin-density matrix ρ
λan λ′

an
an as follows:

(a) Starting from parton an , trace the binary tree back
to the root parton node a0 ∈ [1, 2]. This results in
a sequence a0 . . . an of parton indices, along with a
sequence of complementing parton indices b0 . . . bn

such that b0 is the other root parton and ai and bi have
common parent node ai−1.

(b) Compute the spin-density matrix for the root node,

ρ
λa0 λ′

a0
a0 = 1

tr(·)D
λb0 λ′

b0
b0

Mλa0 λb0
hard M∗λ′

a0
λ′
b0

hard , (6)

where the denominator is the trace of the numerator.
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(c) Iteratively for i ∈ {1, . . . , n}, compute

ρ
λai λ

′
ai

ai = 1

tr(·) ρ
λai−1 λ′

ai−1
ai−1 Mλai−1 λai λbi

ai−1→ai bi
M

∗λ′
ai−1

λ′
ai

λ′
bi

ai−1→ai bi
D

λbi λ
′
bi

bi
. (7)

2. Repeat the following until a value of φ is accepted:

(a) Sample a value of φ uniformly and, using the
other shower variables, construct the post-branching
momenta pan+1 and pbn+1 using the usual kinematic
mapping of the parton shower.

(b) Compute the branching amplitude Mλan λan+1 λbn+1
an→an+1bn+1

using Eq. (2).
(c) Compute the acceptance probability

paccept = 1

N
ρ

λan λ′
an

an Mλan λan+1λbn+1
an→an+1bn+1

M∗λ′
an λan+1λbn+1

an→an+1bn+1
,

(8)

where N is a φ-independent normalisation factor to
ensure paccept < 1.6

(d) Accept φ with probability paccept.

3. Update the binary tree

(a) Insert new nodes an+1 and bn+1 with parent node
an and initialise their decay matrices to a Kronecker
delta.

(b) Store Mλan λan+1λbn+1
an→an+1bn+1

in node an .
(c) Iteratively for i ∈ {n, . . . , 0}, recompute and store

the updated decay matrices

Dλai λ
′
ai

ai = 1

tr(·)D
λai+1 λ′

ai+1
ai+1 D

λbi+1 λ′
bi+1

bi+1
Mλai λai+1 λbi+1

an→an+1bn+1
M

∗λ′
ai

λ′
ai+1

λ′
bi+1

an→an+1bn+1
.

(10)

Note that the identification of the parton that branches is
not without subtleties. We have assumed that it is always one
of the terminal nodes in Fig. 2. To understand why this is a
non-trivial choice, suppose that we have a dipole stretching
between particles 3 and 7. When the left-hand end of the
dipole emits a gluon (which we label 9), our spin-correlation
algorithm always views this as a g → gg splitting of particle
3. However if the emitted gluon is at large angle relative to
the 34 splitting, i.e. θ93 � θ34 the gluon effectively sees the
coherent charge of 3 and 4 and could more properly be viewed
as being emitted from 2 (which unlike 3 is a quark). Because
of the interplay between the shower ordering variable and

6 One can make use of the fact that the spin-density matrix is hermitian
and has trace 1 to find, for instance

N = Mα λan+1 λbn+1
an→an+1bn+1

M∗α λan+1 λbn+1
an→an+1bn+1

(9)

+ 2
∣∣∣ρα (-α)

an

∣∣∣
∣∣∣Mα λan+1 λbn+1

an→an+1bn+1
M∗(-α) λan+1 λbn+1

an→an+1bn+1

∣∣∣,

where α = 1 or −1.

emission kinematics, this occurs only for situations in which
9 is soft relative to particle 3, and also soft relative to any of
the parents of 3. Inspecting Table 1, one sees that soft gluon
emission (the z → 1 limit) leads to splitting amplitudes that
are independent of the flavour of the parent, a, and that are
non-zero only for λa = λb, i.e. they are diagonal in the spin
space relating the parent and its harder offspring. This means
that in the limit where emission 9 could conceivably have
been emitted from 2, it is immaterial whether we actually
view it as being emitted from 2 or instead organise the tree
as if it had been emitted by 3. The latter is considerably
simpler and so it is the solution that we adopt.

3 Collinear spin correlations: expectations and
measurement strategy

In this section, we start (Sect. 3.1) by examining how the spin
correlations translate into azimuthal correlations between the
planes of separate collinear branchings, both within a single
jet and across pairs of jets. We do so at fixed order, O (

α2
s

)
,

where it is trivial to define the observables. We then propose
(Sect. 3.2) a set of observables that are suitable for use at all
orders. They exploit a Lund diagram [26] representation of
individual jets [44]. Next (Sect. 3.3), we recall the definition
of the EEEC spin-sensitive observable, which was proposed
and resummed in Ref. [38]. Finally (Sect. 3.4), we use these
observables to study the impact on the azimuthal correlations
coming from the all-order resummation of collinear spin-
correlation effects.

3.1 Azimuthal structure

Each collinear branching in an event can be associated with
the plane that contains the momenta of the two offspring
partons. The simplest observable one may think of to study
spin correlations is the azimuthal difference, 	ψ , between
the planes defined by two distinct branchings. Here we will
consider two broad cases: intra-jet correlations, i.e. between
the planes of two branchings within a single jet, for example
between the plane of the 1 → 56 splitting and the plane
of the 6 → 78 splitting in Fig. 2; and inter-jet correlation,
i.e. between the planes of two splittings in separate jets, for
example between the plane of the 1 → 56 splitting and the
plane of the 2 → 34 splitting in Fig. 2.7 We will refer to
the two azimuthal differences as 	ψ12 and 	ψ11′ where the
1 and 2 labels refer to the first and second splitting within a
given jet and the 1′ label refers to the first splitting in a distinct
jet. The 	ψ12 and 	ψ11′ observables are straightforward to
define at O (

α2
s

)
relative to the hard scattering and it is this

7 That particular case, with a qq̄ hard process, would have zero corre-
lation, but the correlation is non-zero for a gg hard process.
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�n1 �n2

Δψ12

P1

P2

Δψ12

�p1

�p3

�p2

�p5

Fig. 3 Azimuthal angles are defined between successive splitting
planes for the 1 → 23 splitting, P1 ⊃ { 
p2, 
p3} and the 2 → 45
splitting, P2 ⊃ { 
p4, 
p5}. The figure also depicts the vectors normal to
the two planes, 
n1 and 
n2

situation that we will concentrate on here. In the 	ψ12 case,
the splitting planes and the azimuthal angle between them
are illustrated in Fig. 3.

At second order in the coupling, and in the collinear
limit, the cross sections differential in the intra- and inter-jet
observables 	ψ12, respectively 	ψ11′ , take the simple form
(see e.g. section 2.3 in Ref. [32], or the example calculated
in Appendix B)

dσ

d	ψi j
∝ a0

(
1 + a2

a0
cos(2	ψi j )

)

= a0
(
1 + Ai (zi )Bj (z j ) cos(2	ψi j )

)
, (11)

where the coefficients a0 and a2 depend on the observ-
able, the final state under consideration, and the momen-
tum fractions associated with the first (zi ) and second split-
ting (z j ). If the splittings are restricted to have opening
angles greater than e−|L|, with |L| � 1, and ln z1 and
ln z2 are both of order 1, the a0 and a2 coefficients are
dominated by terms α2

s L
2, i.e. they belong to the single-

logarithmic set of terms that we aim to control for NLL
accuracy. For large L , at this order, the ratio a2/a0 is
independent of αs L , and so Eq. (11) can always be writ-
ten in terms of the functions A(z) and B(z) given in
Table 2.

In Fig. 4 we show a contour plot of the ratio a2/a0 =
A(z1)B(z2), for our intra-jet observable, as a function of
z1 (x-axis) and z2 (y-axis) for a quark-initiated jet. In this
case there are only two non-trivial final states to consider,
namely q → qg(g → q ′q̄ ′) and q → qg(g → gg), while
channels such as q → q(q → qg)g that do not involve
an intermediate gluon have vanishing spin correlations. In
the case of q → qg(g → q ′q̄ ′), we see that the coefficient
a2 is negative, corresponding to an enhancement when the
q → qg and g → q ′q̄ ′ planes are perpendicular. The ratio
a2/a0 peaks at −100% around z1 = 0 and z2 = 0.5, i.e.
when the gluon is soft and the quark–antiquark pair share

the energy equally.8 The spin correlations stay large even
for moderate values of z1 and z2 although they vanish com-
pletely for z1 → 1 (soft quark emerging from the q → qg
splitting) and for z2 → 0 or z2 → 1 (either of the secondary
q ′ or q̄ ′ becomes soft). Similarly, for q → qg(g → gg),
the ratio peaks at z1 = 0 and z2 = 0.5 but the correlation
has the opposite sign to the g → qq̄ case, which implies an
enhancement when the q → qg and g → gg splittings are
in the same plane. The magnitude of a2/a0 is substantially
smaller, with a peak at 1/9. The spin correlations fall off
more sharply than in the g → q ′q̄ ′ case, in particular as a
function of z2, and also vanish for z1 → 1 and for z2 → 0
or z2 → 1.

