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Abstract We present a detailed comparison of the fixed-
order predictions computed by four publicly available com-
puter codes for Drell–Yan processes at the LHC and Tevatron
colliders. We point out that while there is agreement among
the predictions at the next-to-leading order accuracy, the pre-
dictions at the next-to-next-to-leading order (NNLO) differ,
whose extent depends on the observable. The sizes of the dif-
ferences in general are at least similar, sometimes larger than
the sizes of the NNLO corrections themselves. We demon-
strate that the neglected power corrections by the codes that
use global slicing methods for the regularization of double
real emissions can be the source of the differences. Depend-
ing on the fiducial cuts, those power corrections become lin-
ear, hence enhanced as compared to quadratic ones that are
considered standard.

1 Introduction

The very high quality of data for many Standard Model (SM)
scattering processes collected at the Large Hadron Collider
in recent years makes it mandatory to use high precision the-
oretical predictions for physics analyses of these data. This
is true especially for the vector-boson hadroproduction that
is the prime benchmark process at hadron colliders. The the-
ory computations need to account for radiative corrections,
the dominating ones being due to quantum chromodynam-
ics (QCD), where presently the next-to-next-to-leading order
(NNLO) is the state-of-the-art [1]. In addition, the experi-
mental cuts such as limits on the transverse momenta or the
rapidities of the observed final state particles applied during
the data selection have to be included in the theory calcula-
tions. Cross section predictions have to be provided for the
respective fiducial regions.
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For colorless final states such as the Drell–Yan process or
more specifically, for W±- and Z -boson production includ-
ing their decay, the QCD predictions are known to NNLO for
fully exclusive kinematics [2–5]. These computations require
the combination of squared matrix elements with three dif-
ferent multiplicities of partons in the final state and the subse-
quent cancellation of the soft and collinear singularities upon
integration over their phase space to arrive at infrared finite
results, a step which is performed with the help of dedicated
subtraction schemes. In summary, the problem is considered
being solved and the NNLO QCD predictions for W±- and
Z -boson production including the leptonic decay have been
made available in several computer programs which perform
the integration of the parton level predictions numerically by
Monte Carlo methods. It has become apparent, however, that
the level of accuracy of the published codes is not sufficient
for the needs in analyses of experimental data. Significant
deviations between the predictions of the different codes have
been documented, for example, in an ATLAS analysis [6].

The motivation for the present study comes from the use
of data on W±- and Z -boson hadro-production collected at
the LHC and the Tevatron in the determination of parton dis-
tribution functions (PDFs) at NNLO accuracy. Those data
consist of differential distributions in the pseudo-rapidity of
the decay leptons and typically have a precision ofO(1−2%),
which is mainly dominated by the experimental systematics.
This fact and the generally rather small size of the pure NNLO
QCD corrections in the range of O(1%) or even less relative
to the fiducial cross sections at next-to-leading order (NLO)
lead us to investigate the precision of available QCD predic-
tions. To that end, we focus on two aspects in this work. For
one, we provide benchmark numbers for NNLO QCD pre-
dictions in kinematics which are representative for the bulk
of the available experimental data. As a target we aim at pre-
dictions with a residual uncertainty of less than O(0.1o/oo) in
each bin from the Monte Carlo integration for the cross sec-
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tion integrated over the fiducial region, whenever possible in
order to have accurate results when comparing the different
codes. Previous comparisons [7] of some of the published
codes have limitations in the precision of the predictions.
A second point concerns the investigation of the observed
deviations among the codes in the light of the subtraction
schemes used, which are either local or global, depending on
whether the cancellations of the infrared singularities are per-
formed locally in the integrand at each point in phase space
or whether they are accomplished globally after integrating
over a slice of the phase space. In particular, we illustrate the
impact of fiducial cuts on the decay leptons for subtraction
schemes with slicing.

The paper is organized as follows. In Sect. 2 we present
the benchmark numbers for two representative sets of W±-
and Z -boson data from the LHC and the Tevatron. We first
validate the different codes at NLO in QCD and then quan-
tify the deviations at NNLO. In Sect. 3 we provide a brief
review of global slicing methods and the power counting in
the slicing parameter. Then we compute the effect and the
size of power corrections on the example of the lepton decay
phase space for the fiducial cuts of the LHC and Tevatron data
considered in the previous section. We conclude in Sect. 4.

2 Benchmark computations

2.1 Set-up and validation

The set-up for benchmarking available QCD predictions for
W±- and Z -boson hadro-production cross sections up to
NNLO in QCD in the fiducial phase space of the experi-
mental measurement contains three aspects: the choice of
the data sets, the list of input parameters and the selection of
the NNLO QCD codes for the comparison of the theoretical
predictions.

We choose two sets of data on W±- and Z -boson pro-
duction collected by the ATLAS experiment at the LHC and
the DØ experiment at the Tevatron, respectively, which are
statistically significant in current fits of PDFs.

• The ATLAS data set for the W±- and Z/γ ∗-production
cross sections [6] measured at a center-of-mass energy
of

√
s = 7 TeV at the LHC. These data are given in

form of pseudo-rapidity distributions for the decay elec-
tron or muon (W±-production) and the decay lepton-
pair (Z/γ ∗-production), respectively. The transverse
momenta plT and the pseudo-rapidities ηl of the decay
leptons are subject to fiducial cuts. The cross sections for
Z/γ ∗-production are measured at central as well as at
forward pseudo-rapidities.

• The data obtained by DØ on W±-boson production at√
s = 1.96 TeV at the Tevatron [8] measures the electron

charge asymmetry distributions and their dependence on
the electron pseudo-rapidity. These data also probe for-
ward kinematics. Also, the DØ data apply fiducial cuts,
both symmetric as well as staggered, on the transverse
momenta pl,νT of the electron and the neutrino and on
their pseudo-rapidities.

Another data set by ATLAS, the measurement of the muon
charge asymmetry in W±-boson production at

√
s = 8 TeV

at the LHC [9] has similar experimental precision as the cho-
sen data set [6] collected at

√
s = 7 TeV and also largely

overlaps in kinematics. Similar considerations apply to data
from CMS and LHCb, e.g., [10,11]. Hence, we do not include
these data in the benchmark comparison.

