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Abstract We present an analytic two-loop calculation
within the scalar diquark model of the potential linear and
angular momenta, defined as the difference between the
Jaffe-Manohar and Ji notions of linear and angular momenta.
As expected by parity and time-reversal symmetries, a direct
calculation confirms that the potential transverse momen-
tum coincides with the Jaffe-Manohar (or canonical) defini-
tion of average quark transverse momentum, also known as
the quark Sivers shift. We examine whether initial/final-state
interactions at the origin of the Sivers asymmetry can also
generate a potential angular momentum in the scalar diquark
model.

1 Introduction

One of the main challenges of hadronic physics is to fully
understand the structure and characteristics of nucleons
through the measurement of their structure functions. Of par-
ticular interest is the origin of the nucleon spin, a key question
at the core of the experimental program of the future Electron-
Ion Collider (EIC) at the Brookhaven National Laboratory
[1,2]. This requires a proper decomposition of the nucleon
total angular momentum (AM) into orbital motion and intrin-
sic spin of its constituents. The most common decompo-
sitions of AM are the Jaffe-Manohar (JM) [3] and Ji [4]
decompositions, which are based on two different notions
of orbital angular momentum (OAM). Variations and exten-
sions of these have been proposed and discussed at length
in the literature. For further details, we refer the interested
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reader to the reviews by Leader and Lorcé [5], and Waka-
matsu [6].

For the purpose of the present work, it suffices to recall
that the Ji decomposition is based on the kinetic momen-
tum defined by the covariant derivative Dμ = ∂μ − igAμ,
whereas the JM decomposition is based on the canonical
momentum ∂μ defined in the light-front (LF) gauge A+ =
(A0 + A3)/

√
2 = 0. More specifically, we are interested

in the difference between JM and Ji quark OAM, known as
potential AM [7]

Lz
pot ≡ Lq,z

JM − Lq,z
Ji . (1)

From a physical point of view, this potential AM has been
interpreted as the accumulated change in OAM experienced
by the struck quark due to the color Lorentz forces as it leaves
the target in high-energy scattering processes [8]. Similarly,
the potential transverse1 momentum (TM) is defined as the
difference between JM and Ji notions of the quark transverse
momentum inside the nucleon [7]

k⊥,pot ≡ kq⊥,JM − kq⊥,Ji. (2)

This potential TM can be related to the Sivers shift (as justi-
fied with more detail in Sect. 3), which is the non-vanishing
average parton transverse momentum in a transversely polar-
ized target resulting from the Sivers mechanism [9,10].

The JM and Ji OAM have both been computed in QED
at one-loop order and found to be identical [11]. However,
there is no reason for the potential AM to vanish in general.
Indeed, some recent lattice QCD calculations [12,13] found
a sizeable value for the potential AM. Moreover, a numerical
study of the renormalization scale dependence of Lz

pot [14]
and a detailed discussion of the Landau problem [15] also
hint towards a non-vanishing potential AM.

1 Since A+ = 0 in the JM decomposition, there is no difference in the
longitudinal LF momentum k+

pot = kq,+
JM − kq,+

Ji = 0.
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Both the potential TM and potential AM can in principle
be experimentally observed. A comparison of their magni-
tudes is motivated by Burkardt’s proposal of a lensing mecha-
nism due to soft gluon rescattering in deep-inelastic and other
high-energy scattering [16,17]. Originally, such mechanism
describes the asymmetry in transverse momentum space (i.e.
Sivers effect) as originating from an asymmetry of the parton
distribution in the impact-parameter space (due to the orbital
motion of partons) convoluted with a lensing function that
accounts for the effects of attractive initial/final-state interac-
tions (ISI/FSI). Even if the notion of a lensing function is intu-
itive and is supported by some model calculations [17–20], its
factorization depends on strong assumptions that cannot be
strictly satisfied in QCD [21]. Nevertheless, a non-zero Sivers
function necessarily requires a non-vanishing orbital motion
of the partons. The existence of a non-vanishing potential TM
hints towards a non-vanishing potential AM, since both quan-
tities find their common origin in the ISI/FSI. It is therefore
interesting to compare them quantitatively within the same
approach.

In the present paper, we compute both the potential TM
and the potential AM in the framework of a simple scalar
diquark model (SDM) of the nucleon at order O(λ2eqes) in
perturbation theory. The model is based on the assumption
that the nucleon splits into a quark and a scalar diquark struc-
ture, which are regarded as elementary fields of the theory
[22]. More details on the model are presented in Appendix A.

Despite being a simple model, the SDM provides ana-
lytic results that have been broadly explored in the litera-
ture. Additionally, it has the feature of maintaining explicit
Lorentz covariance. For these reasons, the SDM provides an
interesting framework for studying the relative magnitudes
between the potential AM and the potential TM. A more
realistic description of the nucleon would naturally require
to add both a vector diquark and an internal structure to the
diquarks. These contributions go beyond the purpose of the
present work and are left for future investigations.

The manuscript is organized as follows. We start with
a reminder of the gauge-invariant definition of canonical
momentum. In Sect. 3 we define and compute the poten-
tial TM of an unpolarized quark in a transversely polarized
nucleon. Thereafter we report the potential AM in Sect. 4
for a quark in a longitudinally polarized nucleon. Finally,
we summarize our results in Sect. 5. Some details about the
two-loop calculations are collected in the Appendices.

2 Gauge-invariant definition of canonical momentum

The canonical momentum refers to the partial derivative
∂μ. Since this is not a gauge-covariant operator, Jaffe and
Manohar considered it only in a particular gauge, namely the
Light-Front (LF) gauge A+ = 0 well-suited for the descrip-

tion of high-energy scatterings. Since the JM decomposition
is defined in a fixed gauge, doubts were expressed concern-
ing the measurability of its individual terms, in particular, the
JM OAM of quarks and gluons.