The overall picture is very similar for a gluon-initiated
jet, shown in Fig. 5, although the dependence on z1

is moderately stronger for both g → q ′q̄ ′ and g →
gg secondary splittings, which can be understood from
Table 2.

Turning now to the correlations between azimuthal angles
in two distinct jets, they are zero for a γ ∗ → qq̄ , but non-
zero for H → g1g1′ , so we consider only the latter. In this
case we examine the azimuthal difference 	ψ11′ between
the splitting planes of the two primary emissions. There are
three possible final states given by {g1 → qq̄, g1′ → qq̄},
{g1 → qq̄, g1′ → gg}, and {g1 → gg, g1′ → gg}. In
Fig. 6 we show the ratio a2/a0 as a function of the energy
fractions z1 and z1′ . In all three cases the ratio is peaked when
z1 = z1′ = 0.5 and is largest in magnitude when both gluons
split into quark–antiquark pairs. When only one gluon splits
into a quark–antiquark pair the ratio becomes negative and
−11.1% around the peak. When both gluons split into gluons
the spin correlations almost vanish. In all three cases the ratio
vanishes when either of the energy fractions approach 0 or
1.

3.2 Definition of spin-sensitive Lund observables

The observables discussed so far start at O(α2
s ) relative to

the hard scattering, but care has to be taken in order to
define them in an infrared safe way beyond that order. To
facilitate a definition which can also be directly applied in
experimental analyses, we make use of the procedure from
Ref. [44] to build Lund diagrams [26] from individual jets.9

We remind the reader that the Lund jet plane is constructed
through a declustering of a C/A-jet [45,46]. The primary
Lund plane is constructed by following the harder branch at

8 z1 = 0 does not satisfy our requirement of finite ln z1, but it is indica-
tive of the behaviour that we will see if we take moderately small values
of z1 while keeping finite ln z1. Similarly for the rest of the discussion.
9 In Ref. [44] an azimuthal variable ψ was already defined. Azimuthal
differences computed using this ψ coincide with the definition that we
give here in the collinear limit, but turn out to have an undesirable
dependence on the rotation of the initial hard event.
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Table 2 The functions A(z) and B(z) entering Eq. (11) for the intra-
and inter-jet observables 	ψ12, 	ψ11′ , for all channels at second order.
See e.g. Appendix B for an exemplified derivation. Here, for a 1 → 23
splitting, the variable z is the momentum fraction carried away by par-
ton 2. Representative diagrams at O (

α2
s

)
are shown on the right. In

those diagrams, the splitting in black is the one associated with the cor-

responding function A(z) or B(z). The partons shown in grey serve as
an example of what the rest of the branching history can look like, but
they do not matter in choosing the function itself, since the contributions
factorise in the final result, Eq. (11). Configurations that do not involve
an intermediate gluon have vanishing spin correlations

Δψ12

Primary splitting

q → qg A(z) = 2z
1+z2

zMhard

z

g → gg A(z) = z2

(1−z(1−z))2

zMhard

z

Secondary splitting

g → q′q̄′ B(z) = −2z(1−z)
1−2z(1−z)

Mhard
z

g → gg B(z) = z2(1−z)2

(1−z(1−z))2
Mhard

z

Δψ11′

g → q′q̄′ A(z) = B(z) = −2z(1−z)
1−2z(1−z)

zMhard

g → gg A(z) = B(z) = z2(1−z)2

(1−z(1−z))2

zMhard
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Fig. 4 Size of the spin correlations, at fixed order O(α2
s ), for a quark-

initiated jet. We consider the azimuthal difference 	ψ12 between the
splitting planes of a primary (with gluon momentum fraction z1) and
secondary (z2) branching, separated by channel. The colour scale indi-
cates the relative size a2/a0 of the correlations, where 	ψ12 is dis-

tributed proportionally to a0 + a2 · cos(2	ψ12). Note the use of z1 as
the gluon momentum fraction in the q → qg splitting, while for ampli-
tude expressions in the text, z often refers to the quark momentum
fraction
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Fig. 5 Same as Fig. 4, for a gluon-initiated jet. Note that the colour scale is spanning the same range as in Fig. 4
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Fig. 6 Same as Figs. 4 and 5, for a H → gg event, where we consider
the azimuthal difference 	ψ11′ between the splitting planes of the two
primary branchings on each side of the event. Note the different scale of
the colour bar for the inter-jet observable: here, the spin correlations are

largest for the quark-only final-state (top left) which peak at +100%,
mid-range for the mixed quark-gluon final state (top right) peaking at
−11.1%, and much smaller for the all-gluon final state (bottom), with
a peak at +1.23%
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each step of the declustering. If at some point one instead
follows a softer branch and then all its subsequent harder
branches, those subsequent branches populate a secondary
Lund plane.

The procedure that we describe here can be applied at
hadron colliders and e+e− colliders (or also in the decay of
heavy particles at hadron colliders, for example in their rest
frame). The first branching within a jet is identified by tak-
ing all declusterings on the primary Lund plane that satisfy
z larger than some zcut, and selecting the one with largest
relative kt .10 The second branching within a jet is identi-
fied by taking all declusterings on the secondary Lund plane
associated with the first branching, and then again identify-
ing those that satisfy z larger than some zcut and selecting
the one with largest relative kt . One may choose to use dif-
ferent zcut values for the first and second branchings within
a single jet.11 Given a choice of zcut, one may then study
the results differentially in the two z values, so as to obtain
plots similar to Figs. 4, 5 and 6. Here, however, we will con-
sider just results integrated over z. Note that in Sect. 3.1,
we investigated the structure for 0 < z < 1, while in the
Lund construction we always have z ≤ 1/2, because z is
the momentum carried by the softer offspring (and the sec-
ondary Lund plane is the one associated with further emis-
sion from the softer offspring). So, for example, in Sect. 3.1
we could meaningfully discuss a q → qg splitting where
the quark was soft (z1 close to 1), followed by a splitting
of the gluon. In contrast, in the Lund declustering picture,
the quark in such a case will be assigned to the secondary
plane, and the second splitting that we study will necessar-
ily be a further q → qg splitting. The reason for adopt-
ing this procedure in Lund declustering is that experimen-
tally one cannot observe the flavour of the underlying par-
ton.12

10 In the pp case, z, kt and the azimuth φ for a branching were defined
in Ref. [44]; in our e+e− studies here, for an i → jk branching, we use
z = min(| 
p j |, | 
pk |)/(| 
p j | + | 
pk |), kt = min(| 
p j |, | 
pk |) sin θ jk and we
discuss the definition of the azimuths below.
11 Instead of selecting the highest-kt emission that satisfies z > zcut ,
one could instead take the first that appears in the declustering. That
would have made the procedure more similar to the modified mass-drop
tagger [47] or SoftDrop with β = 0 [48]. At the logarithmic accuracy
that we discuss here, both procedures should yield equivalent results.
Selecting the highest-kt emission without a zcut would be similar to
Dynamical Grooming [49] and would involve a double rather than single
logarithmic resummation structure [50]. The use of two declusterings is
also part of a range of top taggers, e.g. Refs. [51–55], theoretical aspects
of which are further discussed in Ref. [56].
12 We will still show results below classified according to the flavour
channel. This is useful in terms of diagnostics, and it is possible because
the parton shower does contain information about flavours. Strictly
speaking, that flavour information for massless quarks is infrared unsafe
[57] within the Cambridge/Aachen algorithm. The infrared-safe flavour
algorithm of Ref. [57] cannot be applied in conjunction with Lund
declustering, because it adapts the kt jet algorithm rather than the Cam-

To track the azimuthal angles in the e+e− case within the
Lund declustering, we adopt a procedure that differs from that
introduced in Ref. [24] (supplemental material), because we
have found that the latter results in differences in azimuthal
angles that are not invariant under rotations of the event.
We start with an initial azimuthal angle ψ0 = 0 (the par-
ticular choice has no impact on the differences of azimuthal
angles that we eventually study). Then, working through the
declusterings in the Cambridge/Aachen sequence, for each
declustering i we:

1. Compute the normalised cross product, n̂i = 
pi,a ×

pi,b/| 
pi,a × 
pi,b|, between the two pseudojets, 
pi,a and

pi,b that result from the declustering, where 
pi,a is the
harder of the two.