We use theGμ scheme with input valuesGF , MZ , MW and
with sin2(θW ) and the QED coupling α(MZ ) as output val-
ues. This scheme minimizes the impact of NLO electroweak
corrections, see e.g. [12]. In detail, our SM input parameters
are [13]

Gμ = 1.16637 × 10−5 GeV−2 ,

MZ = 91.1876 GeV , �Z = 2.4952 GeV ,

MW = 80.379 GeV , �W = 2.085 GeV ,

(1)

and for the relevant CKM parameters

|Vud | = 0.97401 , |Vus | = 0.2265 ,

|Vcd | = 0.2265 , |Vcs | = 0.97320 ,

|Vub| = 0.00361 , |Vcb| = 0.04053 . (2)

The computations are performed in the MS factorization
scheme with n f = 5 light flavors. Therefore we take the
n f = 5 flavor PDFs of ABMP16 [14,15] as an input together

with the value of the strong coupling, α
(n f =5)
s (MZ ) =

0.1147. These choices do not bias any of the predictions we
discuss below. The renormalization and factorization scales
μR and μF are set to μR = μF = MV , where MV is the
mass of the gauge boson V .

We run the following publicly available codes designed
for the computation of the fully differential NNLO QCD
predictions for the lepton rapidity distributions.

• DYNNLO (version 1.5) [2,3]1 (No built-in computation
of PDF uncertainties available.)

• FEWZ (version 3.1) [16,17]2

• MATRIX (version 1.0.4) [18]3 (No built-in computation
of PDF uncertainties available.)
MATRIXuses the scattering amplitudes fromOpenLoops
[19].

1 Code available from http://theory.fi.infn.it/grazzini/dy.html.
2 Code available from https://www.hep.anl.gov/fpetriello/FEWZ.html.
3 Code available from https://matrix.hepforge.org/.
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Fig. 1 The NLO QCD cross sections for inclusive pp → W± + X →
l±ν + X as function of pseudo-rapidity ηl , computed with DYNNLO,
MATRIX and MCFM relative to FEWZ and using the ABMP16 PDFs.
Cuts of pl,νT ≥ 25 GeV and MT ≥ 40 GeV for the transverse momenta

and mass are applied as in the ATLAS data selection [6]. The error bars
indicate the accuracy of the numerical integration, shown by the hori-
zontal dashed lines for the FEWZ result. The MATRIX result is plotted
in the center of each ηl -bin, whileDYNNLO andMCFM results are shifted
slightly to the left and the right

• MCFM (version 9.0) [20]4

MCFM uses the implementation of the NNLO computa-
tion of Ref. [5].

The codes differ by the subtraction schemes used. FEWZ
uses sector decomposition and employs a fully local subtrac-
tion scheme. DYNNLO and MATRIX both use qT -subtraction
[2] at NNLO, which is a global phase space slicing method.
MCFM uses N -jettiness subtraction [21,22] at NNLO, which
is also a global phase space slicing method, see [23] for a
recent review. Codes with global slicing do require a slicing
parameter. These are rcut for MATRIX as a cut on qT and τcut

for MCFM as the jettiness slicing parameter.
The DYNNLO program is a legacy code, now superseded

by MATRIX. It has been the first publicly available program
containing the NNLO QCD predictions for fully exclusive
kinematics and it is included in this list because of the ATLAS
study [6] and its continued use in the analyses of experimen-
tal data. An improved reimplementation of theDYNNLO code
is also part of program DYTurbo for fast predictions for
Drell–Yan processes [24].5 DYTurbo includes the resum-
mation of large logarithmic corrections, too. In the fixed-
order mode, software profiling was employed to achieve code
optimization, but it reproduces exactly the results ofDYNNLO
within numerical uncertainties due to the different integration
method, hence its predictions are not included in our bench-
mark comparisons. Another code which we mention for ref-
erence is SHERPA-NNLO-FO [25].6 We do not include this
code in the benchmark exercise and instead refer to the pre-
vious study [7].

4 Code available from https://mcfm.fnal.gov/.
5 Code available from https://dyturbo.hepforge.org/.
6 Code available from https://slac.stanford.edu/~shoeche/pub/nnlo/.

We start with the validation up to NLO of the codes
selected for the comparison. This serves a two-fold purpose.
First, it provides a check on the input settings for the codes
and second, it demonstrates the level of agreement for the
benchmark results. We show first the results for the predic-
tions for the W±- and Z/γ ∗-production cross sections at√
s = 7 TeV corresponding to the kinematics of the ATLAS

data set [6]. In all cases, here and below we use the ABMP16
PDFs at NNLO and the value α

(n f =5)
s (MZ ) = 0.1147, inde-

pendent of the order of perturbation theory for the cross sec-
tions σLO, σNLO and σNNLO. We have found excellent agree-
ment for all cross sections computed at the leading order (LO,
not shown here) at O(10−5). At NLO we can directly com-
pare and quantify the accuracy of the numerical integrations,
as all codes employ fully local subtraction schemes except
forDYNNLO, which uses qT -subtraction also at NLO.7 FEWZ
applies sector decomposition while MATRIX and MCFM all
use by default the dipole subtraction [26].

In Fig. 1 we plot the results for the W±-production cross
sections at

√
s = 7 TeV at NLO corresponding to the kine-

matics of the ATLAS data set [6] and we find agreement at
the level of O(1o/oo) between FEWZ, MATRIX and MCFM in
the entire ηl range, while for DYNNLO we find the values
to be systematically enhanced by O(5o/oo) for both, W+-
and W−-production. In Figs. 2 and 3 we show the NLO
cross sections for Z/γ ∗-production at

√
s = 7 TeV in the

ATLAS kinematics with the different selection cuts on the
lepton pseudo-rapidities. In the case of both leptons at cen-
tral pseudo-rapidities |ηli | ≤ 2.5 for i = 1, 2 in Fig. 2 we
find agreement among all codes, except for a slight system-
atic off-set of the DYNNLO result by O(3o/oo) for ηll � 1.0.

7 Dipole subtraction is used in DYNNLO only in the computation of the
vector-boson+jet contribution.
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Fig. 2 Same as Fig. 1 for the NLO QCD cross sections for pp →
Z/γ ∗ + X → l+l− + X production at

√
s = 7 TeV as function of the

pseudo-rapidity ηll . Cuts of pT 1,2 ≥ 25 GeV, 66 ≥ Mll ≥ 116 GeV
and |ηli | ≤ 2.5, i = 1, 2 for the lepton pseudo-rapidities are applied

In Fig. 3 we display the case when one lepton is required at
central and the other one instead at forward pseudo-rapidity,
|ηl1 | ≤ 2.5 ≤ |ηl2 | ≤ 4.9. We observe agreement at the level
ofO(1−2o/oo) between FEWZ, MATRIX and MCFM as shown
in Fig. 3 on the right, while the DYNNLO results turn out to be
larger by up to a few per cent in the first ηll bins. Finally, in
Fig. 4 we plot the electron charge asymmetry distribution Ae

in W±-boson production at
√
s = 1.96 TeV for two choices

of cuts applied in the selection of the DØ data [8]: on the left
we have symmetric cuts, pe,νT ≥ 25 GeV, and on the right
staggered cuts, peT ≥ 35 GeV and pν

T ≥ 25 GeV. We show
the ratio of the DYNNLO, MATRIX and MCFM results with
FEWZ. The level of agreement for Ae is better than O(1%),
except in regions, where NLO predictions are very small. For
symmetric cuts in Fig. 4 on the left, this happens in the first
bin, where the relative agreement deteriorates to a few per
cent, and in the bin ηe = 2.1, where Ae vanishes and the cor-
responding ratios have not been plotted. For staggered cuts in

Fig. 4 on the right, this is observed also in the first bin and in
the region ηe � 2.5. The individual cross sections for W±-
production are computed at an accuracy of O(0.1o/oo), but in
the asymmetry, one looses more than one order of magnitude
in precision.

