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Abstract In the framework of the Einstein–Dirac-axion-
aether theory we consider the quartet of self-interacting cos-
mic fields, which includes the dynamic aether, presented
by the unit timelike vector field, the axionic dark mater,
described by the pseudoscalar field, the spinor field asso-
ciated with fermion particles, and the gravity field. The
key, associated with the mechanism of self-interaction, is
installed into the modified periodic potential of the pseu-
doscalar (axion) field constructed on the base of a guid-
ing function, which depends on one invariant, one pseudo-
invariant and two cross-invariants containing the spinor and
vector fields. The total system of the field equations related
to the isotropic homogeneous cosmological model is solved;
we have found the exact solutions for the guiding function for
three cases: nonzero, vanishing and critical values of the cos-
mological constant. Based on these solutions, we obtained the
expressions for the effective mass of spinor particles, inter-
acting with the axionic dark matter and dynamic aether. This
effective mass is shown to bear imprints of the cosmological
epoch and of the state of the cosmic dark fluid in that epoch.

1 Introduction

The Einstein–Dirac-axion-aether theory is very effective
instrument for bringing together various trends in modern
Cosmology, Astrophysics and High Energy Physics. First of
all, this theory deals with the Dirac spinor fields, and thus
it can be applied to description of wide class of phenom-
ena, which occur in the fermion systems. The Dirac spinor
fields, according to the classification adopted in the Standard
model, describe the Dirac fermions, i.e., massive particles
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with a half-integer spin, which do not coincide with their
antiparticles. This subclass of fermions contains, in particu-
lar, the baryons (e.g., protons and neutrons), the leptons (e.g.,
electrons, positrons, massive neutrinos). It is especially inter-
esting, when one deals with the supernova and solar neutri-
nos, with neutrino oscillations and the problem of neutrino
masses (see, e.g., [1,2] for details). When one deals with
the massless fermions, the Weyl and Majorana equations are
used, as specific particular cases of the Dirac equations.

The second element of the theory is the axionic dark mat-
ter, the key participant of the cosmological events (see, e.g.,
[3–5] for references, historical motives and mathematical
details). We follow the idea of the author of the review [3],
that now just the axions are considered to be the leading
particle candidates to provide the phenomena attributed to
the cosmic dark matter (e.g., the flat galactic rotation curves,
the structure and properties of the dark matter halos, etc.).
New aspects of this discussion and new argumentation can
be found in the recent review [6].

The dynamic aether, the third key element of the theory,
was introduced in [7–9]; it can produce the effects, which
are usually associated with the influence of the cosmic dark
energy [10–12].

Unexpectedly interesting applications appear, when one
considers the pairwise interactions, e.g., between spinors and
dark matter, spinors and dark energy, dark matter and aether,
etc. For instance, the enigma of the neutrino masses pushed
to the study of coupling between neutrinos and dark matter,
provoking an extensive series of works (see, e.g., [13–20]).
The theory of coupling between spinor field and dark energy
gives another example of such pairwise interaction (see, e.g.,
[21–26]). In this sense, it is interesting to mention the new
trend appeared in the theory of interactions in the Dark Sec-
tor: we mean the so-called dark spinors (see, e.g., [27–29]).
Extensions of the canonic Einstein-aether theory [8] have

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-021-09341-z&domain=pdf
mailto:Alexander.Balakin@kpfu.ru
mailto:anna.efremova131@yandex.ru


674 Page 2 of 12 Eur. Phys. J. C (2021) 81 :674

given many interesting results for the models of coupling
between aether and scalar field (see, e.g., [30,31]), for the
models of interaction of the aether with the axion field [32–
34], and for the aether models including the electromagnetic
field [35,36].

There are examples of investigations of the triple inter-
actions: for instance, in the work [37] the coupling between
spinor, axion and scalar fields is studied; in the papers [38,39]
the coupling between aether, axions and photons is consid-
ered; in the works [40–42] the spinor and scalar fields are con-
sidered to be coupled to the fluids (perfect, viscous, magne-
tized). In some works the spinor field is presented in terms of
the nonlinear and nonminimal formalisms (see, e.g., [43,44]).

In the context of these numerous investigations, we have
to clarify: what are the aims and frames of our work. First
of all, we have to say that many quoted results are for-
mulated on the language of High Energy Physics, but we
use the formalism of the Field Theory, to be more precise,
we use the formalism of the Einstein–Dirac-axion-aether
theory. In the framework of this theory we consider the
quadruple coupling of the gravitational, spinor, pseudoscalar
and vector fields. In the total Lagrangian of the system the
gravity field is presented by the classical Einstein-Hilbert
term; in the nearest future we plan to use the frames of the
Modified theories of gravity along the line proposed in the
works [45–48]. The spinor field ψ (massive or massless)
is described by the extended Dirac equations. The pseu-
doscalar field φ is associated with the axionic dark mat-
ter. The unit timelike vector field Ui describes the veloc-
ity of the dynamic aether flow. We assume that the potential
of the axion field V (φ,�∗) contains the guiding function
�∗, which depends on four arguments �(S, P, ω,�). The
first argument S = ψ̄ψ is the invariant constructed using the
Dirac spinor; the pseudoinvariant P = ψ̄γ 5ψ contains the
Dirac matrix γ 5; the scalar ω = Uk