2. Compute the signed angle 	ψ(i−1,i) between n̂i−1 and
n̂i where 	ψ(i−1,i) is positive if

(
n̂i−1 × n̂i

) · 
pi,a > 0
and negative otherwise, and n̂i−1 is the normalised cross
product obtained for the splitting that produced the parent
parton.

3. Compute ψi = ψi−1 + 	ψ(i−1,i).

The variable 	ψ12 is now defined as the difference between
the ψ obtained for the primary splitting and secondary split-
tings as selected above (which may not follow in immedi-
ate sequence in the C/A declustering). For the case of two
successive splittings, this is equivalent to the 	ψ12 illus-
trated in Fig. 3. Likewise we define 	ψ11′ as the ψ differ-
ence between the highest-kt primary passing the z > zcut

requirement inside each of the two different jets. The Lund
diagrams are illustrated at second order in Figs. 7 and 8.

In practice, in our e+e− implementation of the 	ψ12

observable, we cluster the event back to two jets and analyse
each jet independently. Our final distributions will be nor-
malised to the number of events, rather than the number of
jets.

3.3 Recall of 3-point energy-correlator observable

Recently Chen, Moult and Zhu proposed 3-point energy cor-
relators (EEEC) as suitable observables for measuring the
quantum interference effects associated with spin correla-
tions [38]. For concreteness, we use the following definition
for the EEEC,

bridge/Aachen algorithm. However in the limit that we will consider
for our logarithmic tests, αs → 0 with αs L fixed, if the logarithm of the
infrared cutoff is of the order of −|L|, the infrared unsafe contributions
obtained with the Cambridge/Aachen algorithm vanish, because they
scale as α2

s L .
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Fig. 7 For the intra-jet definition of the Lund observable 	ψ12, we
consider the primary q → qg1 and secondary splittings g1 → g1g2
(left) and g1 → q ′q̄ ′ (right). We apply a cut (dashed lines), zcut , on the
momentum fraction used to identify the primary and secondary split-

tings. The red (blue) dots indicate that the azimuthal angles in those
splittings are correlated, with the preferred value of 	ψ12 being in-
plane (out-of-plane)

1

σtot

d3�

d	ψdθSdθL
=

〈
N∑

i, j,k=1

8Ei E j Ek

Q3 δ
(
	ψ − φ(i j)k)

)

× δ
(
θS − θi j

)
δ
(
θL − θ jk

)
〉

(12)

where σtot is the total cross section, Q is the event centre-of-
mass energy, θmn is the opening angle between two emissions
m and n and φ(i j)k is the angle between the plane that contains
the pi + p j and pk directions and the plane that contains the
pi and p j directions. The average is carried out across events,
and in each event the sum over each of the i , j and k runs
over all particles in the event, 1 . . . N . One may also apply
the definition to particles in a single jet of energy Ejet, in
which case one would replace 8/Q3 with 1/E3

jet. Refs. [38,
58] provided techniques for resumming such observables,
and below we will compare our resummation results for the
EEEC to theirs.

3.4 MicroJets resummation of spin correlations and
comparison to fixed order

Although the above fixed-order analysis gives a sense of
the overall structure of spin correlations in quark- and gluon-
initiated jets, there are important effects which can only be
captured by all-order resummation.

To our knowledge, no analytical result exists for the loga-
rithmic structure of observables sensitive to spin correlations,
except for the recently computed all-order result [38] for the
3-point energy correlator, reproduced in Sect. 3.3. In order
to enable comparisons to other observables we have imple-
mented a numerical resummation, henceforth called the toy
shower, based on the MicroJets code [39,40,59].

ln kt

η
g1

g2

Mg g

g2 g1

Fig. 8 For the inter-jet definition of the Lund observable 	ψ11′ , to be
used in H → gg events, we consider two primary splittings in different
hemispheres

The toy shower is ordered in an angular-type evolution
variable t ,

t (θ, pt ) =
∫ 1

θ

dθ ′

θ ′
αs(Eθ ′)

π
, (13)

where E is the energy of the hard parton initiating the shower,
and θ is an angular scale. For a 1-loop running of the strong
coupling αs(ptθ), the scale t is related to the opening angle
of the splitting θ by

t = 1

β0
ln

(
1

1 + αs
π

β0 ln θ

)
= 1

β0
ln

(
1

1 + λ
π
β0

)
, (14)

where β0 = 1
6 (11CA − 4TRn f ), and where we have intro-

duced λ = αs ln θ . Single-logarithmic terms of the form
(αs ln(1/θ))n can then be resummed by solving correspond-
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ing DGLAP-style equations. Unlike in a real parton shower,
there is no kinematic map associated with the emissions, and
crucially it thus does not generate any spurious higher-order
terms. Since the toy shower is angular ordered, the Collins–
Knowles algorithm can readily be applied to it, and we can
make predictions for angular observables correct at NLL in
the strongly ordered limit. The toy shower can also provide
fixed order predictions at O(α2

s ) in the collinear limit.

3.4.1 Results for Lund declustering observables

We start by evaluating the impact of the single-logarithmic
resummation on the size of the spin correlations, a2/a0, for
the observables 	ψ12 and 	ψ11′ introduced above. In order
to do so, we consider the distributions of 	ψ12 and 	ψ11′
generated by the toy shower for a value of tmax = 0.5

π
, which

corresponds to λ ≈ −0.3743 for a 1-loop running of the
strong coupling, see Eq. (14), which is compatible with the
range of αs and L accessible at the LHC (cf. table 1 of Ref.
[25]). We then apply the Lund declustering procedure: we
identify a splitting as primary or secondary only if it passes
the cut z > zcut. We then determine the coefficients a0 and
a2 from the distribution of the observable.

Figure 9 depicts the ratio a2/a0 at fixed second order (FO)
and all orders (AO) for the case of 	ψ12 in γ ∗ → qq̄ events
(quark-initiated intra-jet azimuthal angle), for five values of
zcut ∈ {0.05, 0.1, 0.2, 0.3, 0.4} (the fixed order extends to
zcut = 0, however the resummation cannot be extended to
that region without also addressing soft logarithms). The size
of the spin correlations is shown separately for the two dif-
ferent branching histories q → qg(g → gg) in Fig. 9a,
and q → qg(g → q ′q̄ ′) in Fig. 9b. The rest channel,
characterised by the absence of an intermediate gluon (e.g.
q → gq(q → gq) at second order, and other possible his-
tories at all orders), is not shown as it does not produce cor-
relations.13 The ratio a2/a0 is also given for the sum of all
channels in Fig. 9c.

Turning on the IR cut, zcut > 0, first leads to an increase
in the absolute size of |a2/a0|, with the large-z2 contribu-
tions in Fig. 4 driving the spin correlations. As zcut con-
tinues to increase, the intermediate gluon becomes harder
and spin correlations decrease again up to zcut = 0.5.14 We
observe that the size of the spin correlations agrees between
the fixed order and the resummed, all-order case, for small
values of zcut ∼ 0, in the separate channels. Once we turn
zcut on, the resummation starts diluting the spin correlations,
as intermediate, soft gluons can be emitted with values of

13 Note that the rest channel does contribute to the normalisation of the
sum of all channels.
14 In phenomenological applications, one would optimise the values
of the cuts separately, zcut,1 and zcut,2, to have a maximal signal-to-
background ratio.

z < zcut, transporting away some of the spin information
before it is propagated to the identified secondary splitting.
Thus, the size of the correlations in the resummed prediction
decreases with respect to the fixed-order calculation, with the
resummed |a2/a0| being about 88% of the fixed-order value
at zcut = 0.4.

If one considers the sum of all channels, given in Fig. 9c,
i.e. without the inclusion of any flavour-tagging, the relative
size of the resummed correlations starts at about 95% of their
fixed-order counterpart at small values of zcut ∼ 0. This
decrease finds its source in the higher relative contribution
from possible branching histories without correlations – what
we call the rest channel – in all-order events: indeed, there is
only one such possible history at second order (q → q(q →
qg)g), where the emission of the first gluon is hard and the
declustering follows the soft quark branch to the secondary
splitting). This rest channel contributes to a0 but not to a2,
thus the additional damping of |a2/a0| at small values of zcut

in

(
a2

a0

)

all
= a2,q′q̄′ + a2,gg

a0,q′q̄′ + a0,gg + a0,rest
. (15)

Similar results are shown in Fig. 10 for the gluon-initiated
(H → gg) intra-jet observable 	ψ12. While the spin cor-
relations are smaller when compared to the quark-initiated
case presented above, we find that they are also less sensitive
to resummation: the all-order correlations |a2/a0| are about
O(95%) of their fixed-order counterpart at zcut = 0.4 for the
separate channels, andO(92.5%) for the sum of all channels.