In summary, the validation shows that the predictions by
MATRIX, MCFM and FEWZ are all in very good agreement
at NLO. DYNNLO using qT -subtraction also at NLO deliv-
ers results, which are typically accurate up to a few per
mill and deviate in particular for distributions with challeng-
ing kinematics like in Fig. 3, where agreement can only be
reached at the level of a few per cent. Moreover, the devia-
tions of theDYNNLO results from the ones byMATRIX,MCFM
and FEWZ display a particular pattern as a function of the
(di-)lepton pseudo-rapidities ηl(ηll), which will be addressed
in Sect. 3 below in the light of power corrections in the slicing
parameter.

2.2 NNLO benchmark predictions

We now proceed to the QCD predictions at NNLO accuracy,
again starting with W±- and Z/γ ∗-production cross sections
at

√
s = 7 TeV as measured by ATLAS data set [6]. As a

baseline for the comparison, we have computed the NNLO
QCD predictions with the ABMP16 PDFs [14] and FEWZ
as this is the only available code which implements a fully
local subtraction scheme at NNLO. We emphasize that our
conclusions do not depend on the choice for the default the-
oretical prediction. Note, that the ATLAS data have been
released after completion of the ABMP16 PDFs and were
not included in the fit. However, these data are in a good
agreement with the predictions.

In Fig. 5 we show the pulls of data and the differences
of NNLO predictions obtained from DYNNLO normalized to
the predictions computed with the FEWZ code for the same
distributions as studied in the previous section at NLO. The

Fig. 3 Same as Fig. 2 with one lepton at forward pseudo-rapidities and cuts of |ηl1 | ≤ 2.5 and 2.5 ≤ |ηl2 | ≤ 4.9. Predictions by DYNNLO, MATRIX
and MCFM relative to FEWZ (left) and zoom on MATRIX and MCFM results (right)
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Fig. 4 The ratio of the NLO QCD corrections to the electron charge
asymmetry distribution Ae in W±-boson production at

√
s = 1.96 TeV

computed with DYNNLO, MATRIX and MCFM to ones by FEWZ. Cuts

are applied as in the DØ data selection [8]: pe,νT ≥ 25 GeV symmetric
(left) and peT ≥ 35 GeV and pν

T ≥ 25 GeV staggered (right)

Fig. 5 The pulls for the ATLAS data measured in inclusive pp →
W± + X → l±ν + X and pp → Z/γ ∗ + X → l+l− + X production
at

√
s = 7 TeV [6] with the statistical (inner bar) and the total uncer-

tainties, including the systematic ones. The fiducial cuts on the decay

leptons in the final state are indicated in the figure. The ABMP16 central
predictions at NNLO are obtained with FEWZ and the deviations of the
predictions from DYNNLO are shown (dashed) for comparison

nominal relative accuracy of the numerical integration is in
all cases at the level of a few units in 10−4, thus negligi-
ble in the plots. For the lepton-pseudo-rapidity (ηl ) distri-
bution in W+-production in Fig. 5, the DYNNLO results are
below the FEWZ ones by up to O(1%) and by a few per mill
for W−-production, in both cases over the whole range in
ηl . For the di-lepton pseudo-rapidity distribution in the cen-
tral Z/γ ∗-production the DYNNLO predictions are below the
FEWZ ones by several per mill up to ηll ≤ 1.5 and tend to
agree better with the FEWZ ones for larger ηll . For forward
Z/γ ∗-production instead, we see the DYNNLO results being
below the FEWZ ones by up to O(1 − 2%) in the entire ηll
range, with significant deviations up to O(7%) in first bins.

In Fig. 6 we show the same comparison, now with the
NNLO predictions obtained with the MATRIX code. Our
findings regarding the deviations from the FEWZ results are
qualitatively similar, quantitatively slightly smaller to those
fromDYNNLO, with both codes being based on the qT -slicing
method. All DYNNLO results have been obtained with the
default minimum value rmin

cut = qmin
T /MV = 0.8% for the

slicing cut on qT . The MATRIX code uses rmin
cut = 0.15% as

the default and offers also the choice rmin
cut = 0.05% for the

Z/γ ∗-production process. In detail we find MATRIX results
being below the FEWZ ones by up to O(1%) for the ηl -
distribution in W+-production, and by a few per mill for
W−-production. For the ηll -distribution in Z/γ ∗-production
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Fig. 6 Same as Fig. 5 using predictions by the MATRIX code with different values for the qT -slicing cut: rmin
cut = 0.15% (dashed) and rmin

cut = 0.05%
(dashed-dotted)

at central rapidities we see the MATRIX numbers with the
default value rmin

cut = 0.15% below the FEWZ ones by a few
per mill for ηll ≤ 1.0, above theFEWZ ones in the bins around
ηll � 1.5 and in agreement with FEWZ for larger rapidities.
On the other hand, the MATRIX results with rmin

cut = 0.15%
for forward Z/γ ∗-production are below the FEWZ ones by
up toO(1−2%) in the entire ηll range and show a significant
deviation of O(5%) in the first bin. In order to deal with the
residual dependence on the slicing cut in qT MATRIX extrap-
olates the total rates for rmin

cut → 0 and suggests a uniform

rescaling of each bin by the ratio σ
extrapolated
NNLO /σ

rcut
NNLO, see also

Sect. 3. In Fig. 6 this rescaling has not been applied. If done,
it would lead to upward shifts of the central values obtained
with MATRIX by 5 ± 2 o/oo for W+- and by 4 ± 2 o/oo for
W−-production. Central Z -boson predictions would move
upwards by 2 ± 1 o/oo and the ones for forward Z -bosons by
7 ± 3 o/oo. The uncertainty in those rescaling factors comes
from the extrapolation uncertainty in σ

extrapolated
NNLO . Such shifts

decrease, but do not eradicate the differences. The MATRIX
results with the smaller value rmin

cut = 0.05% lead to better
agreement with the FEWZ results, i.e., there are systematic
upward shifts in Fig. 6. In detail, these amount to a few per
mill for ηll ≤ 1.0 for Z/γ ∗-production at central rapidities
and up to a few per cent for forward Z/γ ∗-production in the
bins with ηll � 2.0. The computational demands for these
MATRIX runs were huge.8 The suggested rescaling factor
σ

extrapolated
NNLO /σ

rcut
NNLO turns out to be unity within the numerical

accuracy of our computation for central Z/γ ∗-production.