A decade ago, a paper by Chen et al. [23] shook the
nucleon spin community by showing that the canonical
decomposition of angular momentum could be written in a
gauge-invariant way. To achieve this goal, one has to sepa-
rate the gauge potential into the so-called “pure-gauge” and
“physical” (or better dynamical) parts [7,23,24]

Aμ = Apure
μ + Aphys

μ . (3)

By definition, Apure
μ has a vanishing field strength

Fpure
μν ≡ ∂μA

pure
ν − ∂ν A

pure
μ − ig [Apure

μ , Apure
ν ] = 0, (4)

and behaves as a connection

Apure
μ (x) �→ ˜Apure

μ (x) = U (x)

[

Apure
μ (x) + i

g
∂μ

]

U−1(x)

(5)

under gauge transformations. It can then be used to define a
new covariant derivative

Dpure
μ = ∂μ − igApure

μ . (6)

It is nothing but the gauge-invariant version of the canonical
momentum operator, since it satisfies the standard canonical
commutation relations

[Dpure
μ , Dpure

ν ] = −igFpure
μν = 0, (7)

and it generates the gauge-covariant translations of the fields
(in the fundamental representation). The dynamical degrees
of freedom of the gauge potential are encoded in Aphys

μ which
behaves covariantly

Aphys
μ (x) �→ ˜Aphys

μ (x) = U (x)Aphys
μ (x)U−1(x) (8)

under gauge transformations. These are responsible for the
non-vanishing of the field strength

Fμν ≡ Dpure
μ Aphys

ν − Dpure
ν Aphys

μ − ig [Aphys
μ , Aphys

ν ], (9)

where Dpure
μ Aphys

ν = ∂μA
phys
ν − ig [Apure

μ , Aphys
ν ] is the pure-

gauge covariant derivative in the adjoint representation. Note
that since Apure

μ is a pure-gauge field, there exists a gauge

where Apure
μ = 0 and hence Aμ = Aphys

μ . We will refer to
this gauge as the natural gauge.

The separation of the gauge potential (3) is however not
unique [25–27] and requires an additional condition to define
unambiguously Aphys

μ . Such condition is akin to a standard

gauge condition, except that it is imposed only on Aphys
μ and

not on the full Aμ. This amounts to defining Aphys
μ as a certain

non-local functional of Aμ. Owing to the gauge principle, no
gauge is more fundamental than the others. Accordingly, no
separation of the gauge potential (3) is more fundamental
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than the others.2 However, when dealing with a particular
problem some separation into pure-gauge and physical parts
may appear more convenient to use. This is the case of high-
energy scatterings where a particular spatial direction (iden-
tified with the z-direction) is determined by the kinematics.
In this context, the physical part is defined by the condition
A+

phys = 0 and assumes the following non-local form3 [28–
31]

Aμ
phys,±(x) =

∫ x−

±∞−
dy− WLF(x−, y−; x̃)

×F+μ(y−, x̃)WLF(y−, x−; x̃), (10)

where the LF Wilson line is defined by the following path-
ordered exponential

WLF(x−, y−; x̃) ≡ P
[

exp

(

ig
∫ x−

y−
dz−A+(z−, x̃)

)]

.

(11)

For convenience, we introduced the notation x̃ = (x+, x⊥)

and the LF components x± = (x0 ± x3)/
√

2. The condition
A+

phys = 0 is not sufficient to define unambiguously the phys-
ical part, since it does not fix x−-independent contributions.
This residual freedom is fixed by adding a boundary con-
dition. The advanced (retarded) boundary condition corre-
sponds to setting +∞− (−∞−) in Eq. (10). More generally,
we can consider any intermediate boundary condition

Aμ
phys,η(x) = 1+η

2 Aμ
phys,+(x) + 1−η

2 Aμ
phys,−(x) (12)

with4 η ∈ [−1, 1]. The particular valueη = 0 is quite popular
and corresponds to the antisymmetric boundary condition.

Interestingly, one can see the expression in Eq. (10) as an
infinitesimally thin and (semi-)infinitely long Wilson loop.
Indeed, the parallel transport from a point x to an infinitesi-
mally close point x + dx is defined by the Wilson line

WC(x + dx, x) = 1 + igAC
μ(x)dxμ, (13)

where C is some path connecting the two points. As long
as the path remains local, i.e. in the infinitesimal neighbor-
hood of x , the connection does not depend on C and we
simply write Aμ(x). Typically one associates Aμ(x) with
a straight line between x and x + dx . In this geometric pic-
ture, the field strength describes a closed infinitesimal square

2 Otherwise the natural gauge would appear to be more fundamental
than the other gauges.
3 The partonic description of hadrons is usually formulated in the LF
gauge A+ = 0. Concerns about the gauge invariance of some physical
quantities defined within this picture led to a gauge-invariant but non-
local description in terms of LF Wilson lines, which reduces in the LF
gauge to the usual local description.
4 The restriction over η ensures that the path remains within the slab of
width dx .

Fig. 1 Path C defining Aμ
pure,η(0) ≡ Aμ

C(0) via Eq. (13) for an arbitrary
value of the parameter η ∈ [−1, 1]. An alternative (but equivalent) path
would first go to −∞− and then to +∞−

W�(x) = 1+ i g2 Fμν(x)dxμ ∧ dxν . When the path between
x and x + dx is non-local, the connection retains its path
dependence. We can see AC

μ as an explicit realization of Apure
μ .

By definition Aphys
μ = Aμ − Apure

μ corresponds therefore to
a closed non-local path. In the context of high-energy scat-
terings, the natural paths to consider are non-local in the LF
direction x−. We can then understand Eq. (10) as the breaking
up of an infinitesimally thin Wilson loop extending from x−
to ±∞− into an infinite sum of parallel-transported infinites-
imal squares. Changing boundary conditions corresponds to
adding a gauge-invariant contribution proportional to

Aμ
phys,+(x) − Aμ

phys,−(x)

= −
∫ +∞−

−∞−
dy− WLF(x−, y−; x̃) F+μ(y−, x̃)WLF(y−, x−; x̃),

(14)

i.e. an infinitesimally thin Wilson loop extending from −∞−
to +∞−. In general Aμ

pure,η(x) is associated with an s-shaped
Wilson line (see Fig. 1) which reduces to the standard staple
when η = ±1.