Finally, fixed- and all-order predictions are shown in
Fig. 11 for the inter-jet observable 	ψ11′ in H → g1g1′
events. The correlations |a2/a0| are very small in each sep-
arate channel, with the exception of the all-quark final state
g1 → qq̄, g1′ → q ′q̄ ′. Because the largest cross section
comes from the all-gluon final state, where the correlations
|a2/a0| � 1% are extremely small, and because of partial
cancellations between different channels, the correlations in
the sum of all channels are almost vanishing. Since the effect
is so small, there is a large statistical uncertainty on the value
of the coefficient a2 fitted from the Monte-Carlo runs of the
toy shower. It still gives results consistent with the observa-
tions made above. Additionally, we note that the inter-jet spin
correlations are also somewhat more sensitive to resumma-
tion than for the intra-jet correlations in 	ψ12 studied above.

3.4.2 Validation and results for energy correlators

As part of the validation of the MicroJets code, we also com-
pare it to the analytic resummation of the EEEC presented
in Ref. [38]. While in the latter reference, the spin correla-
tions in the EEEC were shown differentially as a function
of the opening angle θS of the secondary (small) splitting
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Fig. 9 Relative size of the spin correlations a2/a0 for 	ψ12, in γ ∗ → qq̄ (quark-initiated jet), from a numerical resummation (AO, blue triangles),
compared to the second-order result (FO, orange curve) for a the gg, b the q ′q̄ ′ and c all channels
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Fig. 10 Same as Fig. 9, for H → gg (gluon-initiated jet)

and fixed opening angle θL of the primary (large) splitting,
here we show the results integrated over angles to enhance
the statistics. Inspired by Ref. [38] we choose the following
integration bounds on the opening angles of the primary and
secondary branchings15:

√
0.1 < θL < 1,

0.01 < θS < 0.1, (16)

and take αs = 0.0868 corresponding to a hard scale of
roughly 1 TeV. The toy shower and analytic resummation
results [38] are shown in Fig. 12, summed over all final
branching flavour channels, demonstrating good agreement.
The figure also shows the second-order expansion, nor-
malised so that its mean value coincides with the resummed
result, illustrating a modest reduction in the degree of spin
correlations from the resummation, which is similar to our
findings above with the Lund declustering observables.

15 Cf. figure 3 in Ref. [38].

4 Numerical validation of spin correlations within
PanScales showers

In this section, we validate the PanScales showers against var-
ious numerical predictions. In particular we want to demon-
strate that the algorithm described above reproduces fixed-
order matrix elements in the strongly ordered limit and that
it produces the correct NLL distributions at all orders. Here,
we first provide a brief summary of the PanScales showers.
A comprehensive description can be found in Ref. [24].

The PanScales showers fit into two categories, namely
PanLocal which features local recoil, and PanGlobal which
features global recoil. The PanLocal mapping for the emis-
sion of pk from a dipole { p̃i , p̃ j } is given by

pk = ak p̃i + bk p̃ j + k⊥, (17a)

pi = ai p̃i + bi p̃ j − f k⊥, (17b)

p j = a j p̃ j + b j p̃ j − (1 − f )k⊥, (17c)

where k⊥ = k⊥,1 cos(ϕ) + k⊥,2 sin(ϕ) and −k2⊥ = k2
t . The

coefficients of the map are functions of the ordering variable,
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Fig. 11 Size of the correlations a2/a0 in 	ψ11′ for H → gg events (inter-jet). Results are shown for a the gggg, b the ggqq̄ , c the qq̄qq̄ and d
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v, and an auxiliary variable η̄,

v = kt
ρ
e−β|η̄|, ρ =

(
sı̃ sj̃
Q2sı̃ j̃

) β
2

,

ak =
√

sj̃
sı̃ j̃ sı̃

kt e
+η̄, bk =

√
sı̃

sı̃ j̃ sj̃
kt e

−η̄, (18)

where sı̃ j̃ = 2 p̃i · p̃ j , sı̃ = 2 p̃i · Q, and Q is the total
event momentum. The quantity β parameterises the choice
of ordering variable. The PanGlobal map drops the k⊥-
contributions to pi and p j , as well as the terms bi and a j ,
and instead boosts and rescales the full event. The PanLocal
shower comes in a dipole variant, where f = 1 and every soft
eikonal is reproduced by the sum of two opposite branching
kernels, and in an antenna variant, where

f = f (η̄) = e2η̄

1 + e2η̄
, (19)

and every eikonal is instead contained in a single contribu-
tion. We will show results for the PanGlobal shower with
β = 016 and the PanLocal dipole shower with β = 1/2
and in some places also the PanLocal antenna shower with
β = 1/2.

4.1 Validation at second order

The first essential test to carry out is at fixed O(α2
s ) since this

is the first order at which spin correlations are non-vanishing.
We compare the collinear branching amplitudes presented
in Sect. 2.1 against the exact O(α2

s ) tree-level matrix ele-
ment, taking the limit of strongly ordered angles for fixed
z1 and z2. We then proceed to validate our adaptation of
the Collins–Knowles algorithm by applying it at fixed order
in the PanScales showers and comparing against the second
order expansion of the toy shower and the exact O(α2

s ) cross
section.

4.1.1 Matrix element validation of collinear branching
amplitudes

Matrix elements constructed using collinear branching ampli-
tudes are expected to reproduce the exact amplitudes only in
the strongly ordered limit. In order to demonstrate that this
is the case, we consider the angular correlations 	ψ12 and
	ψ11′ as a function of

�12 = max(θ1, θ2/θ1),

�11′ = max(θ1, θ1′), (20)

16 We have performed validations also with the PanGlobal β = 1/2
shower but do not show them here to avoid cluttering already busy
plots.

where θi is the opening angle of the i th branching. The
strongly ordered limit is then approached as � → 0. In
practice we achieve this by fixing the energy fractions z1

and z2. We then generate angles θ1, θ2, φ1, and φ2 from
which we can deduce the full kinematics of our event using
the PanLocal dipole β = 0.5 map.17 The full kinematics
are then passed to the exact matrix element, obtained using
amplitudes from Ref. [60], to be compared directly with the
Collins–Knowles weights, Eqs. (1) and (2). In Fig. 13 we
show this comparison as a function of 	ψ12 and �12 for the
processes γ ∗ → qq̄q ′q̄ ′ and γ ∗ → qq̄gg for z1 = 0.01 and
z2 = 0.3. On the left we show the comparison between the
exact matrix element and the shower matrix element without
spin correlations, while they are included on the right. We
show the absolute difference between the exact matrix ele-
ment and the shower matrix element normalised to the exact
matrix element integrated in a slice of 	ψ12. When spin cor-
relations are not included in the branching amplitudes the
exact matrix element and the shower matrix element dis-
agree for all values of �12 and 	ψ12 in both processes. The
band structure that shows up for 	ψ12 = {−3π

4 , −π
4 , π

4 , 3π
4 }

corresponds to the points in 	ψ12 where the azimuthal mod-
ulation of the full matrix element intersects the prediction
by the shower, which is flat in the collinear limit. When
spin correlations are included we see that the discrepancy
between the exact matrix element and the shower matrix
element only persists away from the collinear limit and we
find that the residual differences vanish as �12 becomes
small. The picture is very similar if we instead focus on
H → gg processes, as can be seen in Fig. 14. In this case
we show the three subprocesses H → gggg, H → ggqq̄,
and H → qq̄q ′q̄ ′ as a function of 	ψ11′ and �11′ , using
z1 = z2 = 0.3. When spin correlations are not included in
the shower branching amplitudes, the shower matrix element
and the exact matrix element again disagree for all values
of �11′ and 	ψ11′ . The same band structure can be seen
as in Fig. 13 which is again due to the intersection of the
cosine and an almost flat curve. When spin correlations are
included in the shower we again find excellent agreement as
we approach the strongly ordered limit. Some band struc-
ture remains, associated with the existence of azimuths for
which the exact and parton shower results happen to coincide
exactly.

