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Abstract High energy physics experiments rely heavily
on the detailed detector simulation models in many tasks.
Running these detailed models typically requires a notable
amount of the computing time available to the experiments.
In this work, we demonstrate a new approach to speed up
the simulation of the Time Projection Chamber tracker of
the MPD experiment at the NICA accelerator complex. Our
method is based on a Generative Adversarial Network – a
deep learning technique allowing for implicit estimation of
the population distribution for a given set of objects. This
approach lets us learn and then sample from the distribution
of raw detector responses, conditioned on the parameters of
the charged particle tracks. To evaluate the quality of the pro-
posed model, we integrate a prototype into the MPD software
stack and demonstrate that it produces high-quality events
similar to the detailed simulator, with a speed-up of at least an
order of magnitude. The prototype is trained on the responses
from the inner part of the detector and, once expanded to the
full detector, should be ready for use in physics tasks.

1 Introduction

Computer simulations of high-energy physics experiments
play a crucial role in a variety of relevant tasks, including
detector geometry optimization [1,2], selecting best analysis
strategies [3,4], and testing the Standard Model (SM) pre-
dictions and searching for new phenomena beyond the SM
[5,6]. For a typical experimental data analysis, the number of
simulated events usually translates directly to the uncertainty
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of the final physics result. The amount of computational
resources spent on the simulations usually takes a notable
fraction of the total computing capabilities of an experiment
and is comparable with that spent on the real data processing
[7,8]. Therefore, faster approaches to event generation and
simulation are in great demand for the existing and future
high energy physics experiments.

The MPD detector is one of the two experiments at the
NICA accelerator complex – a new heavy ion accelerator
facility being constructed at the Joint Institute for Nuclear
Research and located in Dubna, Russia [9,10]. The complex
is designed to study the properties of dense baryonic matter.
For the tracking, MPD utilizes a time projection chamber
(TPC) in the central barrel [11]. TPC simulation is very CPU-
intensive [12], and hence a fast simulation approach for TPC
is highly desirable.

A typical approach to constructing models for fast sim-
ulation of particle physics detectors is to use a simplified
detector geometry and a simplified model of the interaction
of particles with matter [13]. This approach is justified for
subsystems with a flat sensitive volume, such as silicon track-
ers, that measure the two-dimensional coordinate of a passing
particle. For systems with a large volume, such as calorime-
ters or TPC-based trackers, this approach makes it difficult
to achieve a reasonable compromise between accuracy and
simulation speed.

Another fast simulation approach is an analytical parame-
terization of the detector responses, as can be seen in shower
shape parameterizations for calorimeters [14]. This approach
can significantly speed up the calorimeter simulation, but
it makes it difficult to achieve high quality simulated data.
A common solution for calorimeters is also to use the so-
called “frozen showers” [13] when detailed simulated sys-
tem responses are stored as a response library for subsequent
reuse.
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With recent developments and particular success of deep
learning in high energy physics [15–19], fast simulation mod-
els based on a Generative Adversarial Network (GAN) [20]
and Variational Auto-Encoders (VAE) [21,22] have emerged
(see e.g. [8,23–35]). These techniques allow to learn the data
distribution, with sampling being as fast as a single forward
pass through the neural network. In this work, we focus on
using GANs for fast simulation. GAN training is based on a
competition between two independent neural networks, the
generator and discriminator. The generator aims to convert
samples from a fixed known distribution into the objects from
the target distribution, – the one that the training data fol-
lows. The discriminator network takes the examples from
the target and generator output distributions and predicts the
probability for each of these examples to belong to the target
distribution. The objective of the discriminator is to learn a
metric that maximizes the separation between the training
data and the generated objects, while that of the generator is
to minimize this separation. In [20] it is shown that the equi-
librium state of such a system is a situation where the objects
generated by the generator are indistinguishable from those
of the training sample, and hence the generator has learned
the training data distribution.

In this work, we propose a new method for fast simulation
of TPC trackers applied to the tracker of the MPD detector
at the NICA accelerator complex, using a GAN.

The structure of the paper is the following. In Sect. 2,
previous research in applying deep generative models to the
fast simulation of particle physics detectors is discussed. In
Sect. 3, we describe the TPC detector at the MPD experiment.
Section 4 explains our approach to simulation of the TPC with
GANs. In Sect. 5, we demonstrate our results and evaluate
their quality. Section 6 is dedicated to the discussion of the
perspectives and limitations of our approach. Finally, Sect. 7
contains a short summary of the work.