8 The required CPU times for the MATRIX runs with rmin
cut = 0.05%

were roughly 200.000 hrs for central and approximately 350.000 hrs
for forward Z -boson production.

Predictions for forward Z -bosons would be shifted upwards
uniformly by 3 ± 2 o/oo and the observed differences, espe-
cially in the first ηll bins, would still persist.

Finally, in Fig. 7 we repeat the benchmark study with
NNLO predictions obtained with the MCFM code, in which
case the numerical integration accuracy is typically O(1o/oo)
and negligible in the plots. We do find substantial deviations
of theMCFM results at NNLO, being below theFEWZ ones for
all distributions considered. Differences amount to O(3%)

for the ηl -distribution inW+-production and up toO(2%) for
W−-production, respectively. For central Z/γ ∗-production
the ηll -distribution is alsoO(2%) below the FEWZ results for
ηll ≤ 1.5 and up toO(2−3%) for forward Z/γ ∗-production.
In the first bins of the latter the deviations grow up toO(20%).
As discussed, MCFM uses N -jettiness subtraction and allows
for different τcut choices for the jettiness slicing parameter.
We use the default value, τcut = 6 · 10−3 and two smaller
ones, τcut = 1 · 10−3 and τcut = 4 · 10−4, the limitation
being here the goal to reach an integration accuracy of a few
units in 10−4 in reasonable time9 with given computational
resources. The decreasing values of τcut display the expected
trend clearly in Fig. 7, namely, the smaller the choice of τcut,
the closer the MCFM result to that by FEWZ. Nevertheless,
the differences remain. In order to compare those differences
easier, we collect the best prediction for each code at NNLO
in a single figure in Fig. 8.

Given the level of agreement among the predictions at
NLO accuracy, the deviations observed in Figs. 5, 6 and

9 The required CPU times for the MCFM runs with τcut = 4 · 10−4 were
roughly 180.000 h for W±-boson, 160.000 h for central and approxi-
mately 50.000 h for forward Z -boson production.
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Fig. 7 Same as Fig. 5 using predictions by the MCFM code and with different values for the jettiness slicing parameter: τcut = 6 · 10−3 (dashed),
τcut = 1 · 10−3 (dotted), and τcut = 4 · 10−4 (dashed-dotted)

Fig. 8 Compilation of the NNLO theory predictions of Figs. 5, 6 and 7. Only the results with the smallest slicing cuts are plotted: MATRIX with
rcut = 0.15% for W± → l±ν and rcut = 0.05% for Z → l+l− production; MCFM with τcut = 4 · 10−4

7 need to be put into perspective by looking at the size of
the pure NNLO corrections alone, which we define bin-by-
bin through the deviation of the NNLO K-factor from one,
δNNLO = (σNNLO/σNLO − 1). Typically pure NNLO cor-
rections δNNLO are rather small, and we illustrate those only
in the case of largest corrections. For W+-production δNNLO

amounts to a few per mill for ηl � 1 and grows to O(1−2%)

for larger rapidities ηl � 1, while instead for W−-production
δNNLO is of the size O(1%) for ηl � 1 and increases to
a few per cent for larger rapidities. For the central Z/γ ∗-
production the NNLO corrections δNNLO are only a few per
mill for ηll � 1.5 and grow to O(2−3%) for larger di-lepton

rapidities. Thus, the observed differences between consid-
ered codes are actually similar in size to that of the pure
NNLO corrections, even exceeding them at times. The case
of forward Z/γ ∗-production features larger higher order cor-
rections and will be discussed in detail next. The comparable
size of the NNLO corrections and differences among the
predictions signals that the numerical precision of the stud-
ied computer programs does not match the formal accuracy
of predictions at NNLO.

In Fig. 9 we focus on the ηll -distribution for the forward
Z/γ ∗-production obtained by ATLAS [6]. The particular
fiducial cuts on the decay leptons for these data lead to size-
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Fig. 9 The pulls for the ATLAS data for pp → Z/γ ∗+X → l+l−+X
production at forward rapidities measured at

√
s = 7 TeV [6], normal-

ized to the ABMP16 predictions at NNLO obtained withFEWZ (version

3.1) compared to predictions by the DYNNLO (left) and the FEWZ codes
(right). Shown are the LO (dotted), NLO (dashed) and NNLO (solid)
predictions for each code

Fig. 10 Same as Fig. 9 using predictions by the MATRIX (left) and the MCFM codes (right)

able QCD corrections at higher orders, which we illustrate
in Fig. 9, where we display at LO, NLO and NNLO accura-
cies obtained withDYNNLO (left) and withFEWZ (right). The
same comparison is performed in Fig. 10 for the results of the
MATRIX and the MCFM codes, where we display σNNLO with
the smallest slicing cuts, rmin

cut = 0.05% and τcut = 4 · 10−4.
As already remarked above, we use ABMP16 PDFs at NNLO
in all cases, independent of the perturbative order. Figures 9
and 10 clearly illustrate the significant corrections up to
O(50%) in first bins, when increasing the perturbative order

from LO to NLO, while the change from NLO to the NNLO
QCD predictions still amounts to corrections of O(5−10%)

in some ηll bins. The LO results in Figs. 9 and 10 are all in
perfect agreement and the deviations in the NLO predictions
by DYNNLO have already been discussed above.

The observed pattern of the higher order corrections for
the predictions with FEWZ in Fig. 9 (right) and with MATRIX
in Fig. 10 (left) is very similar. The overall offset of the pulls
for the MATRIX results with rmin

cut = 0.05% compared to
the FEWZ ones is small in the entire ηll range except for the
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Fig. 11 The DØ data on the electron charge asymmetry distribution
Ae in W±-boson production at

√
s = 1.96 TeV with the statistical

(inner bar) and the total uncertainties, including the systematic ones.
Shown is the difference of Ae to the ABMP16 central predictions at

NNLO obtained with FEWZ. The symmetric pe,νT -cuts of the decay lep-
tons are indicated in the figure. The LO (dotted), NLO (dashed-dotted)
and NNLO (dashed) predictions by the DYNNLO code (left) and by the
MATRIX code (right) are displayed for comparison

first ηll bins and originates from the different NNLO cross
sections as illustrated in Fig. 6. In contrast, the cross sections
σLO, σNLO and σNNLO from DYNNLO in Fig. 9 (left) and
from MCFM in Fig. 10 (right) show a different trend. The
pulls for the ATLAS data follow rather closely the respective
NLO predictions across the entire range in rapidities. The
NNLO predictions from those codes do undershoot the data
by several per cent, which causes the significant deviations
displayed in Figs. 5 and 7 .