4.1.2 Tests with full shower phase space and observables

We now consider integrated results over a portion of the
Lund plane, i.e. using the analysis approach discussed in

17 Here, for conciseness, we show just the PanLocal dipole β = 0.5
results. When we come to fixed order tests with the full shower phase
space and observables in Sect. 4.1.2, we will also show results for the
PanGlobal shower.
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Fig. 13 Normalised difference between the Collins–Knowles weight
and the full squared matrix element for e+e− → γ ∗ → qq̄ + 2-parton
events. Both branchings are on the same side of the event and have

z1 = 0.01 and z2 = 0.3. The left-hand (right-hand) column shows
the results when we neglect (include) spin-correlations in the Collins–
Knowles weights. The rows show different partonic channels

Sect. 3.2. This serves to test the full combination of shower
phase space generation, branching probabilities and observ-
able implementation (which comes in independent variants
for the toy shower and the full shower). We still work at
fixed (second) order, and compare the resulting distribu-
tion of 	ψ12 for several of the PanScales showers, the toy
shower, and the exact tree-level matrix element. We produce
results for a fixed strong coupling at Q = 100 TeV, setting
the following cuts on the primary and secondary splittings:

z1 > 0.1, kt,1 < 1 TeV, (21a)

z2 > 0.2, kt,2 > 1 GeV. (21b)

Figure 15 depicts the second-order (normalised) differential
cross-section

1

σtot

dσ

d	ψ12
= 1∫

d|MEγ ∗→qq̄ |2
d|MEγ ∗→qq̄+X |2

d	ψ12
, (22)

for different values of �12, where X may be qq̄ or gg.
As in the previous section, the latter variable serves as
a measure of ordered collinearity for the two successive
splittings. We show the distributions obtained by the toy
shower, by the PanLocal shower (run with a value of β =
0.5, see Eq. (18)) in its dipole formulation, and by the
exact tree-level matrix element. In the bulk of the phase
space, where opening angles are not strongly restricted,
the distribution of 	ψ12 is not expected to agree across
all considered setups: the parton shower will feature non-
negligible recoil effects, and the toy shower is applying
the strictly-collinear limit of the Collins algorithm irre-
spective of the opening angles. However, we do expect
agreement between those setups, and the exact matrix ele-
ment, in the limit where the angles are small and strongly
ordered.

To quantify the agreement between the different setups

in the strongly-ordered collinear limit, lim�12→0

(
dσ

d	ψ12

)
,

we apply a Discrete Cosine Transform (DCT) to the binned
distribution of 	ψ12, where we integrate over all configura-
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Fig. 14 Same as Fig. 13 but for H → gg + 2-parton events. The two branchings are on opposite sides of the event and have z1 = z1′ = 0.3

tions that fulfil the strong angular ordering requirement for a
given value of �12. Specifically, for a distribution with 	ψ12

bins running from i = 0, . . . , n − 1 we define the kth DCT
coefficient as follows

Ak(�12) = 1

n

n−1∑

i=0

cos

(
2kπ

n

(
i + 1

2

)) ∫

bin i
d	ψ12

×
∫

θ1<�12
θ2<�12θ1

dθ2dθ1
dσ

dθ1dθ2d	ψ12
. (23)

The A0 and A2 coefficients can be related to the Fourier
coefficients a0 and a2 used above,

a0 = A0, a2 = 2A2. (24)
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This definition exclusively picks out the even (cosine-like)
Fourier components, whereas the odd (sine-like) modes are
zero by definition.

The results are summarised in Fig. 16, for γ ∗ → qq̄q ′q̄ ′
(left column) and γ ∗ → qq̄gg (right column). We show the
first four DCT coefficients, normalised by the toy shower
Ats

0 (�12), for two PanScales showers, the exact matrix ele-
ment, and the toy shower. For the latter, since the toy shower
is free of recoil effects, the correlations introduced by the
spin algorithm take the form given by Eq. (11) irrespective
of the value of �12. Thus, for the toy shower, A0 and A2

are the only non-zero coefficients, and 2A2/A0 = a2/a0

gives the relative size of the integrated spin correlations,
which are of the order O(−77%) for the g → q ′q̄ ′ chan-
nel, and O(+7%) for the g → gg channel in most of the
phase space.18 The parton showers and the matrix element
partly generate non-zero coefficients at large values of �12,
all of which become consistent with zero in the strongly-
ordered limit at ln �12 ∼ −4, with the exception of the
coefficient A2 encoding the spin correlations. All setups
produce compatible values of A2 at small �12. We also
observe that the PanScales showers display distortions that
are of same sign, and similar in size, as the exact matrix
element at larger values of �12. The difference between
the PanLocal dipole and the PanGlobal showers is a con-
sequence of the different kinematic map rather than the dif-
ference in β values that we have used (0.5 and 0.0 respec-
tively).

4.2 Validation at all orders in αs

We now turn to the validation of our spin-correlation algo-
rithm in the PanScales parton showers. To test specifically
the single logarithmic (NLL), αn

s L
n , terms generated by the

shower, we run the PanGlobal (β = 0) shower and the dipole
and antenna versions of the PanLocal (β = 0.5) showers with
asymptotically small αs → 0, keeping λ = αs L fixed. For
the Lund declustering observable (cf. Sect. 3.2), e−|L| is the
smallest value that we allow for kt,2/Q, or equivalently at
αn
s L

n accuracy, the smallest value for θ2, while θ1 and kt,1
are allowed to take on any value (typically, the Lund declus-
tering procedure ensures θ1 > θ2 and kt,1 > kt,2). For the
EEEC variable (cf. Sect. 3.3), e−|L| is the smallest value that
we allow for θS , while θL is allowed to take on any value
larger than θS . For the purpose of the following tests we
choose a value of λ = −0.5, which corresponds roughly to
the range of αs and L accessible at the LHC.

In practice, we set αs = 10−7, and the value of the shower
cutoff to ln vmin = (1 + β)λ/αs = (1 + β) · (−0.5) · 107.

18 There is an interplay between the imposed phase-space cuts on kt ,
and the integration bound on �12, which we believe may be responsible
for the kink at the left-hand end of the spectrum.

For results generated by the toy shower, this translates to
setting the toy shower’s cutoff scale to tmax = t (λ) as given
in Eq. (14). We use a 1-loop running ofαs for all results shown
below (in our αs → 0 but fixed λ = αs L limit, higher-loop
running leaves the results unchanged).

In the following, we consider both γ ∗ → qq̄ and H → gg
initial setups. A variety of issues arise from the use of small
values of αs and large values of L . The approaches that we
take to dealing with them include truncating the shower to
avoid large numbers of soft gluons, tracking differences in
angles between particles as well as their 4-momenta, the
use of a numerical type that extends the available exponent
beyond that normally accessible in double precision, and a
stand-in analysis using the shower tree structure rather than
the full Lund declustering analysis. Some of the techniques
were introduced in Refs. [24,25] and Appendix D gives fur-
ther details about the techniques that are new here, includ-
ing a number of tests to verify that our conclusions remain
robust even with these techniques. We apply a cut zcut = 0.1
in the identification of the primary and secondary (respec-
tively, both primary) splittings used in reconstructing the
Lund observable 	ψ12 (respectively, 	ψ11′). We also use
a stand-in analysis for the EEEC observable, presented in
Appendix D.2, which again is valid in the extreme collinear
limit.

Figures 17 and 18 depict the distribution of our new Lund
observables, 	ψ12 and 	ψ11′ , as well as the EEEC, for
γ ∗ → qq̄ , respectively for H → gg initial events. The three
showers PanGlobal (β = 0), PanLocal (β = 0.5, dipole and
antenna versions) are compared to the numerically resummed
result obtained from the toy shower. In all cases, we show
the contributions stemming from the different channels to the
full observable. The relative deviation between the PanScales
showers and the toy shower is shown on the right, separately
for each channel, and is compatible with zero with statistical
uncertainties below the 5 permille level.

4.3 Phenomenological remarks

We comment on three aspects here that are potentially rele-
vant for phenomenological applications.