2 Related work

As was discussed in Sect. 1, GANs have previously been
applied as a tool for fast simulation of high energy physics
experiments [8,23–35]. This idea is first proposed in [23],
and then further developed in [24], where it is shown that
GANs can significantly speed up electromagnetic calorime-
ter simulation by generating raw calorimeter readouts. In
[27], this approach is further developed for the case of the
LHCb calorimeter, and in [28] – for the ATLAS calorimeter.
Calorimeters from high energy physics experiments are par-
ticularly appealing to simulate using GANs. Their responses
form 2- or 3-dimensional structures of fixed size, which are
similar to regular images, where GANs have demonstrated
outstanding performance over the past years [36]. Use of
GANs for simulation of the reconstructed characteristics is

proposed for the case of Cherenkov detectors in [30], and
further developed for LHCb RICH detectors in [31]. Simula-
tion of reconstructed objects has also been proposed in [37].
In [29], GANs are used for simulating hadronic jets, as simu-
lated and reconstructed in the CMS detector. This research is
not limited to the collider experiments alone, however. E.g.
in [25] GANs are used for simulating a ground-based array
of particle detectors for cosmic rays.

Using GANs for the fast simulation of the TPC type detec-
tor has been studied for the ALICE experiment [32]. The
main idea in that work is to use a GAN to model the mea-
sured cluster coordinates, conditioned on the charged parti-
cle track parameters. With such an approach, the size of the
target representation, i.e. the number of measured track inter-
action points, varies from track to track. This is problematic
to model with simple feed-forward or convolutional neural
network architectures and typically requires more computa-
tionally expensive and harder to train techniques. The authors
of [32] overcome this problem by fixing the size of the target
representation to the maximum possible number of points
per track and zero-padding the trajectories that have fewer
points. The quality of the generated data is measured by the
mean squared distance between the generated points and the
true track helix. It is shown, that the proposed model can-
not yet match the quality of the training data, although it
accelerates the detailed simulation by a factor of 25 [32].

The idea of utilizing GANs for simulating TPC response
at the MPD detector has previously been proposed in [12].
In our work, we develop upon that concept to model the raw
TPC readout electronics response, rather than the measured
track coordinates as done in [32]. This allows us to utilize the
translational symmetries of the detector to reduce the dimen-
sionality of the learned representation, and also to avoid the
problem of the variable number of points per track. Another
difference from [32] is that we condition the generation pro-
cess on the parameters of the small track segments that con-
tribute to the simulated response, rather than the parameters
of the track at the production point. This means that our
method can be used for events with any topology, includ-
ing e.g. the effects of decay-in-flight, when a particle decays
within the detector volume. This is opposed to the approach
from [32] where only long enough tracks are considered and
taking such effects into account would require training the
model specifically for such events.

We would like to finalise this section with a short note on
the applicability of GAN usage for fast detector simulation.
As it is raised in [38], for a physics analysis, the systematic
uncertainties associated with a GAN-generated sample can-
not be smaller compared to those from the sample that GAN
is trained on. At the same time, applying GANs also means
making use of the prior knowledge about the structure of the
data [39]. In other words, the generated data does not con-
tain more information about the true distribution than there
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is in the training sample combined with the prior knowl-
edge introduced by the network architecture. One should
note, that the same argument applies to other fast simulation
techniques like analytical parameterizations or memorized
event libraries. Our position is that deep generative model-
ing should rather be considered as a method for memorization
and interpolation of the training data, and it should be appli-
cable in those cases where analytical parameterizations and
memorized event libraries are.

3 TPC tracker of the MPD experiment

TPC is the main tracking detector of the central barrel of the
MPD experiment [40], covering the pseudorapidity region of
|η| < 1.2 and 2π in azimuthal angle. It is designed to pro-
vide the high efficiency of the charged particle track recon-
struction with a momentum resolution of better than 3% in
the transverse momentum range 0.1 < pT < 1 GeV/c. The
double-track resolution should not exceed 1 cm for operation
in a high-multiplicity environment realized in central colli-
sions of heavy ions. Moreover, the TPC is used as one of the
primary particle identification detectors. The particle identi-
fication is based on the measurement of the ionization losses
with a resolution better than 8%.