Next we continue the benchmark studies with DØ data
on the electron charge asymmetry distribution Ae, which has
been obtained as a function of the electron pseudo-rapidity
from W±-boson production at

√
s = 1.96 TeV at the Teva-

tron [8]. This observable is also subject to larger higher order
corrections so that we illustrate again the size of the LO, NLO
and NNLO predictions obtained, as before, in all cases with

the NNLO ABMP16 PDFs and α
(n f =5)
s (MZ ) = 0.1147 and

we plot the difference to the NNLO predictions computed
with the FEWZ code. The DØ data had already been included
in the fit of the ABMP16 PDFs and a good description of
those data in the fit had been reached.

In Fig. 11 we plot in addition to the DØ data on Ae the LO,
NLO and NNLO predictions by the DYNNLO code (left) and
the MATRIX code (right), keeping again a relative numerical
integration accuracy of a few units in 10−4 for the respective
W±-boson cross sections. The LO and NLO curves illustrate
the sizable higher order corrections and those predictions
agree among these codes. With the given accuracy of the DØ
data on Ae, also the NNLO corrections are relevant, but we

Fig. 12 Same as Fig. 11 using predictions by the MCFM code

see both, the DYNNLO and the MATRIX results (here with
rmin

cut = 0.15%) being mostly above the FEWZ numbers. The
deviations increase with increasing electron pseudo-rapidity
ηe and become significant for ηe � 1.0, where the size of the
difference exceeds the size of the pure NNLO corrections.
For the asymmetry Ae any overall rescaling of cross sections
as suggested for the MATRIX code and described in Sect. 3
to account for rmin

cut dependence has no effect.
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Fig. 13 Same as Fig. 11, now with staggered cuts peT > pν
T on the decay leptons as indicated in the figure for the DYNNLO code (left) and the

MATRIX code (right)

Fig. 14 Same as Fig. 13 using predictions by the MCFM code

In Fig. 12 we show the same study, now comparing to the
results obtained with theMCFM code. The NNLOMCFM result
has been computed with the default τcut value, τcut = 6·10−3,
and the numerical integration accuracy of the individual
W±-boson cross sections is typically O(1o/oo). In addition,
deviating from the default settings of MCFM, the parameter
cutoff has been changed to 10−6 from 10−9, which is its
default value.10 The parameter cutoff provides the min-

10 Execution of MCFM with the command ./mcfm_omp
input.ini-extra%cutoff=1d-6.

imum value on any dimensionless variables, for instance,
any invariant mass squared si j of any pair of partons scaled
by their energies, such that si j/(Ei E j ) can never be less
than cutoff. Cross sections σNNLO for W±-boson produc-
tion in the DØ kinematics computed with cutoff = 10−9

showed severe numerical instabilities. For the agreement of
the NNLO MCFM results with FEWZ, we find a similar pat-
tern of increasing deviations with increasing electron pseudo-
rapidity ηe, which become significant for ηe � 1.0. The two
choices of smaller τcut values in MCFM, 1 ·10−3 and 4 ·10−4,
lead to the same NNLO predictions for Ae, within the numer-
ical uncertainites.

Finally, Figs. 13 and 14 show the DØ data and the pre-
dictions of DYNNLO, MATRIX and MCFM relative to FEWZ
for the electron charge asymmetry distribution Ae in the case
of staggered cuts with peT ≥ 35 GeV and pν

T ≥ 25 GeV.
The NNLO results for MCFM were obtained with cutoff=
10−6 as in the case of symmetric cuts to avoid numerical
instabilities. Interestingly, the very good agreement among
all codes already observed at NLO in Fig. 4, is found now in
all cases also at NNLO. This is in complete contrast to the
case of symmetric cuts in Figs. 11 and 12.

3 Power corrections

Our comparison in the previous section was based on com-
puter codes implementing different approaches to the reg-
ularization of double real singular emissions. The global
slicing methods neglect power corrections, hence one may
assume that those are at least partly responsible for the
observed differences, which we explore in this section. There
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are two sources of power corrections, namely those intrinsic
to the qT and TN factorization on the one hand, which have
been studied extensively in the literature before, see e.g. [27–
30], and fiducial power corrections on the other, which have
been studied in detail more recently [31]. The latter ones arise
whenever one considers fiducial cuts or leptonic observables
and formally dominate.

3.1 Review of global slicing methods

We briefly review global slicing methods applied to the
Drell–Yan process and with emphasis on the power counting
in the slicing parameter τ , see e.g., [28,31]. Specifically, we
focus on the qT and N -jettiness subtractions [2,21,22] for
the hadro-production of a gauge boson V , which decays to a
leptonic final state L with the following kinematics

a(pa) + b(pb) → V (q) + X (ki ) → L(q) + X (ki ) , (3)

where a, b are the initial hadrons with momenta pa,b, q is
the gauge boson momentum and X (ki ) denotes hadronic final
states with momenta ki . In the laboratory frame, spanned by
light-like vectors nμ = (1, 0, 0, 1) and n̄μ = (1, 0, 0,−1),
the initial hadron momenta pa,b can be parametrized in Born
kinematics in terms of Q = √

q2 and the rapidity of the
gauge boson Y as

pμ
a = Q

2
exp(+Y ) nμ , pμ

b = Q

2
exp(−Y ) n̄μ .(4)

The slicing parameter τ for qT -subtraction is defined by

τ = q2
T /Q2 =

(
∑

i

�kT,i

)2

/Q2 , (5)

in terms of the transverse momenta �kT,i of the hadronic real
emission radiation. Likewise, one has

τ = T0/Q =
∑

i

min {2pa · ki , 2pb · ki } /Q2 , (6)

for the leptonic 0-jettiness T0 (see [28,31] for other variants
of 0-jettiness definitions). The leptonic T0 is preferred due
to smaller intrinsic power corrections, cf. [32] and used in
MCFM [20]. The definitions of τ in Eqs. (5) and (6) vanish
at Born level and resolve additional radiation in an infrared-
safe manner, so that the phase space integration for the cross
section can be written as

σ =
∫

dτ
dσ

dτ
=

∫ τcut

dτ
dσ

dτ
+

∫

τcut

dτ
dσ

dτ
= σ(τcut)

+
∫

τcut

dτ
dσ

dτ
, (7)

where τcut is the cut for the slicing of the phase space. The
dependence of dσ/dτ on τ can be predicted from the univer-
sal factorization of QCD in soft and collinear limits. It has

the structure

dσ

dτ
∼ δ(τ ) +

∑

i

[
lni τ

τ

]

+
+

∑

j

τ p−1 ln j τ + O(τ p) ,(8)

where the +-distributions are the well-known leading thresh-
old logarithms and the terms proportional to τ p−1 with p > 0
are integrable and denote power corrections in the soft and
collinear limit. From the analytical integration one obtains
for σ(τcut) schematically

σ(τcut) ∼ 1 +
∑

i

lni+1 τcut +
∑

j

τ
p

cut ln j τcut + O(τ
p+1

cut ) .