Our first comment concerns the relative size of spin cor-
relations in the EEEC and the 	ψ12 Lund declustering
observable. The EEEC has the advantage of not requiring
a zcut, reducing the number of parameters that need to be
chosen for the observable. However its weighting with the
energies in Eq. (12) tends to favour configurations where a
q → qg(g → xy) splitting shares energy equally between
the three final particles. In the notation of Figs. 4 and 5, this
corresponds to z1 � 2/3 and z2 � 1/2. While z2 � 1/2
acts to enhance the spin correlations, z1 � 2/3 tends to
reduce them. In contrast, with the Lund declustering 	ψ12

one can adjust the cuts on the z1 and z2 values so as to max-
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Fig. 15 The second-order distribution of 	ψ12 from the toy shower, the dipole PanLocal shower, and the tree-level matrix element, shown for
increasingly collinear configurations, ln�12 ∈ {−1.3,−1.7,−2.1,−2.5,−2.9,−3.3}. Results are given for a quark-only and b two quarks-two
gluons final states

imise the azimuthal modulations.19 Table 3 summarises the
degree of azimuthal modulation for different observables in
γ ∗ → qq̄ events. With our default (non-optimised) cuts
of z1 and z2 > 0.1, we see substantially larger azimuthal
modulations than in the EEEC variables, both in individ-
ual flavour channels and in their sum. The potential for fur-
ther enhancement of the modulations is made evident by the
results obtained with the z2 > 0.3 requirement.

Our second comment concerns the sum over all flavour
channels. The results shown here have been obtained with
n f = 5 light flavours. The final magnitude of the spin corre-
lations after the sum over flavour channels is quite sensitive to
the cancellation between g → qq̄ and g → gg splittings and
the degree of cancellation is strongly influenced by the value
of n f . At the scales where one might aim to probe spin corre-
lations, the c- and especially b-quark masses are not entirely
negligible. A full phenomenological study of the flavour-
summed structure of azimuthal correlations might, therefore,
needs to take into account finite quark-mass effects. Note that
effects related to kt values in the neighbourhood of a heavy-

19 Too tight a cut on z1 and z2 would reduce the available statistics,
so one might want to optimise the cuts to maximise a combination of
statistical accuracy and degree of modulation.

quark threshold are formally suppressed by a logarithm. For
a complete understanding of phenomenological expectations
one would also want to examine the impact of other sublead-
ing logarithmic effects, as well as contributions suppressed
by powers of kt/Q, and possibly also non-perturbative cor-
rections. It would clearly also be of interest to find ways of
carrying out measurements with flavour tagging, given the
strong effects to be seen with g → qq̄ splittings. While b
and c flavour tagging are the most obviously robust starting
points in this respect, one may also wish to consider s tag-
ging [61] and generic light-quark versus gluon discrimination
observables.

Our final comment concerns the inter-jet 	ψ11′ observ-
able. If Higgs boson decay to two gluons is eventually
observed and if one can carry out flavour tagging so as to
have visible net modulation, this observable could provide
an interesting example of an EPR type measurement at col-
liders (a constraint on a gluon’s splitting angle would then
translate to a constraint on the distance travelled by the gluon
before it splits).
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Fig. 16 Fixed-order Fourier analysis of the toy shower, the PanGlobal
(β = 0), and the dipole PanLocal (β = 0.5) showers, as compared to
the exact tree-level matrix element. The first four modes are shown here,

and their associated coefficients suitably converge to identical values in
the strongly angular-ordered limit �12 → 0

5 Conclusions

The developments shown in this paper are among the last
remaining aspects needed in order to claim complete NLL
accuracy in the sense of Ref. [24] for the PanScales family
of parton showers. The one component that now remains (at
leading colour) is a treatment of the spin correlations for soft
emissions, an aspect that we leave to future work.

The approach we have taken is largely based on that pro-
posed by Collins and Knowles, and in part also on the exten-
sion to dipole showers proposed by Richardson and Webster.
The main difference relative to the Richardson and Webster
work is our use of spinor products, avoiding the need for cor-
relating branching variables across different steps and asso-
ciated boosts. The spin correlation treatment is then expected
to be correct at single-logarithmic accuracy for showers that
adhere to the general requirements set out in Ref. [24].

Relative to earlier work on spin correlations in parton
showers, one of the main novelties of this paper is the frame-
work for validating the implementation of spin correlations.
As part of our testing framework we extended the MicroJets
code to enable single-logarithmic resummation for a range of
spin-correlation observables. Figures 13, 14, 15 and 16 show

Table 3 The relative magnitude of the azimuthal modulation, a2/a0 (cf.
Eq. (11)), for the EEEC and Lund intra-jet 	ψ12 observables, the latter
for two sets of cuts on z1 and z2. The results are shown for γ ∗ → qq̄
events for n f = 5, separately for two specific flavour channels, as well
as the sum over all flavour channels (including the channel without spin
correlations, q → qg). As in Fig. 17, the results are obtained in the
limit αs → 0 for fixed λ = αs L = −0.5 and for the Lund declustering
	ψ12 we consider events with kt,2/Q > e−|L|, while for the EEEC
	ψ we consider events with θS > e−|L|

Flavour channel for 2nd splitting g → qq̄ g → gg All

EEEC −0.36 0.026 −0.008

	ψ12, z1, z2 > 0.1 −0.61 0.050 −0.025

	ψ12, z1 > 0.1, z2 > 0.3 −0.81 0.086 −0.042

clear agreement between the collinear limits of fixed-order
matrix elements and a fixed-order expansion of the shower,
while Figs. 17 and 18 show equally good agreement between
the logarithmic structure of the full shower and the single-
logarithmic resummed expectations.

To carry out those tests we introduced a set of new
observables based on Lund declustering that are sensitive to
spin correlations. These complement the recently proposed
EEEC spin-sensitive observables, providing information that
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Fig. 17 All-order comparison of the toy shower and different Pan-
Scales showers, for γ ∗ → qq̄ events. The two observables shown are
the azimuthal angle, 	ψ12, between a primary and secondary splitting
planes in Lund declustering, and the difference in angle 	ψ between

the (i j)k and i j planes in the EEEC (Eq. (12)). The results are obtained
in the limit αs → 0 for fixed λ = αs L = −0.5. For the Lund declus-
tering 	ψ12 we consider events with kt,2/Q > e−|L| and for the EEEC
	ψ we consider events with θS > e−|L|

is more differential in momentum fractions of the different
branchings. This makes it possible to enhance the relative
magnitude of the spin-correlation signal, cf. Table 3. Spin-
correlation effects can be large for g → qq̄ splittings, while
they are smaller, with an opposite sign for g → gg splittings
(cf. Figs. 4, 5 and 6). All-order resummation has a modest
effect on them (cf. Figs. 9, 10 and 11). Phenomenologically,
the opposite signs for g → gg and g → qq̄ lead to a par-

tial cancellation of the spin correlation effects in flavour-
insensitive observables, although our studies indicate that
some effect remains visible. Further study of the potential
for measuring these effects, possibly in combination with
flavour tagging, would clearly be of interest.
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Fig. 18 All-order comparison of the toy shower and different Pan-
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A Deriving the branching amplitudes

In this appendix we collect some details regarding the com-
putation of branching amplitudes in terms of spinor prod-
ucts and their numerical evaluation. The calculations here
are done following the conventions of Ref. [62]. For two
light-like momenta p and q, we define the spinor product

Sλ(p, q) = ūλ(p)u−λ(q), (25)

where λ = ±1 is the Dirac spinor helicity. Spinor products
have the properties

Sλ(p, q) = −Sλ(q, p) = −S−λ(p, q)∗,
|Sλ(p, q)|2 = Sλ(p, q)S−λ(q, p) = 2 p·q. (26a)

Following the HELAS conventions [63], the polarisation vec-
tor of a gluon with momentum p is defined as

ε
∗μ
λ (p) = 1√

2

1

S−λ(r, p)
ūλ(p)γ

μuλ(r), (27)

where r is a light-like vector specifying the gauge. For cal-
culational purposes, the Chisholm identity [62]

/ε∗
λ(p) =

√
2

S−λ(r, p)

[
uλ(r)ūλ(p) + u−λ(p)ū−λ(r)

]
(28)

is often useful. We define the momenta of a collinear splitting
as pa → pb + pc, such that pb = zpa and pc = (1 − z)pa .
In this limit, the gauge vector r cancels from the collinear
branching amplitudes, and they may be written in terms of a
single spinor product Sλ(pb, pc) using the identities

Sλ(pb, pa) = √
1 − zSλ(pb, pc) and Sλ(pc, pa)

= −√
zSλ(pb, pc). (29)

Next, we compute the branching amplitudes for all colour-
stripped collinear QCD branchings, dropping any overall
phase factors for convenience.

q → qg

The branching amplitude is

Mλaλbλc
a→bc = gs

2pb·pc ūλb (pb)/ε
∗
λc

(pc)uλa (pa) (30a)

= 1√
2

gs
pb·pc

1

S−λc (r, pc)
ūλb (pb)

×
[
uλ j (r)ūλc(pc) + u−λc (pc)ū−λ j (r)

]
uλa (pa). (30b)

The non-zero helicity configurations are

Mλ,λ,λ
a→bc = 1√

2

gs
pb·pc

1√
1 − z

Sλ(pb, pc), (31a)

Mλ,λ,−λ
a→bc = 1√

2

gs
pb·pc

z√
1 − z

S−λ(pb, pc). (31b)

g → qq̄

The branching amplitude is

Mλaλbλc
a→bc = gs

2pb·pc ūλb (pb)/ε
∗−λa

(pa)u−λc (pc) (32a)

= 1√
2

gs
pb·pc

1

Sλa (r, pa)
ūλb (pb)

×
[
u−λa (r)ū−λa (pa) + uλa (pa)ūλa (r)

]
u−λc (pc).