3 Average transverse momentum of unpolarized quarks
inside a transversely polarized nucleon

We are interested in the average TM of quarks inside a
nucleon. For the kinetic momentum, it is given by the fol-
lowing expectation value5 at equal LF time r+ = 0

〈ki⊥〉Ji = 〈P, S| ∫ d4r δ(r+) ψ(r)γ + i
2

↔
D
i

⊥ψ(r)|P, S〉
〈P, S|P, S〉

= i

4P+ 〈P, S|ψ(0)γ +↔
D
i

⊥ψ(0)|P, S〉, (15)

where i = 1, 2 is a transverse index,
↔
Dμ = →

Dμ − ←
Dμ is

the symmetric covariant derivative, and a translation of the

5 For convenience, we omit the label q indicating that we are consid-
ering the quark contribution only.
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fields to the origin has been used in the second line. The
nucleon with mass M has four-momentum Pμ and covariant
LF polarization Sμ satisfying P · S = 0 and S2 = −1. Its
explicit form is given by

Sμ =
[

sz
P+

M
,−sz

P−

M
+ P⊥ · S⊥

P+ , S⊥
]

(16)

with S⊥ = s⊥ + P⊥
M sz and s the usual rest-frame spin vec-

tor. For convenience, we work in the standard symmetric LF
frame defined by P⊥ = 0⊥. For the canonical momentum,
we have in a similar way

〈ki⊥〉JM,η = i

4P+ 〈P, S|ψ(0)γ +↔
D
i

pure,η,⊥ψ(0)|P, S〉. (17)

We left here the explicit dependence on the choice of the
boundary condition. The i-th component of the potential TM
is then given by

〈ki⊥〉pot,η = −g

2P+ 〈P, S|ψ(0)γ +Ai
phys,η,⊥(0)ψ(0)|P, S〉.

(18)

The theory being invariant under discrete space-time sym-
metries, the combined parity and time-reversal transforma-
tion (PT) implies that6

〈ki⊥〉Ji = −〈ki⊥〉Ji, (19)

〈ki⊥〉JM,η = −〈ki⊥〉JM,−η. (20)

It follows that

〈ki⊥〉Ji = 0 ⇒
〈ki⊥〉pot,η = 〈ki⊥〉JM,η = −〈ki⊥〉pot,−η. (21)

In high-energy scatterings, the LF Wilson lines encode
(leading-twist) ISI and FSI [33]. The choice of a particu-
lar boundary condition determines therefore the inclusion of
these interactions in the definition of the canonical momen-
tum. Except for η = 0, ISI and FSI are included in an asym-
metric way and allow for a nonvanishing average quark TM.
Since time-reversal symmetry plays an important role, it is
useful to split Aμ

phys,η into PT-even and odd7 contributions
[29]

Aμ
phys,η(x) = Aμ

phys,e(x) + ηAμ
phys,o(x) (22)

with

Aμ
phys,e(x) = 1

2

[

Aμ
phys,+(x) + Aμ

phys,−(x)
]

6 One can use for example the general parametrization for the matrix
elements of the energy-momentum tensor obtained in [32].
7 In the literature one also often finds the terminology (naive) T-even
and odd contributions.

= −1

2

∫ +∞−

−∞−
dy− ε(y−)WLF(x−, y−; x̃)

× F+μ(y−, x̃)WLF(y−, x−; x̃), (23)

Aμ
phys,o(x) = 1

2

[

Aμ
phys,+(x) − Aμ

phys,−(x)
]

= −1

2

∫ +∞−

−∞−
dy− WLF(x−, y−; x̃)

× F+μ(y−, x̃)WLF(y−, x−; x̃), (24)

where ε(y−) is the sign function.

In the following, we will compute directly the potential
TM of quarks in the perturbative scalar diquark model (SDM)
at order O(λ2eqes) and then compare it with the result one
obtains for the JM quark TM. In this model, only abelian
gauge interactions are considered, as any non-abelian effects
would appear at higher order in perturbation theory. Expres-
sions for the TM are therefore the same upon the substitution
g �→ −eq .

3.1 Potential transverse momentum of quarks

In the SDM at order O(λ2eqes), the three diagrams shown
in Fig. 2 contribute a priori to the quark potential TM.

The first two diagrams represent the self-force since the
Lorentz force felt by the quark finds its source in the quark
itself. The last diagram represents the force exerted by the
spectator diquark system. An explicit calculation outlined in
Appendix B.1 shows that

Mi
A+B = 0, (25)

which can be understood by the fact that this sum is even
under PT, whereas the potential TM is PT-odd. Also we can
intuitively expect that there are no Münchhausen quarks, i.e.
quarks that can self-accelerate.

All the quark potential TM comes therefore from the third
diagram where the photon is attached to the spectator system.
It contains both PT-even and odd contributions. A direct
calculation confirms that the PT-even contribution vanishes.
Using dimensional regularization with D = 4 − 2ε, we find
for the PT-odd contribution

〈ki⊥〉pot,η = −η ε
i j
⊥ s j⊥

π

6
(3mq + M)

N
(4πε)2 + O(1/ε)

(26)

with N = λ2eqes/(4π)2 and mq the quark mass, see
Appendix B.2 for details.