(9)

The crucial point to stress here is the scaling behavior of the
power corrections τ

p
cut, i.e. the value of the exponent p. For

the production of a stable gauge boson V , p takes positive
integer values, while the subsequent decay with cuts on the
leptonic final state changes the scaling of the power correc-
tions [31], such that p rises in steps of half-integers, i.e.,
p = 1/2, 1, 3/2 and so on. This will be discussed in more
detail below.

The scaling of the power corrections has consequences for
the particular subtraction scheme, which is then implemented
via a global subtraction term σ sub(τcut) as

σ = σ sub(τcut) +
∫

τcut

dτ
dσ

dτ
+ �σ sub(τcut) . (10)

Here the term �σ sub(τcut) = σ(τcut)−σ sub(τcut) parametri-
zes the residual power corrections. It is neglected in slicing
methods, giving rise to an intrinsic error of these methods. If
the global subtraction term σ sub(τcut) cancels only the lead-
ing soft and collinear singularities in σ(τcut) in Eq. (9), then
the residual power corrections in the presence of cuts on the
decay leptons scale as

√
τcut. This implies enhanced cor-

rections of the order qT /Q for the qT subtraction, as will be
explained below, or of the order of

√
T0/Q for the N -jettiness

subtraction, as detailed in [31] with a power counting argu-
ment.

The phase space slicing codes under consideration employ
different strategies for dealing with power corrections.
MATRIX performs an extrapolation of rcut = qT /MV → 0
for the total rate of the process computed with qT -subtraction
by evaluating the cross section at fixed values in the interval
rcut ∈ [0.15, 1]% in steps of 0.01%. It is then recommended
to correct the kinematic distributions by rescaling uniformly
with the ratio σ

extrapolated
NNLO /σ

rcut
NNLO. MCFM has improved the

τcut dependence by implementing the leading power correc-
tions of [32,33] (see also [28]), which are derived for the
production of stable gauge bosons V and scale as τcut, cf.
Eq. (9). In addition, MCFM computes the cross section for
an array of different τcut values and performs an automated
fitting of the τcut dependence at NNLO with the following
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ansatz

σ(τcut)
NNLO = σ0 + c1 τcut ln3(τcut/MV )

+c2 τcut ln2(τcut/MV ) + c3 τcut , (11)

where ci are the fit parameters and the result is then extrapo-
lated to τcut → 0. Note, that the functional form in Eq. (11)
does not capture well the scaling of the leading power correc-
tions proportional to

√
τcut in the case of gauge boson decays

[31].

3.2 Fiducial cuts

For the discussion of the fiducial cuts on the decay leptons, we
follow the presentation in [31,34]. First, we need to further
specify the leptonic final state L in Eq. (3), which reads

Z/γ ∗ → L(q) = l1(p1) + l2(p2) ,

W± → L(q) = l±(p1) + ν(p2) , (12)

and p1,2 are the lepton momenta,q = p1+p2. In the presence
of hadronic final states X (ki ) from additional real emission
radiation in Eq. (3), using q = pa + pb − ∑

i ki , the gauge
boson momentum can be expressed through Q, Y and a non-
vanishing transverse momentum qT , such that in components

qμ = (mT cosh(Y ), qT , 0,mT sinh(Y )) ,

pμ
1 = pT 1 (cosh(Y + �y), cos φ, sin φ, sinh(Y + �y)) ,

pμ
2 = qμ − pμ

1 , (13)

where mT =
√
Q2 + q2

T and the azimuthal angle φ in

the transverse plane is given by �pT 1 · �qT = pT 1 qT cos φ.
Momentum conservation yields for the transverse momenta
and rapidities of the leptons

pT 1 = Q2/2

mT cosh(�y) − qT cos φ
,

pT 2 =
√

(pT 1)
2 − 2pT 1qT cos φ + q2

T , (14)

and

η1 = Y + �y ,

η2 = Y + 1

2
ln

(
mT − pT 1 exp(+�y)

mT − pT 1 exp(−�y)

)
. (15)

The leptonic final state phase space L (neglecting lepton
masses) reads in terms of the variables φ and �y in Eq. (13),

L (qT ) =
(∫ 2∏

i=1

d4 pi
(2 π)3 δ+(p2

i )

)

(2 π)4 δ(4)(q − p1 − p2)

= 1

4 π2

∫ π

0
dφ

∫ ∞

−∞
d�y

p2
T 1

Q2 , (16)

and pT 1 implicitly depends on φ and �y through Eq. (14).
The fiducial cuts on the decay leptons applied to the data
discussed in Sect. 2 modify Eq. (16) by constraining the
integration range. With the typical cuts on the transverse

momenta and rapidities of the leptons, pT 1,2 ≥ pmin
T and

ηmin
1,2 ≤ η1,2 ≤ ηmax

1,2 , the phase space L becomes

L (qT ) = 1

4 π2

∫ π

0
dφ

∫ ∞

−∞
d�y

p2
T 1

Q2

×
(

2∏

i=1

θ(pT i − pmin
T ) θ(ηi − ηmin

i )θ(ηmax
i − ηi )

)

.

(17)

It has been pointed out in [31] that the presence of cuts on
the leptons’ transverse momenta breaks azimuthal symmetry
and leads to linear power corrections in qT . The expansion
of Eqs. (14) and (15) for small qT up to quadratic corrections
in qT gives

pT 1 = Q

2 cosh(�y)
+ qT

cos φ

2 cosh2(�y)
+ O(q2

T /Q) ,

pT 2 = pT 1 − qT cos φ + O(q2
T /Q) , (18)

and

η1 = Y + �y ,

η2 = Y − �y − 2
qT
Q

cos φ sinh(�y) + O(q2
T /Q2) . (19)

The symmetric cut on the transverse momenta pT 1,2 ≥
pmin
T used for the ATLAS or DØ data considered above thus

splits the φ integration range depending on the sign of cos φ

as

min {pT 1, pT 2} =
⎧
⎨

⎩

pT 1 , cos φ < 0

pT 1 − qT cos φ , cos φ ≥ 0
, (20)

such that the θ -functions in Eq. (17) give rise to different inte-
grands in the respective regions and the linear power correc-
tions in qT do not vanish in the phase space integral. Consid-
ering only the cut pT 1,2 ≥ pmin

T on the transverse momenta,
the phase space L becomes

L (qT ) = 1

8 π

√
1 − (2pmin

T )2/Q2

− 1

2 π2

qT
Q

pmin
T

Q
√

1 − (2pmin
T )2/Q2

+ O(q2
T /Q2) .