(32b)

The non-zero helicity configurations are

Mλ,λ,−λ
a→bc = − 1√

2

gs
pb·pc zS−λ(pb, pc), (33a)

Mλ,−λ,λ
a→bc = 1√

2

gs
pb·pc (1 − z)S−λ(pb, pc). (33b)

g → gg

For this case, we first derive some general properties. If we
consider the collinear limit and pick all gluons to have the
same gauge vector r , we find

ε∗
λ(pi )·ε∗

λ(p j ) = 0, (34a)

ε∗
λ(pi )·ε∗−λ(p j ) = 1, (34b)

ε∗
λ(pi )·p j = 1√

2

S−λ(p j , r)

S−λ(r, pi )
Sλ(pi , p j ), (34c)
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where pi , p j ∈ {pa, pb, pc}. The branching amplitude is

Mλaλbλc
a→bc = − gs

pb·pc
(
ε∗
λb

(pb)·pc ε∗
λc

(pc)·ε∗−λa
(pa)

− ε∗
λc

(pc)·pb ε∗
λb

(pb)·ε∗−λa
(pa)

+ ε∗−λa
(pa)·pb ε∗

λb
(pb)·ε∗

λc
(pc)

)
. (35)

The non-zero helicity configurations are

Mλ,λ,λ
a→bc = 1√

2

gs
pb·pc

1√
z(1 − z)

Sλ(pb, pc), (36a)

Mλ,λ,−λ
a→bc = 1√

2

gs
pb·pc

z3/2

√
1 − z

S−λ(pb, pc), (36b)

Mλ,−λ,λ
a→bc = 1√

2

gs
pb·pc

(1 − z)3/2

√
z

S−λ(pb, pc). (36c)

Numerical evaluation of spinor products

To find an expression for the spinor product that can be eval-
uated numerically, we may introduce arbitrary reference vec-
tors k0 and k1 which obey k2

0 = 0, k2
1 = −1 and k0·k1 = 0.

Then, without loss of generality, we may write

u+(p)= 1√
2p·k0

/pu−(k0) and u−(p)= 1√
2p·k0

/p/k1u−(k0).

(37)

The spinor product may then be expressed as

S+(pb, pc) = 1√
2pb·k0

√
2pc·k0

ū−(k0)/k1 /pb /pcu−(k0)

(38a)

= 1

2

1√
2pb·k0

√
2pc·k0

tr
(
(1 − γ 5)/k0/k1 /pb /pc

)

(38b)

= 1√
pb·k0

√
pc·k0

[
(pc·k0)(pb·k1) − (pb·k0)(pc·k1)

− iεμναβk
μ
0 k

ν
1 p

α
b p

β
c

]
. (38c)

While this expression remains independent of a choice of
representation of the Dirac algebra, an explicit choice for the
reference vectors k0 and k1 must be made for the purposes
of numerical evaluation. For instance, if we choose k0 =
(1, 0, 0,−1) and k1 = (0, 1, 0, 0), we find

S+(pb, pc) =
√

p0
c + p3

c

p0
b + p3

b

(p1
b + i p2

b)−
√

p0
b+p3

b

p0
c+p3

c
(p1

c+i p2
c ).

(39)

In the shower implementation, reference vectors are selected
on an event-by-event basis, where care is taken not to select a
direction that aligns with the initial momenta to avoid numer-
ical instabilities.

B An example of calculating the functions A(z), B(z)

We illustrate the computation of the spin-correlated matrix
element squared, taking the example of the observable 	ψ12
at second order for a quark-initiated jet, q → qg(g → q ′q̄ ′),
of Fig. 1. We then cast the result into the form of Eq. (11).
The matrix element squared, summing over all helicities, is
given by

|M |2 = Mλ0λ1λ2
0→12 M∗λ0λ1λ′

2
0→12 Mλ2λ3λ4

2→34 M∗λ′
2λ3λ4

2→34

= M+++
0→12M∗+++

0→12 (M++−
2→34M∗++−

2→34 + M+−+
2→34M∗+−+

2→34 )

+ M+++
0→12M∗++−

0→12 (M+−+
2→34M∗−−+

2→34 + M++−
2→34M∗−+−

2→34 )

+ M++−
0→12M∗+++

0→12 (M−−+
2→34M∗+−+

2→34 + M−+−
2→34M∗++−

2→34 )

+ M++−
0→12M∗++−

0→12 (M−+−
2→34M∗−+−

2→34 + M−−+
2→34M∗−−+

2→34 )

+ (+ ↔ −), (40)

where the last line includes the flipping of all helicities, and
we have already excluded forbidden helicities. Using Eq. (5)
and inserting the functions Fλaλbλc

a→bc (z) given in Table 1, the
above reduces to

|M |2 = 2
2g2

s

θ2
12E

2
0 z1(1 − z1)

2g2
s

θ2
34E

2
2 z2(1 − z2)

×
( z2

2 + (1 − z2)
2

1 − z1
− 2z1z2(1 − z2)

1 − z1
e2i(φ1−φ2)

− 2z1z2(1 − z2)

1 − z1
e−2i(φ1−φ2) + z2

1((1 − z2)
2 + z2

2)

1 − z1

)

(41a)

= 8g4
s (1 + z2

1)(z
2
2 + (1 − z2)

2)

θ2
12θ

2
34E

4
0 z1(1 − z1)4z2(1 − z2)

×
(

1 + 2z1

1 + z2
1

−2z2(1 − z2)

z2
2 + (1 − z2)2

cos(2	φ)
)
, (41b)

where each of the four terms in the parenthesis of Eq. (41a)
comes from one of the four lines in Eq. (40). Finally, Eq. (41b)
makes the form of A(z1) and B(z2) explicit.

C Rotational invariance in the collinear limit

As part of the numerical evaluation of spinor products in
Eq. (39), a set of reference vectors must be selected. Any
dependence on these reference vectors vanishes in the cal-
culation of a full squared matrix element, but the Collins–
Knowles algorithm only accounts for the contributions that
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Fig. 19 Comparison of the Collins–Knowles weights of two-emission
events and their randomly rotated counterpart. The hard scattering is
either γ ∗ → qq̄ (left), where a single primary (z1 = 0.01) and sec-

ondary emission (z2 = 0.3) are performed, or H → gg (right), where
two opposite-side primary emissions are performed (z1 = z1′ = 0.3)

dominate the matrix element in the collinear limit. Conse-
quently, any dependence on the reference vectors should also
vanish from the Collins–Knowles result as long as the shower
emissions are strongly ordered and sufficiently collinear.

In this appendix, we validate this property in the Pan-
Scales implementation of the Collins–Knowles algorithm.
To that end, like in Sect. 4.1.1, the Collins–Knowles weight
as a function of an angular resolution is considered. Rather
than comparing to a matrix element directly, the weight is
computed for an event, and for the same event that is rotated
randomly. As the reference vectors stay fixed, rotating the
event is equivalent to rotating the reference vectors in the
original event. Figure 19 shows the relative difference of
these weights for two shower emissions off γ ∗ → qq̄ and
H → gg hard scatterings. The relative difference in weights
decreases as a power of the angular resolution, and is thus a
power correction that vanishes in the collinear limit. Numer-
ically, these effects are also small compared to the size of the
spin correlations themselves.

D Technical details of the all-order comparisons

To facilitate the isolation of the NLL structure of the parton
shower, the all-order comparisons of Sect. 4.2 are performed
at extremely small values of αs and extremely large values
of the logarithm. Several techniques need to be employed
to maintain numerically feasible analyses in these extreme
regimes. In this appendix we detail these techniques.