3.2 Canonical transverse momentum of quarks

The JM quark TM can be expressed directly in terms
of transverse-momentum dependent distributions (TMDs)
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Fig. 2 Diagrams contributing to the quark potential TM and AM at O(λ2eqes) in perturbation theory. The dotted line represents the scalar diquark,
the solid thin (thick) line represents the quark (nucleon), and the wavy line represents the photon. The crossed blob represents the insertion of an
external operator

[34,35]. The leading-twist vector TMD correlator is defined
as

Φ[γ +]
η (P, x, k⊥, S)

= 1

2

∫

dz− d2z⊥
(2π)3 eik·z〈P, S|ψ̄(− z

2 )γ +

× Wη(− z
2 , z

2 )ψ( z2 )|P, S〉
∣

∣

∣

z+=0
, (27)

where x = k+/P+ is the fraction of longitudinal LF momen-
tum carried by the quark. The LF Wilson line satisfies the
differential equation

Dpure,η
μ Wη(z, z0) = 0 (28)

and ensures that the non-local correlator is gauge invariant.
In practice, the boundary condition is determined by the scat-
tering process at hand. In semi-inclusive deep-inelastic scat-
tering (SIDIS) one has η = +1, whereas in the Drell–Yan
process one has η = −1. The Wilson lines W±(− z

2 , z
2 ) with

finite transverse width look like staples and result from the
infinite product of infinitesimally thin staples all with the
same orientation. When η �= ±1, the Wilson line consists of
infinitely many zigzags between +∞− and −∞− and looks
like a 2D “mille-feuille”, see Fig. 3. No physical process so
far has been identified for this case.

Since the pure-gauge covariant derivative satisfies Eq. (28),
it follows after some algebra that [29,36]

〈ki⊥〉JM,η =
∫

dx d2k⊥ ki⊥ Φ[γ +]
η (P, x, k⊥, S). (29)

Using the generic parametrization of the correlator (27) in
terms of TMD parton distribution functions8

Φ[γ +]
η (P, x, k⊥, S) = f1(x, k2⊥) − η

ε
i j
⊥ki⊥S j

⊥
M

f ⊥
1T (x, k2⊥),

(30)

8 The η-dependence is often incorporated into the Sivers function f ⊥,η
1T

which then changes sign under PT [37].

Fig. 3 Light-front Wilson line Wη(z, 0) for an arbitrary value of the
parameter η ∈ [−1, 1]. For advanced (η = +1) or retarded (η = −1)
boundary condition, the path reduces to a simple staple

one arrives at the expression for the so-called Sivers shift
[29,36]

〈ki⊥〉JM,η = −η ε
i j
⊥ s j⊥

∫

dx d2k⊥
k2⊥
2M

f ⊥
1T (x, k2⊥), (31)

where under the integral one has replaced ki⊥kl⊥ by δil⊥ k2⊥/2.
The function f ⊥

1T was originally introduced by Sivers [38] to
explain large left-right asymmetries observed in pion-nucleus
collisions [39]. The Sivers asymmetry has now been experi-
mentally observed in both SIDIS [40–42] and Drell–Yan [43]
processes. See also [44] for a review on the gluonic counter-
part.

The quark Sivers function within the SDM was computed
in [33] using the advanced boundary condition

f ⊥q
1T (x, k2⊥) = λ2eqes(1 − x)

4(2π)4

M(mq + xM)

k2⊥[k2⊥ + Λ2(x)]

× ln

(

k2⊥ + Λ2(x)

Λ2(x)

)

, (32)

where Λ2(x) = xm2
s +(1− x)m2

q − x(1− x)M2 with ms the
scalar diquark mass. Inserting this expression into Eq. (31)
we obtain using dimensional regularization with d ≡ D −

123
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2 = 2 − 2ε for the transverse-momentum integral

〈ki⊥〉JM,η =
naive

−η ε
i j
⊥ s j⊥

π

3
(3mq + M)

N
(4πε)2 + O(1/ε),

(33)

i.e. twice 〈ki⊥〉pot,η, in flagrant conflict with the expectation
from PT symmetry (21)! The solution to this conundrum is
the realization that the expression in Eq. (32) is not the appro-
priate one in dimensional regularization. In the derivation of
the Sivers function, a transverse loop integral

Id =
∫

ddl⊥
(2π)d

l⊥ · k⊥
l2⊥[(k2⊥ + l2⊥) + Λ2(x)] (34)

has been performed in d = 2 dimensions, leading to the
logarithmic factor [36]

I2 = − 1

4π
ln

(

k2⊥ + Λ2(x)

Λ2(x)

)

. (35)

Even if this integral is finite ind = 2 dimensions for finite k2⊥,
we are actually interested in the leading divergence and hence
in the large-k2⊥ region, which interferes with the ε-expansion
and must be treated with care [45–47]. In dimensional reg-
ularization we need to keep d ≡ D − 2 = 2 − 2εl , leading
to

I2−2εl = − k2⊥
(4π)1−εl

Γ (1 + εl)

×
∫ 1

0
dy y−εl

[

(1 − y)k2⊥ + Λ2(x)
]−1−εl

. (36)

Proceeding with this expression instead of (35) and integrat-
ing over k⊥ in d = 2 − 2ε dimensions, we find9

〈ki⊥〉JM,η = −η ε
i j
⊥ s j⊥

π

3
(3mq + M)

× N
(4π)2ε(ε + εl)

+ O(1/ε). (37)

The naive result (33) corresponds to εl → 0, while the cor-
rect result 〈ki⊥〉JM,η = 〈ki⊥〉pot,η is obtained when εl → ε.
The same conclusion is reached using Weinberg’s theorem to
extract the correct large-k2⊥ behavior of Id . More generally,
this is in line with the observation from Refs. [48,49] that
Eq. (31) holds only if the same regularization and renormal-
ization procedures are applied on both sides of the identity.
Note however that the explicit check of the Burkardt sum rule
of Ref. [50] is not impacted since the same subtlety applies
equally to the gluon contribution.