(
ψ̄γ kψ

)
is the cross-

invariant, which contains both spinor and vector fields; the
pseudoscalar � = Uk

(
ψ̄γ 5γ kψ

)
also has to be indicated as

the cross -pseudoinvariant.
In this work, classifying the scalars, which could be the

arguments of the guiding function, we omitted the scalars,
obtained from the decomposition of the covariant deriva-
tive of the aether velocity four-vector ∇kUi : the expansion
scalar � = ∇kUk , the square of the acceleration four-vector
a j =Uk∇kU j , the squares of the symmetric shear tensor
σ jk and of the skew-symmetric vorticity tensor ω jk (see
[32,34] for details). We hope to extend the model, respec-
tively, in the next work, but now we restrict our-selves by the
scalars of zero order in derivative, according to the terminol-
ogy of the Effective field theory [49]. Keeping in mind this
idea, we do not include into the Lagrangian the pseudoscalar
∇kφ(ψ̄γ kψ), and the scalar ∇kφ(ψ̄γ kγ 5ψ). As for the zero
order cross-scalar P ·φ and cross-pseudoscalar S ·φ, it seems
to be not logical to include them into the specific potential

of the axion field V (φ,�∗(S, P, . . .)), which we use for the
description of this model.

Our final remark concerns the electromagnetic field and
Yang-Mills fields. We assume here that these gauge U (1)

and SU (N ) symmetric fields are vanishing, and thus, the
extended derivative of the Dirac spinor field does not contain
the corresponding potentials. The problem is that there exists
the aether-like representation of the gauge field [50,51], and
the question arises: whether the aether velocity four-vector
Uk or its SU(N) generalizationsUk

(a) (see, e.g., [52]) can play
the role of the gauge potential? We assume that this question
is still open, but in this work we follow the classic non-gauge
invariant version of the dynamic aether.

The construction of the axion field potential V (φ,�∗)
admits the following twofold interpretation: on the one hand,
the spinor field and the aether regulate the behavior of the
axion field via this potential; on the other hand, the axionic
backreaction modifies the Dirac equations for the spinor field,
and the effective spinor mass matrix M appears instead of
the intrinsic mass m. In other words, we assume that if the
intrinsic mass of the spinor particle (e.g., of the neutrino)
is equal to zero, m = 0, then the coupling to the axionic
dark matter produces an effective mass, which depends, e.g.,
on cosmological epoch and on the state of the axionic dark
matter in that epoch.

The paper is organized as follows. In Sect. 2.1 we describe
the action functional of the model; in Sect. 2.2 we specify
the structure and properties of the modified periodic poten-
tial of the axion field; in Sect. 2.3 based on the Lagrange
formalism we derive the extended equations for the vector,
axion, spinor and gravitational fields. Section 3 contains cos-
mological application of the elaborated model. In Sect. 3.1
we reduce the field equations of the model to the symme-
try associated with the isotropic homogeneous cosmology.
In Sect. 3.2 we obtain exact solutions of the complete set
of the reduced field equations, and discuss the properties of
the exact solutions to the guiding function �∗ for two cases:
with and without cosmological constant, 
 �= 0 and 
 = 0.
In Sect. 4 we discuss the properties of the obtained effective
mass attributed to the spinor field coupled to the axionic dark
matter. Section 5 contains discussion and conclusions.

2 The formalism of the Einstein–Dirac-aether-axion
theory

2.1 Action functional

The action functional describing the system of interacting
gravitational, spinor, pseudoscalar (axion) vector fields can
be written as follows:
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− S =
∫

d4x
√−g

{
1

2κ

[
R + 2
 + λ

(
gmnU

mUn − 1
)

+Kab
mn∇aU

m∇bU
n
]

+ 1

2

2

0

[
V − ∇kφ∇kφ

]

+ i

2
[ψ̄γ k Dkψ − Dkψ̄γ kψ] − mψ̄ψ − L(baryon)

}
.

(1)

As usual, g is the determinant of the metric, κ is the Einstein
constant, R is the Ricci scalar,
 is the cosmological constant,
∇k is the covariant derivative. λ is the Lagrange multiplier,
Ui is the unit timelike vector field, which is associated with
the velocity four-vector of the aether flow. The object

Kab
mn=C1g

abgmn + C2δ
a
mδbn + C3δ

a
nδ

b
m + C4U

aUbgmn (2)

contains four phenomenological constants C1, C2, C3, C4

and presents the so-called constitutive tensor in the model of
the dynamic aether [8].

The dimensionless pseudoscalar field φ is associated with
the axions, hypothetical massive pseudo-Goldstone bosons
[53–55]; V is the potential of the pseudoscalar field, and the
parameter 
0 is connected with the constant of the axion-
photon coupling gAγ γ by the relationship 1


0
= gAγ γ .