D.1 Removal of soft radiation

The particle multiplicity generated by the parton shower
scales like

√
αs L2. This means that, because the product

αs L is kept constant as αs decreases and L increases, the
multiplicity also increases. At the logarithmic values used in
Sect. 4.2, the multiplicity has increased to levels that cause
the event generation to become numerically unfeasible. How-
ever, the all-order observables considered here are insensitive
to soft gluon radiation, and the spin correlations incorporated
by the Collins–Knowles algorithm are also unaffected. As
a result, as long as any radiation that is removed is suffi-
ciently soft that its recoil has no noticeable impact on the
momenta of the partons that dominate the Lund declustering
and energy-correlator observables, the all-order tests should
remain unaffected by the removal of soft gluon radiation.
Such a cut is implemented in the PanScales shower by limit-
ing the sampling range of the auxiliary parton shower variable
that controls the collinear momentum fraction. This strategy
is more efficient than the alternative of vetoing soft branch-
ings, as the shower would spend much of its time generating
and vetoing soft emissions at low scales. An illustration of
this procedure is shown in Fig. 20.

To validate the legitimacy of the application of this cut on
soft radiation, we compare the predictions of the PanScales
showers and our implementation of Dire v1 for 	ψ12 with
zcut = 0.1 at αs = 0.01 and L = −27.5. Figure 21 shows
the difference between the distributions with and without the
application of the collinear cut ln z > ln zPS

cut = −10. This
value of zPS

cut is significantly below the z values that dominate
in our observables. For the PanScales showers, we see that
the cut has no statistically significant effect on the azimuthal
distribution and thus we conclude that we can safely use a
zPS

cut in our logarithmic accuracy tests. For other showers, the
cut can have an impact on the results, as illustrated with the
Dire v1 dipole shower, where the cut induces a change in
a2 that is a significant fraction of the actual a2. We attribute
this to transverse recoil effects between gluons of commen-
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surate kt values, of the kind discussed in Refs. [23,24]. For
such showers, a test of the logarithmic structure of the spin
correlations would need to be carried out without a zPS

cut. We
suspect that there are observables for which such tests would
reveal problems in the αn

s L
n logarithmic structure, associated

with the following type of configuration: consider a hard-
collinear g → qq̄ splitting with a transverse momentum
kt,1, followed by a soft-collinear emission with transverse
momentum kt,2 � kt,1 from the dipole that contains the
q. Within standard dipole-shower recoil schemes, the soft-
collinear emission can take its recoil from the quark, altering
its 2-dimensional vector transverse momentum, effectively
smearing out the azimuthal angle of the qq̄ pair.20 In certain
circumstances (for example if one considers events where the
g → qq̄ splitting is the highest-kt splitting in the event), the
product of squared-matrix element and phase space where the
recoil can occur will lead to a factor αs L for this smearing to
occur, thus spoiling single-logarithmic accuracy. Note, how-
ever, that in the observables that we actually consider, we do
not require either of the collinear splittings to be the hardest in
the event, and we expect that feature to bring further compli-
cations, of the kind discussed in section 3 of the supplemental
material of Ref. [24], whereby additional double-logarithmic
effects would be expected to (at least) partially mask these
issues in the all-order tests, potentially associated with super-
leading logarithms, αn

s L
m with m > n, for observables that

should only have m ≤ n. Based on these arguments, we con-
sider the presence of any effect from emissions below zcut,
as seen in Fig. 21, to be a sign of potential danger.

D.2 Stand-in observables

While performing tests at small αs and large logarithms, it
quickly becomes challenging to accurately evaluate the tiny
angles between collinear momenta. To avoid large numer-
ical cancellations in the evaluation of inner products, the
PanScales showers have the option to explicitly track the
difference in direction between dipole components. This
technique, as well as the use of a new floating-point type
(double_exp) that increases the maximum size of the
exponent of a regular double-precision type, was already used
in [25], and was equally crucial for the all-order tests per-
formed here. While it allows the shower to be run at asymp-
totically small values of the coupling, the evaluation of the
observables is not as straightforward.

20 In PanGlobal showers, the problem is avoided because the transverse
recoil is assigned through a boost, which leaves the azimuthal structure
of the qq̄ pair unchanged. In the PanLocal shower, where it is only valid
to run with β > 0 in the definition of the ordering variable, Eq. (18),
when two emissions are at commensurate kt values, the hard-collinear
one always takes place later, which ensures that a soft-collinear gluon
does not induce recoil in a hard-collinear gluon of commensurate kt .

ln kt

η

Fig. 20 An example of the shower Lund plane after the first branch-
ing, with a cut on soft emissions. The red shaded area indicates the
part of phase space removed by the soft-emission cut, which is applied
relative to the total event energy. The black dashed line represents a pos-
sible observable cut on z, such as that applied by the Lund declustering
observables. It is applied relative to the parent momentum. To avoid
removing parts of the phase space above the dashed line due to recoil
effects, the soft-emission cut is applied well below the observable cut
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Fig. 21 Difference in the 	ψ12 distribution between a run with a
collinear cut ln zPS

cut = −10 and a run without. The results are shown
for finite αs = 0.01 and L = −27.5, and three showers. The key also
shows the result for 	a2/a2 where 	a2 is the difference between the
a2 Fourier coefficient as obtained with and without the cut. The result
labelled “Dipole” corresponds to our implementation of the Dire v1
[64] shower algorithm supplemented with our spin-correlation algo-
rithm and we expect it to be representative of a variety of standard
dipole-type showers. It indicates that the use of a ln zcut would not be
safe for testing spin correlations in such standard dipole-type showers

In the case of Lund-declustering observables, a regular
analysis is technically limited by the absence of directional
difference information for parton pairs that are not in the
same dipoles. In events with at most a Born qq̄ pair, we have
implemented functionality whereby we use the full dipole
chain and in-dipole direction differences to construct a look-
up table for the direction differences between any pair of
partons. For N particles this has anO (

N 2
)

time and memory
cost, while normal e+e− clustering in FastJet also carries an
O (

N 2
)

time cost, but an O (N ) memory cost. Used together
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with a winner-takes-all recombination scheme [65–67] in a
version of the FastJet [68] code adapted to work with the
double_exp type, we can carry out the Lund declustering
analysis at asymptotic values of the logarithm. However the
current technical limitation of having at most the Born qq̄
pair in the event means that we need an alternative strategy
for complete events.

Accordingly, we have developed a stand-in analysis that
uses the binary tree generated by the Collins–Knowles algo-
rithm, even though it is normally unobservable. During the
showering, the Lund structure is determined using explicit
shower information, where at every collinear branching that
appears in the binary tree, the appropriate azimuthal infor-
mation is stored if the collinear momentum fraction cuts are
passed. This procedure is equivalent to the evaluation of the
exact observable if the jet clustering produces the same binary
tree (for the hard emissions that we ultimately consider in the
observable) as in our implementation of the Collins–Knowles
algorithm and if recoil effects that can affect the momen-
tum fraction cuts are absent. At asymptotically small αs , for
the subset of PanScales showers that passed the NLL tests
in Ref. [24], and with the condition that one works with a
hardness cut z > zcut such that αs ln zcut � 1, these are
both valid assumptions. We have verified this by consid-
ering events without g → qq̄ splittings and establishing
that the full Lund declustering and the stand-in analysis pro-
duced event-by-event identical results. Note that the stand-in
analysis also allows easy access to the flavour separation
of the spin-correlation effects, without the need to consider
flavoured jet clustering.

In the case of the EEEC, a major issue it its O(N 3)

time complexity, which quickly becomes prohibitive at the
multiplicities under consideration. The following procedure,
which again makes direct use of the binary tree, is again
equivalent to the full observable in the asymptotic limit. For
all nodes an that are not terminal, and where n is the depth
of that node, do as follows:

1. Retrieve the opening angle θS and the normal vector 
nS
of the branching of node an .

2. Retrieve the global momentum fractions z1 = 2E1/Q,
z2 = 2E2/Q of the outgoing momenta 1 and 2 of node
an .

3. Iteratively for i ∈ {1, . . . , n − 1}:
• Retrieve the opening angle θL and the normal vector


nL of the branching of node ai .
• Retrieve the global momentum fraction z3 = E3/2ECM,

where 3 is the outgoing momentum of ai that is not
ai+1.

• Compute the signed angle 	ψ between 
nS and 
nL .
• Add to the 	ψ-θS-θL -bin with weight 2z1z2z3.

This procedure has time-complexity O(N log N ) and is
again equivalent to the exact observable if θS � θL and
in the absence of recoil effects, which are both the case for
asymptotically small αs for the showers we study. The above
algorithm was validated by verifying that it yields identical
results to the exact observable evaluation for a representative
number of events.
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