The gas volume of the detector occupies the central barrel
radial region between 34 and 134 cm and has a length of 3.4 m
in the beam direction (z-axis). The detector is aligned along
the beam axis and is centered with respect to the nominal
collision point. The gas volume of the detector is enclosed in
an electric field cage, which together with the central mem-
brane effectively divides it into two identical halves with the
electric field lines parallel to the beam axis. The primary
ionization electrons drift towards the edges, and the signals
are amplified and registered with the proportional chambers
with the cathode readout. The chambers are arranged in 12
sectors on each side of the detector with each sector cover-
ing 30◦ in azimuth. The cathode planes of the chambers are
pad-segmented with 53 pad rows perpendicular to the radial
direction and the number of pads in each row increasing with
the radius. The pads are 5 mm wide, while their height is
12 mm (short pads) and 18 mm (long pads) for the 27 inner
and 26 outer rows, respectively. Overall, the detector has
95,232 sensitive pads, responses from which are collected in
310 time buckets per bunch crossing. The XY-coordinates of
the track segments are obtained from the location of the fired
pads. The z-coordinate is calculated based on the measured
drift time and the known drift velocity of electrons in the gas.

4 Model description

As was mentioned in Sect. 2, we build our model to gener-
ate raw TPC responses, i.e. the responses from the sensitive

pads. Given the total number of pads in TPC and the number
of time buckets per event their response is recorded in, this
means that we need to generate almost 30 million numbers
per bunch crossing. To reduce the number of dimensions of
the target space, we split the pads into smaller conditionally
independent subsets, with conditions imposed by the track
parameters, as described below.

In order to apply this reduction, the major assumption
we make is that the response at a particular pad row depends
only on small segments of the particle trajectories, formed by
tracks crossing the corresponding pad plane. The pad plane
is the volume swept by the electric field lines directed at the
given pad row. With this assumption, we ignore the effects
of electron drift diffusion in the direction orthogonal to the
pad plane or the spread of the induced signal over several
pad rows. To fix the dimensionality of the input space, we
model the contributions from different track segments sepa-
rately, combining them in an additive manner and ignoring
any nonlinear effects. Later we show that the assumptions
described here do not significantly affect the quality of the
generated events.

Finally, we utilize the fact that responses from a particular
track segment are localized in space and time, and therefore
we only model a small number of pads and time buckets for
a given track segment. Since the pads are identical, we only
train our model on the responses from a small subset of pads
in a single pad row and translate the predictions onto all other
pads. In fact, there are two shapes of pads (short and long), so
a more precise simulation of their responses requires either
two separate models or an input condition variable specifying
the type of the pad to model the response for. In this work, we
train our model only on the responses from the short pads.

4.1 Data

The training dataset is obtained by running the detailed MPD
simulator [41], which is based on Geant3 transport of parti-
cles through the detector materials and realistic simulation
of the detector responses based on the first principles. Each
of the simulated events has only one positively charged pion
with the transverse momentum of pT = 478.3 MeV/c. The
pions are generated uniformly along the drift path with the
azimuthal angle ϕ in a range [−20; 20]◦ and the polar angle
θ in a range [30, 150]◦. The generated responses are picked
up from the 20th pad row for further analysis.

In the coordinate system local to a given sector of the
detector, the track segment crossing a particular pad plane is
defined by four parameters:

– crossing angle the angle between the transverse projec-
tion of the particle momentum and the normal to the pad
plane;
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– dip angle the angle between the full momentum and its
transverse projection;

– drift length distance from the center of the segment to
the triggered pad row, measured in the number of time
buckets from the bunch crossing to the pad response gen-
eration;

– pad coordinate coordinate along the pad row direction
of the projection of the track segment center onto the
triggered pad row, measured in pad widths.

For the sector selected for training, the crossing angle equals
the azimuthal angle ϕ, and the dip angle equals to (θ − 90)◦.
Overall, 20,000 segment responses were generated, which
were split into training and validation subsets as 75:25,
respectively.

4.2 Data preprocessing

As was mentioned earlier, pad response contributions from a
single track segment affect only a few pads and time buckets.
For each segment, in order to make use of this response local-
ization, we shift the responses by the integer parts of the drift
length and pad coordinate along the time and pad row direc-
tions, respectively. After having done this, the responses in
the whole training set fit onto a matrix of 8 pads by 16 time
buckets, which constitutes our target space. The responses
span over several orders of magnitude, so we scale them with
log10(x + 1) for smoother learning.