9 In the integral over k⊥, we can replace the ratio k2⊥/[k2⊥ +Λ2(x)] by
1 since we are only interested in the leading divergence.

4 Potential angular momentum of quarks

Similarly to the quark po tential TM, we can now consider
the quark potential longitudinal AM [7,30] at equal LF time
r+ = 0

〈Lz〉pot,η = lim
Δ→0

× 〈p′, S′| ∫ d4r δ(r+) (−g)ψ(r)γ +[r⊥ × Aphys,η,⊥(r)]zψ(r)|p, S〉
〈P, S|P, S〉

= −g ε
i j
⊥

2P+
[

−i∇ i
Δ⊥ 〈p′, S′|ψ(0)γ +A j

phys,η,⊥(0)ψ(0)|p, S〉
]

Δ=0
, (38)

where p = P − Δ
2 and p′ = P + Δ

2 . The covariant LF polar-
ization vectors S and S′ refer to the same rest-frame spin
vector s. In order to deal properly with the explicit factor of
r⊥ in the operator, the matrix element should first be consid-
ered with p′ �= p, and the forward limit Δ ≡ p′ − p → 0
has to be taken at the end [51,52]. This potential AM rep-
resents the difference between the JM and Ji definitions of
quark OAM, obtained by replacing −gA j

phys,η,⊥ in Eq. (38)

with i
2

↔
DD j

pure,η,⊥ and i
2

↔
DD j

⊥, respectively. Discrete space-time
symmetries indicate that both JM and Ji OAM are PT-even,
and so is the potential AM

〈Lz〉pot,η = 〈Lz〉pot,−η. (39)

This means that the boundary condition has no effects on the
value of the longitudinal OAM [30,31] and we can drop the
reference to the parameter η.

At one-loop level in the SDM, it has been shown that
JM and Ji notions of OAM (computed independently) do
coincide [53,54], implying therefore a vanishing potential
AM. This is of course expected since at that order no gauge
field is involved. Perhaps more surprisingly, for an electron
in QED where the gauge field appears already at the one-
loop level, one obtains also a vanishing potential AM at that
order [11]. So the presence of a gauge field is not a sufficient
condition for inducing a difference between JM and Ji OAM.
As already mentioned in the introduction, calculations on the
lattice indicate a clear non-vanishing potential AM [12,13].
This motivates us to investigate the potential AM at the two-
loop level within the SDM.

To the best of our knowledge, JM and Ji notions of OAM
have never been calculated in the SDM at order O(λ2eqes).
Since we are in fact interested in their difference, we compute
directly the quark potential AM from the diagrams shown in
Fig. 2. We have seen that at order O(λ2eqes) in the SDM, the
potential TM receives some 1/ε2-contribution. If the same
underlying mechanism is at play for the potential AM, we
may expect it to generate also some 1/ε2-contribution to the
latter.
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Contrary to the potential TM, the potential AM isPT-even
and can a priori receive a non-vanishing contribution from
both mechanisms MA+B and MC . An explicit calculation
outlined in Appendix C.1 shows that at best
[

−iεi j⊥∇ i⊥M j
A+B(Δ)

]

Δ=0
= O(1/ε). (40)

The absence of 1/ε2-divergences can intuitively be under-
stood by the fact that a quark should not be able to exert a self-
torque and hence change its own OAM, which would lead to
a violation of AM conservation.10 All the 1/ε2-contributions
to the quark potential AM come therefore from the third dia-
gram where the photon is attached to the spectator system.
Using dimensional regularization, we actually find that all
1/ε2-divergences cancel out, so that we have at best

〈Lz〉pot = O(1/ε), (41)

see Appendix C.2 for more details. This is somewhat sur-
prising since ISI/FSI, represented at this order by the pho-
ton exchange with the spectator system, have been shown to
exert a Lorentz force ∝ 1/ε2 on the struck quark. Our results
jeopardize therefore the existence of a simple lensing mech-
anism relating Sivers effect and potential AM. A posteriori,
we may argue that a non-vanishing potential AM requires a
Lorentz torque defined relative to the center of inertia of the
system [16,55]. In the SDM, the nucleon is described as a
two-body system. The positions of the quark, the diquark,
and the center of inertia (or P+) all lie on the same line, pre-
venting therefore classically any Lorentz torque. This sim-
ple argument suggests that 1/ε-divergences may also cancel.
Although interesting on its own, an explicit check of this
cancellation is non-trivial. It goes beyond the purpose of the
present work and is left for future investigations.

5 Summary and outlook

The potential transverse momentum and potential longitudi-
nal angular momentum, describing the difference between
the corresponding Jaffe-Manohar and Ji definitions of linear
and angular momenta, have been computed for the first time
at orderO(λ2eqes) in the scalar diquark model. At that order,
two mechanisms are possible: one where a gauge boson is
exchanged between the struck quark and the spectator sys-
tem, and one where the struck quark exchanges a gauge boson
with itself. As expected by conservation of linear and angular
momentum, the latter mechanism does not contribute (at least
to the 1/ε2-divergence). The former mechanism is respon-
sible for the Sivers shift and represents the accumulated

10 Since we are looking at the γ + component, the quark LF helicity is
preserved at the level of the operator insertion and there is no spin-orbit
conversion.

exchange of momentum between the struck quark and the
spectator system in a high-energy process. Our explicit model
calculation confirms that the potential transverse momen-
tum coincides with the average Jaffe-Manohar (or canonical)
transverse momentum of the quark, as expected by parity and
time-reversal symmetries. For the potential angular momen-
tum, we found that all 1/ε2-divergent terms cancel out in
the scalar diquark model at two loops, contrasting with the
expectation based on the lensing mechanism picture. We pro-
posed that this surprising result could be the reflection of the
fact that in a two-body description of a system, there cannot
be classically any Lorentz torque exerted by the spectator
on the struck constituent despite the presence of a Lorentz
force. A confirmation of these observations in QED or the
quark-target model would be very interesting, and is left for
future works.
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Appendix A: Scalar diquark model

The lagrangian for the SDM is

LSDM = −1

4
FμνFμν + Ψ̄N (i�∂ − M) ΨN

+ ψ̄
(

i�∂ − mq
)

ψ + ∂μφ∗∂μφ − m2
sφ

∗φ
+ λ

(

ψ̄ΨNφ∗ + Ψ̄Nψφ
)

− eq ψ̄ �Aψ − ies
(

φ∗ ↔
∂μφ

)

Aμ + e2
s AμA

μφ∗φ .