(21)

In case of rapidity cuts, the constraints are slightly more
involved, see [34]. Considering the cuts |η1,2| ≤ ηmax for
the selection of both leptons at central pseudo-rapidity, as
applied to the ATLAS data for Z/γ ∗-boson production, the
phase space L at Born level becomes

L(qT ) = 1

8 π
tanh(ηmax − Y ) + O(qT /Q) . (22)

For small Y this constraint is less tight compared to the
pT 1,2 cuts in Eq. (21) for the typical values of pmin

T used.
To assess where the θ -functions in Eq. (17) involving the
pseudo-rapidities affect the phase spaceL and, in particular,

123



Eur. Phys. J. C (2021) 81 :573 Page 13 of 16 573

break azimuthal symmetry, one has to examine the regions
where they overlap. The boundary of this region is given by
|η1| = |η2|, which determines a value φ∗ through the condi-
tion

cos φ∗ = Q

2qT

sinh(2Y )

sinh(2Y + �y)
+ O(qT /Q) . (23)

The constraint | cos φ∗| ≤ 1 restricts either the region of |η1|
or |η2| in the phase space (17), but not both. Thus, azimuthal
symmetry is not broken by the pseudo-rapidity cuts, but may
still be affected by pT cuts through Eq. (20). Solutions in the
physical range for | cos φ∗| < 1 imply the following scaling
for the values of qT /Q

qT
Q

>
1

2

∣∣∣∣
sinh(2Y )

sinh(2Y + �y)

∣∣∣∣ , (24)

which can be approximated for small Y (and using |η1| =
|Y + �y| ≤ ηmax)

qT
Q

�
q∗
T

Q
= |Y |

sinh(ηmax)
+ O(Y ) . (25)

This defines a lower bound on qT for linear power correc-
tions to appear as a result of broken azimuthal symmetry due
to the pseudo-rapidity cuts. For values qT < q∗

T azimuthal
symmetry is restored and only quadratic power corrections
arise. As Eqs. (23)–(25) indicate, the transition between these
two regions of qT is sharp up to corrections.

The appearance of linear power corrections in the phase
space L can be illustrated by considering the deviations
|1 − L(qT )/L(0)| from the Born level leading power
results for qT = 0. In Fig. 15 we show them for the fidu-
cial cuts applied to the ATLAS data in case of Z/γ ∗-boson
production. On the left in Fig. 15, the leptons are selected
at central pseudo-rapidities |ηli | ≤ 2.5 for i = 1, 2 and
we observe the presence of linear power corrections in qT
for central gauge boson pseudo-rapidities ηll � 1 due to
the pT constraint in Eq. (20). For rcut = qT /Q = 0.15%,
which is the default value for rcut used in MATRIX as a slic-
ing cut and indicated by the vertical dashed line in Fig. 15,
their size amounts to O(0.5o/oo). In contrast, for larger ηll the
pseudo-rapidity constraints dominate the phase space L and
azimuthal symmetry is restored, resulting in quadratic power
corrections in qT for small enough qT , see Eqs. (23)–(25).
In Fig. 15 on the left this feature is illustrated for ηll = 1.2
and 1.8, and the corrections to L for rcut = 0.15% are
smaller by more than two orders of magnitude. It is inter-
esting to compare these findings with the ηll dependence of
the differences at NLO of DYNNLO from codes using local
subtraction in Fig. 2 and with the deviations at NNLO of
DYNNLO, MATRIX (with rcut = 0.15%) and MCFM from
FEWZ in Figs. 5, 6 and 7 for central Z/γ ∗-boson produc-
tion. For ηll � 1 all slicing codes undershoot FEWZ, while

they tend to agree well for ηll � 1.5. The transition around
ηll � 1.2 when the linear power corrections in qT in L

vanish, is most pronounced in the case of MCFM in Fig. 7.
In Fig. 15 on the right we plot the same study for the

ATLAS cuts with one lepton at central and the other at for-
ward pseudo-rapidity. In this case, due to the non-overlapping
regions |ηl1 | ≤ 2.5 and 2.5 ≤ |ηl2 | ≤ 4.9 azimuthal sym-
metry is always broken by the pT constraint in Eq. (20) and
we observe sizable linear power corrections. For the chosen
values of ηll = 1.3, 2.6 and 3.4 they amount to O(7o/oo),
O(0.6o/oo) and O(2o/oo) at the value of rcut = 0.15% in
MATRIX, and the relatively large size of these corrections
is remarkable. Moreover, their ηll dependence matches well
with the pattern of the observed deviations of DYNNLO from
codes with dipole subtraction at NLO in Fig. 3 on the left
and of DYNNLO, MATRIX and MCFM from FEWZ at NNLO
in Figs. 5, 6 and 7, where the DYNNLO, MATRIX and MCFM
deliver significantly smaller results in the first and the last ηll
bins.

In Fig. 16 we plot the phase space L for the fiducial cuts
applied to the ATLAS data set [6] for W±-boson produc-
tion. In this case, the binning in the lepton pseudo-rapidity
fixes ηl and trivially fulfills one of the θ -functions in the
integral for L in Eq. (17). The other θ -function constrains
the neutrino’s pseudo-rapidity in the whole integration range,
so that the pseudo-rapidity cuts do not restore the azimuthal
symmetry for small qT . The linear power corrections in qT ,
which we observe in Fig. 16 originate from the constraints
pl,νT ≥ 25 GeV for the lepton momenta, which do break
azimuthal symmetry as shown in Eq. (20). They amount to
corrections O(0.4 − 0.8o/oo) for the value rcut = 0.15%,
depending on the value of the lepton pseudo-rapidity ηl , with
larger corrections observed for central ηl . This pattern is in
line with the observed deviations in Fig. 1 at NLO between
DYNNLO and local subtraction results, and in Figs. 5, 6 and 7
at NNLO between DYNNLO, MATRIX and MCFM on the one
and FEWZ on the other side, where all slicing codes give con-
sistently lower results than FEWZ and the deviations display
little dependence on the lepton pseudo-rapidity ηl .

Finally, we briefly discuss staggered cuts on the trans-
verse momenta, when pT 1 ≥ pmin

T + δpT and pT 2 ≥ pmin
T

for some δpT > 0, as realized for instance in the DØ mea-
surement of the electron charge asymmetry distribution Ae

discussed above. For staggered cuts with δpT the phase space
L evaluates at Born level then as

L(qT ) = 1

8 π

√
1 − (2(pmin

T + δpT ))2/Q2 + O(qT /Q) .