Since we utilize the invariance of the responses under
translations along the transverse plane (and along the pad row
direction in particular), it is sufficient to only feed the frac-
tional part of the pad coordinate into our model, rather than
the full pad coordinate. As for the drift length, the response
characteristics do depend on its absolute value (e.g. the spread
of the response in time buckets increases with the drift length
due to diffusion effects), so both the fractional part and the
full number are fed into the model as two separate features.
Providing the fractional part as a separate input is motivated
by the fact that the invariance under longitudinal translations
does hold to some degree, and, therefore, this additional fea-
ture contains meaningful information. Before being fed into
the model, the angles and the drift length are linearly scaled
down to a [−1, 1] region.

4.3 Network architecture and the objective function

Since our target space has image-like structure, as shown
in Fig. 1, it is natural to apply convolutional neural net-
work architectures. However, we obtain that, for our data,
the same generated data quality can be achieved with a fully-
connected generator architecture that runs much faster com-
pared to a convolutional network (on a single CPU). There-
fore, we decide to only use convolutions in the discriminator

Fig. 1 Examples of the generated pad responses. Vertical and horizon-
tal axes correspond to the pad and time bins, respectively. Each image
from the validation dataset (1st and 3rd columns) is paired up with a
generated image (2nd and 4th columns) obtained for the same values
of the conditional variables

Fig. 2 Activation function f (x) as defined in Eq. (1)

network, where high performance is not crucial, while switch
to a fully-connected network for the generator. Overall, the
structures of both networks are given in Appendix A.

In order to provide the features to the discriminator, we
tile each of them onto 8 × 16 matrices to concatenate with the
main pad response image along the channels axis. Addition-
ally, we concatenate the features vector to the dense repre-
sentation obtained at the end of the convolutional part of the
network. Alternative architectures, where only one of these
two feature paths is kept, demonstrate inferior quality of the
generated samples.

In the detailed simulator, the spectrum of the individual
pad responses is continuous only down to a certain noise
threshold level, below which everything is set to be exactly
0. This means that the target space we are simulating with a
GAN contains a discrete mode corresponding to these zero
values, which is problematic to learn. In fact, we observe that
even the quality of the samples generated above the threshold
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Fig. 3 Profiles of the validation metric distributions as the function
of the input variables. For each metric ξ , we show its average value
μξ (middle thick line), as well as the average shifted up and down by
a standard deviation of the metric distribution μξ ± σξ (top and bot-

tom thick lines). Line thickness denotes the statistical uncertainty of the
corresponding value. For a smoother representation, the values were cal-
culated in overlapping running windows over the input variables (100
bins total, 20-bin window size)
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deteriorates. We attribute this effect to the GAN attempting
and failing to describe the steep cutoff with its continuous
output. To mitigate this problem, we use a custom activation
function at the generator output layer. The function has a very
steep slope for the values mapped to the interval between 0
and the threshold, by which we effectively reduce the proba-
bility of outputs to end up in that region. The particular form
of the function is given by the formula (see Fig. 2):

f (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

αT ex x ≤ 0

T
(
α + (1 − α) x

δ

)
0 ≤ x ≤ δ

T − δ + x δ ≤ x,

(1)

where T = log10 2 is the threshold, α = 0.1 and δ = 0.01.
We observe that using this activation function at the output
layer of the generator improves the overall quality of the
generated samples.

For the GAN objective, we use the Wasserstein distance
[42] with the gradient penalty term from [43], as we find it
resulting in the best generated data quality. We train both
generator and discriminator using RMSprop optimizer with
learning rates starting at 0.0001 at the beginning of the train-
ing process and decreasing by a factor of 0.999 after each
epoch1. We make 8 discriminator update steps per single
generator step. The batch size is 32. Model design and train-
ing is done using the TensorFlow 2.1 framework [44].

5 Results and validation

For visual evaluation of the model, in Fig. 1, we show the
example pad response images from the validation dataset
paired up with the ones generated with the GAN for the same
track segment parameters. As can be seen from the plot, the
GAN-generated images are visually similar to those obtained
from the detailed simulator.

To make a more precise quantitative evaluation, we intro-
duce a set of metrics that we profile as a function of input
variables and compare between the generated and valida-
tion data. For each pad response image, we calculate the
1st order moments, i.e. the pad and time coordinates of the
response distribution barycenter, the 2nd order moments, i.e.
the squared widths of the response distribution and covari-
ance between the pad and time coordinates, and the integrated
amplitude. The profiles of these quantities can be seen in
Fig. 3.