(A.1)
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Fig. 4 Feynman rules for the scalar diquark model with a point-
like quark-nucleon-diquark coupling derived from the lagrangian in
Eq. (A.1). The photon propagator is considered in the light-front gauge
A+ ≡ A · n = 0 with n = (1, 0, 0,−1)/

√
2. The prescription for

the 1
[p·n] pole depends on the choice of the boundary condition [56].

Concerning the pνnμ term one has 1
p·n−iε for advanced, 1

p·n+iε for

retarded, and 1
2 [ 1

p·n−iε + 1
p·n+iε ] for antisymmetric boundary condi-

tion. The other term is related by hermiticity

In this expression, ψ represents the quark field with massmq ,
φ denotes the charged scalar diquark field with mass ms , ΨN

is the neutral nucleon field with mass M , and Aμ is a gauge
field that could represent either photons or gluons. The sta-
bility condition for the target nucleon is M < mq +ms . Fur-
thermore, the photon-quark and photon-diquark couplings
are given by eq and es respectively, while λ is the coupling
constant of the point-like scalar quark-nucleon-diquark ver-
tex. The corresponding Feynman rules are summarized in
Fig. 4.

The nucleon field considered in the present model has no
charge, emulating either a neutron in QED or the fact that
in QCD a hadron is color neutral. Such condition simpli-
fies the calculations as no gauge field can couple to the tar-
get. Moreover, it implies that the photon-quark and photon-
diquark coupling constants are equal but with opposite sign,
for instance eq = −es for QED. For the corresponding
QCD generalization of our results, it suffices to perform the
replacement eqes �→ 4πCFαs [22] since non-abelian aspects
appear only at higher order.

For convenience, we will consider the potential TM and
AM with η = +1 in the corresponding natural gauge, namely
the LF gauge with advanced boundary condition. In this case
Aμ

phys(x) simply reduces to Aμ(x).

Appendix B: Quark potential linear momentum in the
SDM

In the SDM at orderO(λ2eqes), the quark TM arises from the
three diagrams shown in Fig. 2. The first two, denoted MA

and MB , correspond to the mechanism where the probed
photon is attached to a quark line. The third diagram, denoted
MC , corresponds to the mechanism where the probed photon
is attached to the spectator diquark. In the following, we
first check explicitly that the sum of the contributions from
the first two diagrams vanishes. We then proceed with the
calculation of the third contribution.

Fig. 5 Sum of the diagrams
with a diquark acting as a
spectator system while a photon
is attached to either the
incoming (left) or the outgoing
(right) quark
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Appendix B.1: Diagrams MA and MB

The amplitudes associated with the Feynman diagrams from
Fig. 5 read in D close to four dimensions

Mi
A = λ2e2

q

2P+

∫

dDk

(2π)D

∫

dDk′

(2π)D

(

giν − (k′ − k)i⊥nν

(k′ − k)+ + iε

)

× N+
ν (k, k′)

D(k′ − k, 0) D(P − k,ms) [D(k,mq )]2 D(k′,mq )
, (B.2)

Mi
B = λ2e2

q

2P+

∫

dDk

(2π)D

∫

dDk′

(2π)D

(

giν − (k′ − k)i⊥nν

(k′ − k)+ − iε

)

× N+
ν (k, k′)

D(k′ − k, 0) D(P − k,ms) [D(k,mq )]2 D(k′,mq )
, (B.3)

where

Nμν(k, k′) = ū(P, S)(� k + mq )γ
μ(� k′ + mq )γ

ν(� k + mq )u(P, S),

(B.4)

D(k,m) = k2 − m2 + iε. (B.5)

Working out the numerator we get

N+i (k, k′) + Ni+(k, k′) − 2N++(k, k′) p.v.

[

(k′ − k)i⊥
(k′ − k)+

]

= −4(k2 − m2
q)

[

k′i⊥P+ + k′+Pi⊥
]

+ 8(P · k + mqM)
[

k+k′i⊥ + ki⊥k′+]

+ p.v.

[

8(k′ − k)i⊥k′+

(k′ − k)+

]

[(k2 − m2
q)P

+

− 2k+(P · k + mqM)], (B.6)

where p.v. stands for Cauchy’s principal value. Note that in
the symmetric LF frame P⊥ = 0⊥, there is no transverse
vector in Eq. (B.3) left after integration over k and k′, and so

Mi
A+B = 0. (B.7)

From a slightly different perspective, we know from P and
T symmetries that Mi ∝ ε

i j
⊥ S j

⊥. Since any possible depen-
dence on the target polarization comes from Nμν(k, k′), its
absence in Eq. (B.6) implies that the amplitude must vanish.

Appendix B.2: Diagram MC

The amplitude associated with the Feynman diagram shown
in Fig. 6 reads in D close to four dimensions

Mi
C = λ2eqes

2P+

∫

dDk

(2π)D

∫

dDk′

(2π)D

(

giν − (k′ − k)i⊥nν

(k′ − k)+ − iε

)

Fig. 6 Diagram with a diquark acting as a spectator system while a
photon is attached to it

× (2P − k′ − k)ν ū(P, S)(� k′ + mq )γ
+(� k + mq )u(P, S)

D(k′ − k, 0) D(P − k,ms ) D(P − k′,ms ) D(k,mq ) D(k′,mq )
.