(26)

In addition, with staggered cuts the θ -functions in Eq. (17)
which constrain the fiducial phase space give rise to the fol-
lowing condition for the azimuthal integration
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Fig. 15 The difference between the Born and real emission phase
spaces L (0)−L (qT ) of the decay leptons relative to the Born one at
fiducial cuts applied to ATLAS data set [6] for Z/γ ∗-boson production
(Q = MZ ) for different values of the gauge boson pseudo-rapidity ηll .
For the lepton momenta plT ≥ 20 GeV are required. Left: Cuts selecting

central pseudo-rapidities |ηli | ≤ 2.5 for i = 1, 2. Right: Cuts selecting
one lepton at central pseudo-rapidity |ηl1 | ≤ 2.5 and the other at forward
pseudo-rapidity, 2.5 ≤ |ηl2 | ≤ 4.9. The vertical dashed line indicates
the minimum value rmin

cut = 0.15% used in MATRIX as a slicing cut

Fig. 16 Same as Fig. 15 for the fiducial cuts applied to ATLAS data
set [6] for W±-boson production (Q = MW ) and different values of
the lepton pseudo-rapidity ηl . For the lepton momenta pl,νT ≥ 25 GeV
are required

min {pT 1 − δpT , pT 2} =
⎧
⎨

⎩

pT 1 − δpT , cos φ < δpT /qT

pT 1 − qT cos φ , cos φ ≥ δpT /qT
,(27)

which reproduces the case of symmetric cuts in Eq. (20) for
δpT → 0. On the other hand, it is obvious that for δpT > qT
the θ -functions for the cuts on the transverse momenta in
Eq. (17) have no regions of common overlap, and therefore,
do not affect the azimuthal symmetry, which is unbroken
in this case. The typical scales for the slicing cuts rcut or
τcut in the slicing codes imply that qmin

T � 1 GeV, while
measurements with staggered cuts in the experiments use
values of δpT of the order of a few GeV. Therefore, due to

Fig. 17 Same as Fig. 15 for the fiducial cuts applied to the DØ data
[8] for the electron charge asymmetry distribution Ae, using staggered
cuts pT 1 ≥ pmin

T + δpT , pT 2 ≥ pmin
T and Q = MW for the electron

pseudo-rapidity fixed at ηe = 0

unbroken azimuthal symmetry, linear power corrections are
largely absent.

We illustrate the effect of the staggered cuts in Fig. 17
for the fiducial cuts applied to the DØ data [8] on the elec-
tron charge asymmetry distribution Ae. We apply a series
of cuts δpT = 0, 0.1 and 10 GeV for an electron pseudo-
rapidity of ηe = 0. Other choices of ηe give qualitatively
the same results, see Fig. 16. As the value of δpT increases,
the deviations from the linear power corrections for the case
of δpT = 0 GeV become apparent. For δpT = 10 GeV,
which corresponds to the choice in the DØ data selection of
peT ≥ 35 GeV and pν

T ≥ 25 GeV, we observe in Fig. 16 only
quadratic power corrections for small qT . This is in line with
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the general good agreement between the results of DYNNLO,
MATRIX, MCFM and FEWZ observed in Figs. 13 and 14. In
addition, the observed pattern for the convergence of slicing
codes in the limit of vanishing slicing cuts rcut or τcut also
agrees with studies performed in the presence of staggered
cuts with MATRIX in [18] and with MCFM in [20].

In summary, the changes in the relative size of the power
corrections in L are correlated with better or worse agree-
ment between the cross sections generated with phase space
slicing codes (DYNNLO, MATRIX and MCFM) and the one
with a local subtraction (FEWZ). This holds in particular for
the dependence on the gauge boson pseudo-rapidity ηll in
the case of Z/γ ∗-boson production and the effect of stag-
gered cuts. This observation does not prove that the neglected
power corrections are the pure source of the differences
among the predictions of the various codes. Nevertheless, it
is at least a warning sign that the computation of the NNLO
corrections can only be considered a solved problem if the
numerical precision of the Monte Carlo integration is under
better control than the size of the correction itself, which
calls for an improvement of the presently available codes
and/or subtraction methods at NNLO accuracy. The linear
power corrections can be uniquely predicted by factoriza-
tion. This fact has been used in [34] to propose a method for
the inclusion of all fiducial-cut induced power corrections
in the framework of qT -subtraction schemes and has been
applied to provide cross section predictions for Higgs-boson
production with fiducial cuts [35].

4 Conclusions

We have investigated the accuracy of available NNLO QCD
predictions for the hadroproduction of W±- and Z -bosons,
including their leptonic decays and keeping fully exclusive
kinematics. Such predictions are available from several pub-
licly available codes and we have chosen DYNNLO, FEWZ,
MATRIX and MCFM to compute benchmark values for kine-
matics which are representative for measurements of differ-
ential distributions in the pseudo-rapidities of the decay lep-
tons from the LHC and Tevatron. The uncertainties in the
cross sections from the numerical Monte Carlo integration
have been limited to few units in 10−4 and are negligible in all
cases. At NLO there is perfect agreement among the results
from FEWZ, MATRIX and MCFM and, partially with those
of DYNNLO as well. However, at NNLO accuracy we found
differences among the predictions by the same codes that are
comparable to the NNLO correction itself. We demonstrated
that the observed systematic differences can be understood
in terms of the subtraction schemes employed, FEWZ using
a fully local subtraction scheme and DYNNLO, MATRIX and

MCFM applying phase space slicing schemes. We have illus-
trated, how the fiducial cuts on the transverse momenta and
pseudo-rapidities of the decay leptons lead to linear power
corrections in the slicing parameter, i.e. qT /Q and

√
T0/Q

for the qT and N -jettiness subtractions. Also the deviations
share certain patterns across the range of pseudo-rapidities
in the considered distributions, which have been correlated
with the appearance of linear power corrections in the lepton
decay phase space L as a function of qT . The latter serves
as a simple and efficient model to study power corrections
in cross sections for the gauge boson production with their
subsequent leptonic decay. For most of the distributions con-
sidered the pure NNLO QCD corrections on top of the NLO
ones are rather small, often in the range of O(1%), while
the deviations among the codes investigated in this study
are not substantially smaller, often even of the same size or
larger, hinting towards a significant intrinsic uncertainty in
the computation of the NNLO QCD corrections for those
observables.

In summary, with the continuous increase in the precision
of the experimental measurements, the theory predictions
are pressed to provide cross sections at NNLO (or beyond)
where the systematic uncertainties due to choices of particu-
lar schemes or algorithms for the computation can be safely
neglected in comparison to the experimental uncertainties.
The results of our study call for further improvements in this
direction.
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