1 By the term epoch, we mean a single full pass through the train-
ing dataset. When making k discriminator updates per single generator
update, this implies that, per epoch, the generator is trained on 1

k+1 th
fraction of the training data, while the discriminator – on the remaining
k

k+1 -th fraction.

Overall, the plots in Fig. 3 demonstrate a good agree-
ment between the averages of the metric distributions, and
also a reasonable agreement between their widths. The pad
response barycenters and widths along pad row and time
directions are well reproduced, which should translate to the
accurate simulation of the coordinate resolution and two-
track resolution of the TPC. The most notable biases may
be found in the variances of the integrated amplitude dis-
tributions, as the amplitudes span several orders of magni-
tude and hence are particularly difficult to model precisely.
Biases in the amplitude modeling can affect the dE/dx mea-
surements, and thus the model estimates should be used with
care. It should be noted that our approach is aimed to replace
the expensive simulation of the electron drift and electron-
ics response modeling, rather than track propagation. This
means that Geant3 energy deposits in the detector mate-
rial can be used to scale the predicted integrated amplitude
and therefore account for any mismodeling of the amplitude
introduced by the GAN. This is the preferred solution that is
used in the tests described below.

In order to evaluate the quality of our model with recon-
structed detector objects, our model is integrated into the
MPD software stack. We use our model to simulate TPC
pad responses for tracks from central Au+Au collisions at√
sNN = 9 GeV generated with UrQMD [45]. The neural

network is used to simulate pad responses for the charged par-
ticles of a wide kinematic range in both long and short pads
of the TPC, even though it is only trained on the responses
in short pads from pions with a fixed transverse momentum.
Other MPD subsystems are simulated with the detailed simu-
lation procedures. The simulated detector responses are then
fed into the standard reconstruction and track finding algo-
rithms [46]. The comparison with the detailed simulation is
then carried out for the reconstructed tracks with |y| < 0.5,
which have at least 20 hits reconstructed in the TPC and
originate from the primary pions in the event.

Figure 4a–c show the measured resolution for the distance
of closest approach (DCA) to the primary vertex as a func-
tion of the transverse momentum of the particle. Figure 5
shows the momentum resolution. The figures demonstrate
good agreement for the DCA resolution between our model
and the detailed simulation. For momentum resolution, the
agreement is good for p > 0.9 GeV, while at lower momen-
tum values our model predictions result in a slightly overes-
timated resolution, compared to the detailed simulation.

Figure 6 shows the track reconstruction efficiency as a
function of the transverse momentum and rapidity. This quan-
tity is shown for regular and tight track selection criteria,
the latter corresponding to an additional requirement on the
track DCA. These plots demonstrate reasonable agreement
between our model and the detailed simulation in reconstruc-
tion efficiencies.
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Fig. 4 Distance of closest approach resolution as a function of the transverse momentum

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

 [GeV/c]p

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

pp σ

simulation
GAN

 > 20hitsn
σDCA < 3

Fig. 5 Momentum resolution as a function of the full momentum

Finally, Fig. 7 shows the efficiency of matching the tracks
to the signals from the Time-of-Flight (TOF) system of the
MPD detector as a function of the transverse momentum and
rapidity (Fig. 7a, b , respectively), and the distribution of the
number of hits on track (Fig. 7c). The demonstrated agree-
ment is excellent for the TOF matching efficiency, while the
number of hits distributions are slightly inconsistent, with our
model resulting in a slightly larger number of hits measured
for a track. This effect is consistent with the overestimated
momentum resolution and happens, as we believe, because
the model is trained on the data from only the short TPC pads
while utilized for the whole detector.

To demonstrate that not taking into account the differ-
ence between the long and short pads may result in the
observed discrepancies, we plot distributions of deviations
Δx = xreconstructed − xtrue of the reconstructed from the true
cluster coordinates for rows of short (pad row 20) and long
(pad row 40) pads in Fig. 8, where x is the coordinate along
the pad row direction. This should reflect the coordinate reso-
lution of the pads. As one would expect, the GAN predictions
are similar for both short and long pads, and in a reasonable
agreement with the detailed simulation results for the short

pads, with slight inconsistencies in the shape in the center
of the peak and far in the tails. The coordinate resolution,
however, is worse for the long pads, as is predicted by the
wider Δx distribution from the detailed simulation, which is
not captured by the GAN.