(B.8)

Working out the numerator we get (ε0123 = +1)

ū(P, S)(� k ′ + mq)γ
+(� k + mq)u(P, S)

= 2
[

k+(P · k′) + k′+(P · k)]

− 2P+(k′ · k − m2
q) + 2mqM(k′ + k)+

+ 2iε+αβλSλ

[

Mk′
αkβ + mq(k

′ − k)αPβ

]

. (B.9)

In the symmetric LF frame P⊥ = 0⊥, the only term
in Eq. (B.9) surviving integration over k and k′ is the
one involving the target polarization. Since it is anti-
symmetric under k′ ↔ k whereas the combination of
denominators in Eq. (B.8) is symmetric, we just need to
keep the antisymmetric part of the gauge boson numerator
(

giν − (k′−k)i⊥nν

(k′−k)+−iε

)

�→ −(k′ − k)i⊥nν iπ δ(k′+ − k+), also

known as the gauge boson pole.

By also making the replacement
(k′−k)i⊥(k′−k) j⊥

(k′−k)2+iε
�→ − δ

i j
⊥
2 ,

which is valid under integration thanks to the δ(k′+ − k+)

term,11 we then find that

Mi
C = ε

i j
⊥ s j⊥

λ2eqes
P+

∫

dDk

(2π)D

∫

dDk′

(2π)D
π δ(k′+ − k+)

× (P+ − k+)(mq P+ + Mk+)

D(P − k,ms) D(P − k′,ms) D(k,mq ) D(k′,mq )
.

(B.10)

The integral over k− can be performed by closing the inte-
gration contour on the lower half of the complex k−-plane

11 Strictly speaking, it should be − δ
i j
⊥

D−2 but this does not make any
difference for the leading divergence in D = 4 − 2ε.
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∫

dk−

2π

1

D(P − k,ms) D(k,mq)
= i

2P+
1

k2⊥ + Λ2(x, 1)
,

(B.11)

and similarly for the integral over k′−. We introduced for
convenience the quark longitudinal LF momentum fractions
x = k+/P+ and x ′ = k′+/P+, and the effective squared-
mass function

Λ2(x, y) = yxm2
s + (1 − x)m2

q − yx(1 − x)M2 (B.12)

which is positive-definite for x, y ∈ [0, 1] owing to the sta-
bility condition M < mq +ms . Performing the integrals over
the transverse momenta in d = 2 − 2ε dimensions and over
the longitudinal momenta, we find

Mi
C = −ε

i j
⊥ s j⊥ πN

∫

dx (1 − x)(mq + xM)

[

∫

ddk⊥
(2π)d

× 1

k2⊥ + Λ2(x, 1)

]2

= −ε
i j
⊥ s j⊥

π

6
(3mq + M)

N
(4πε)2 + O(1/ε) (B.13)

with N = λ2eqes/(4π)2.

Appendix C: Quark potential angular momentum in the
SDM

In the SDM at order O(λ2eqes), the quark potential AM
arises again from the three diagrams shown in Fig. 2. Con-
trary to the TM, the contribution from the sum of the first
two diagrams, representing the self-torque, does not need to
vanish due to PT symmetry. For convenience, we will work
in the symmetric Drell–Yan frame defined by Δ+ = 0 and
P⊥ = 0⊥.

Appendix C.1: Diagrams MA and MB

The amplitudes associated with the Feynman diagrams from
Fig. 7 read in D close to four dimensions

M j
A(Δ) = λ2e2

q

2P+

∫

dDk

(2π)D

×
∫

dDk′

(2π)D

(

g jν − (k′ − k) j⊥nν

(k′ − k)+ + iε

)

1

D(k′ − k, 0)

× N+
ν (k, k′ − Δ

2 ,Δ)

D(P − k,ms ) D(k + Δ
2 ,mq ) D(k − Δ

2 ,mq ) D(k′ − Δ
2 ,mq )

, (C.14)

M j
B (Δ) = λ2e2

q

2P+

∫

dDk

(2π)D

×
∫

dDk′

(2π)D

(

g jν − (k′ − k) j⊥nν

(k′ − k)+ − iε

)

1

D(k′ − k, 0)

× N+
ν (k, k′ + Δ

2 ,Δ)

D(P − k,ms ) D(k + Δ
2 ,mq ) D(k − Δ

2 ,mq ) D(k′ + Δ
2 ,mq )

, (C.15)

Nμν(k, k′,Δ) = ū′(� k + �Δ
2 + mq )γ

μ(� k′ + mq )γ
ν(� k − �Δ

2 + mq )u

(C.16)

using the shorthand notation for the spinors ū′ ≡ ū(P +
Δ
2 , S′) and u ≡ u(P − Δ

2 , S), with S′ and S the covariant
polarization vectors referring to the same rest-frame polar-
ization s. Since we are interested in the potential AM, we
need only to keep track of the terms linear in the momen-
tum transfer, see Eq. (38). Moreover, we know from discrete
symmetries that the potential (longitudinal) AM is propor-
tional to the target longitudinal polarization. Projecting out
the contributions depending on the latter and using some of
the Dirac bilinear identities shown in [57], we find

1

2

∑

sz=±1

sz
[

N+ j (k, k′) − N j+(k, k′)
]

= −4
[

2(P · k + mqM)k+ − (k2 − m2
q)P

+]

iε jl
⊥ k′l⊥

+ 8
[

(P · k′ + mqM)k+ − (k′ · k − m2
q)P

+]

iε jl
⊥ kl⊥

− 8P+k j
⊥iε

lm⊥ k′l⊥km⊥ (C.17)

1

2

∑

sz=±1

sz N
++(k, k′ ± Δ

2 ,Δ)

= −4k′+(P − k)+ iεlm⊥ kl⊥Δm⊥ + O(Δ2), (C.18)

1

2

∑

sz=±1

sz
[

N+ j (k, k′ − Δ
2 ,Δ) + N j+(k, k′ + Δ

2 ,Δ)
]

= −2k′+ [

2(P · k + mqM) − (k2 − m2
q)

]

iε jl
⊥ Δl⊥

+ 2P+ [

(mq + k+
P+ M)2 − k2⊥

]

iε jl
⊥ Δl⊥

+ 4
[

k j
⊥k

′+ − (P − k)+k′ j
⊥

]

iεlm⊥ kl⊥Δm⊥ + O(Δ2).