6 Discussion

As was shown in Sect. 5, the proposed model demonstrates
good performance over most of the metrics considered. The
barycenters and widths of the pad response distributions are
well reproduced. Track reconstruction and TOF-matching
efficiencies, as well as vertexing resolution, agree between
the GAN and the detailed TPC simulation model predic-
tions. We observe good agreement in a wide kinematic
range, although the model is originally trained on responses
from pions with a fixed transverse momentum. This can be
explained by the fact that momentum and particle type mostly
affect the signal amplitude rather than the shape. While the
former is important for the dE/dx measurements, it is the
latter that defines tracking characteristics. In fact, momen-
tum does affect the shape of the signal through the curvature
of the track, though this should be a rather little effect since
the pad size is much smaller than the radius of the curvature.

Our model predictions result in an overestimated momen-
tum resolution which goes in line with predicting more hits
on track. These biases are likely to be caused by training
our model on the responses from only the short pads (that
have better coordinate resolution compared to the long ones)
while making predictions for the whole detector. The inte-
grated response amplitude distributions, though being repro-
duced well enough on average, are captured in the GAN with
a slightly lower spread compared to the validation data. This
may have an effect on the dE/dx measurements in TPC
and would require further tuning of the GAN model, or even
modifications to the architecture, e.g. a separate factorized
model to only predict the integrated amplitude. Alternatively,
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Fig. 6 Reconstruction
efficiency as a function of the
transverse momentum (top row)
and rapidity (bottom row). Right
column corresponds to the
additional requirement on the
reconstructed tracks
quality (DCA < 3σ )
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Fig. 7 TOF matching efficiencies over transverse momentum (a) and rapidity (b) and distribution of the number of hits per track (c)

one can use Geant3 energy deposits in the detector mate-
rial to scale the predicted integrated amplitude and therefore
account for any mismodeling of the amplitude introduced by
the GAN. Investigation of the dE/dx performance, however,
is beyond the scope of this work.

Along with possible enhancements in the amplitude mod-
eling and incorporating the pad type into our model, fur-
ther developments could introduce various particle types and
momentum of the particle at a given track segment as addi-
tional input parameters. It is also important to evaluate the
bias introduced by factorizing the responses at the adjacent
pad rows.

To evaluate the performance speed-up, we run the detailed
and fast TPC models on a single core of an Intel Core i7-
3770K (3.50GHz) CPU, with no GPU acceleration. These
tests show the GAN model integrated into the MPD software

running 12 times faster compared to the detailed simulation
on the central Au+Au events.

7 Conclusion

In this work, we have shown a new approach to fast simu-
lation of TPC type detectors, based on a Generative Adver-
sarial Network. Our model is built for the TPC detector of
the MPD experiment at the NICA accelerator complex. In
our approach, we split the charged particle tracks into small
segments contributing to different rows of the sensitive TPC
pads, and then generate the pad responses at a given row con-
ditioned by the track segment parameters. A custom activa-
tion function is used at the generator output layer to account
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Fig. 8 Distributions of differences Δx = xreconstructed − xtrue between
the reconstructed and true cluster coordinates along the pad row direc-
tion. For the short (long) pads from the pad row 20 (40), the detailed
simulation results are shown in the dark (light) gray shaded histogram,
while the histogram for the GAN prediction is shown with the red
(magenta) line. The ratios between the GAN and detailed simulation
yields in the same pad rows are shown in the bottom part of the plot

for the discrete mode of the response distribution, caused by
the noise threshold in the detailed simulation.

We have evaluated the predictions of our model by both
comparing elementary response distribution characteristics,
i.e. 1st and 2nd order moments and integrated amplitudes,
as well as the reconstructed event properties like vertex and
momentum resolution and track reconstruction efficiencies.
Most of the evaluation metrics show good agreement of our
model with the detailed simulation. The mismodeling of
the variance of the integrated amplitude can be mitigated
by scaling it with the Geant3 energy deposits in the detec-
tor material. The few inconsistencies that are seen in the
reconstructed characteristics may be attributed to training
the model on the responses from the short pads only while
using it to predict on both short and long pads. We expect
our model to be ready for use in physics tasks once trained
with transverse momentum and pad type information taken
into account.

Integrated into the MPD software, the proposed model
runs 12 times faster on central Au+Au events, compared to
the detailed simulation. This speedup translates to a factor
of 2 improvement in the time spent on the overall simulation
& reconstruction pipeline and therefore is sufficient at the
current stage of the MPD software development.
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Appendix A: Network architecture

The neural network architectures for the discriminator and
generator are shown in Fig. 9.
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Fig. 9 Neural network architecture for the discriminator (left) and the generator (right)
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