(C.19)

Studying the position of the poles in Eqs. (C.14) and (C.15)
provides the support properties P+ > k+ > k′+ > 0. Clos-
ing the contours in the upper half of the complex planes, we
can write

∫

dk−

2π

∫

dk′−

2π

1

D(k′ − k, 0) D(P − k,ms ) [D(k,mq )]a [D(k′,mq )]b

= −i

2x(1 − y)P+
−i

2(1 − x)P+
[−(1 − x)]a+b

[D(k2⊥)]a [D(k2⊥, q2⊥)]b (C.20)

with a, b > 0 and

D(k2⊥) = k2⊥ + Λ2(x, 1), (C.21)

D(k2⊥, q2⊥) = yk2⊥ + Λ2(x, y) + 1 − x

1 − y
q2⊥, (C.22)
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Fig. 7 Sum of the diagrams
with a diquark acting as a
spectator system while a photon
is attached to either the
incoming (left) or the outgoing
(right) quark

where we introduced for convenience the shifted transverse
momentum q⊥ = k′⊥ − yk⊥.

After some algebra we find that the contribution from dia-
grams MA and MB to the quark potential AM is given by
[

−iεi j⊥∇ i⊥M j
A+B(Δ)

]

Δ=0

= −sz
λ2e2

q

2(2π)2

∫ 1

0
dx dy IA+B(x, y), (C.23)

where

IA+B (x, y) = (1 − x)2

(1 − y)

∫

dd k⊥
(2π)d

× ddq⊥
(2π)d

[

− k2⊥ − (1 − y)(mq + xM)2

[D(k2⊥)]2 D(k2⊥, q2⊥)

+ (1 − x)
{[k2⊥ − (mq + xM)2]q2⊥ + 2mq (mq + xM)y(1 − y)k2⊥

}

[D(k2⊥)]2 [D(k2⊥, q2⊥)]2

+ y2k2⊥
D(k2⊥) [D(k2⊥, q2⊥)]2

+ y

D(k2⊥) D(k2⊥, q2⊥)

]

. (C.24)

Performing the integrals over the transverse momenta in d =
2 − 2ε, we find that the 1/ε2-divergences cancel out, and so
at best
[

−iεi j⊥∇ i⊥M j
A+B(Δ)

]

Δ=0
= O(1/ε). (C.25)

Appendix C.2: Diagram MC

The amplitude associated with the Feynman diagram shown
in Fig. 8 reads in D close to four dimensions

M j
C (Δ) = λ2eqes

2P+

∫

dDk

(2π)D

×
∫

dDk′

(2π)D

(

g jν − (k′ − k) j⊥nν

(k′ − k)+ − iε

)

1

D(k′ − k, 0)

× (2P − k′ − k)ν ū′(� k′ + �Δ
2 + mq )γ

+(� k − �Δ
2 + mq )u

D(P − k,ms ) D(P − k′,ms ) D(k − Δ
2 ,mq ) D(k′ + Δ

2 ,mq )
. (C.26)

Proceeding as in Appendix C.1, we first focus on the Dirac
structure in the numerator and project out the terms propor-
tional to the nucleon longitudinal polarization sz up to linear

Fig. 8 Diagram with the scalar diquark acting as the spectator system
while a photon is attached to it

order in Δ, namely

1

2

∑

sz=±1

sz ū
′(� k′ + �Δ

2 + mq)γ
+(� k − �Δ

2 + mq)u

= 2P+iεlm⊥ k′l⊥km⊥
−

[

(P − k)+k′l⊥ + (P − k′)+kl⊥
]

iεlm⊥ Δm⊥ + O(Δ2).

(C.27)

Expanding the denominators

1

D(k − Δ
2 ,mq ) D(k′ + Δ

2 ,mq )

= 1

D(k,mq ) D(k′,mq )

[

1 + k · Δ

D(k,mq )
− k′ · Δ

D(k′,mq )

]

+ O(Δ2)

(C.28)

we can use the symmetry under k ↔ k′ to restrict ourselves
to the region P+ > k+ > k′+ > 0, and close the k− (k′−)
contour in the upper (lower) half of the complex plane.

After some algebra we find that the contribution from dia-
gram MC to the quark potential AM is given by
[

−iεi j⊥∇ i⊥M j
C (Δ)

]

Δ=0

= −sz
λ2e2

q

2(2π)2

∫ 1

0
dx dx ′ IC (x, x ′), (C.29)
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where

IC (x, x ′) = θ(x − x ′)
(x − x ′)2

∫

ddk⊥
(2π)d

ddk′⊥
(2π)d

x ′(1 − x)

D(k2⊥)D(k′2⊥)D(k2⊥, q2⊥)

×
{

(1 − x ′)2k2⊥ − (1 − x)2k′2⊥

+ 2(k⊥ × k′⊥)2

[

(1 − x)2

D(k2⊥)

− (1 − x ′)2

D(k′2⊥)
− (1 − x)(1 − x ′)

D(k2⊥, q2⊥)

]}

(C.30)

with D(k′2⊥) = k′2⊥+Λ2(x ′, 1). Performing the integrals over
the transverse momenta in d = 2−2ε, we find again that the
1/ε2-divergences cancel out, and so at best
[

−iεi j⊥∇ i⊥M j
C (Δ)

]

Δ=0
= O(1/ε). (C.31)
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