The matrix-column ψ describes the spinor field, ψ̄ is its
Dirac conjugated field, ψ̄ = ψ∗T γ 0. The matrices γ k satisfy
the relationships

γmγ n + γ nγm = 2Egmn, (3)

where E is the unit 4 × 4 matrix. The matrices γ k are con-
nected with the standard constant Dirac matrices γ (a) via the
tetrad four-vectors Xm

(a) by the convolution γ k = Xk
(a)γ

(a)

with respect to the tetrad index (a). The constant Dirac matri-
ces satisfy the relationships

γ (a)γ (b) + γ (b)γ (a) = 2Eη(a)(b), (4)

where η(a)(b) is the Minkowski metric. The quartet of the
tetrad four-vectors Xm

(a) is known to satisfy two normalization–
orthogonality conditions:

gmn X
m
(a)X

n
(b) = η(a)(b), η(a)(b)Xm

(a)X
n
(b) = gmn . (5)

The term Dk defines the spinor covariant derivatives, which
are given by

Dkψ = ∂kψ − �kψ, Dkψ̄ = ∂kψ̄ + ψ̄�k . (6)

The Fock–Ivanenko matrices �k [56] can be expressed via
the covariant derivatives of the tetrad four-vectors:

�k = 1

4
gmn X

(a)
s γ sγ n∇k X

m
(a). (7)

The parameter m describes the mass of the spinor field.
Finally, we would like to focus on the term L(baryon), the

last element of the action functional (1). Formally speaking,
the baryons (protons, neutrons, etc.) are the fermions, the

heavy spinor particles, and thus they also can be described
by the Dirac equations, if we work in the paradigm of the
Field Theory. Clearly, in general case in order to describe a
multi-fermion system, we have to introduce the correspond-
ing multi-component spinors, instead of the four-component
one. There exists an alternative to this approach: one can
consider the baryonic matter in terms of a multi-component
fluid with the stress-energy tensor of the perfect fluid. It is
necessary to use this approach, e.g., when the spinor field,
which we analyze, presents the massless neutrino.

2.2 The structure of the potential of the axion field

We assume that the modified periodic potential of the axion
field is given by the function

V (φ,�∗) = m2
A�2∗

2π2

[
1 − cos

(
2πφ

�∗

)]
. (8)

This potential is indicated as periodic, since V (φ + n�∗) =
V (φ); it has the minima at φ=n�∗. Near the minima, when
φ → n�∗ + φ̃, and |φ̃| is small, the potential takes the stan-
dard form V → m2

Aφ̃2, where mA is the axion mass. The
function �∗ plays the role of vacuum average value of the
axion field; we assume that it is not a constant, and it depends
on coordinates via some auxiliary invariants. In the works
[32,33] these invariants were constructed using the covari-
ant derivative of the velocity four-vector, associated with the
dynamic aether flow. In the papers [57,58] we have used the
moduli of the Killing vectors as auxiliary invariants, the argu-
ments of the guiding function �∗. Now we develop this idea
and assume that the guiding function �∗ can depend on the
spinor field via the following four invariants (two scalars and
two pseudoscalars):

S = ψ̄ψ, P = ψ̄γ 5ψ,

ω = Uk

(
ψ̄γ kψ

)
, � = Uk

(
ψ̄γ 5γ kψ

)
. (9)

We use the following definition for the matrix γ 5.

γ 5 = 1

4!εmnpqγ
mγ nγ pγ q , (10)

where εmnpq is the Levi-Civita tensor expressed via the Levi-
Civita antisymmetric symbol Emnpq as follows:

εmnpq = √−gEmnpq , E0123 = −1. (11)

The matrix γ 5 does not depend on the metric, since

γ 5 = √−gγ 0γ 1γ 2γ 3 = γ (0)γ (1)γ (2)γ (3) = γ (5). (12)

Two last quantities in (9), ω and �, can be indicated as cross-
invariant and cross - pseudoinvariant, respectively, since they
contain quantities, which characterize both the aether flow
and spinor field. Let us mention that in many aspects we
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follow the approach presented in the series of works [40–
44]; the authors of these works have focused on the coupling
of the scalar and spinor fields via the kinetic term ∇kϕ∇kϕ ·
F(S, P, . . .), so one can say that we extend this approach
considering the axion field instead of scalar, introducing the
vector field related to the dynamic aether, and modifying the
potential V instead of the kinetic term.

2.3 Model field equations

2.3.1 Equations for the aether field

Variation of the action functional (1) with respect to the
Lagrange multiplier λ and to the four-vectorUi gives, respec-
tively, the normalization condition

gmnU
mUn = 1, (13)

and the dynamic equation for the aether flow

∇aJ aj = λU j + C4DUm∇ jUm + κ I j . (14)

The tensor J a
j is standardly presented as

J a
j = Kab

jn∇bU
n

= C1∇aU j + C2δ
a
j� + C3∇ jU

a + C4U
aDUj , (15)

with the convective derivative D = Uk∇k . The four-vector
I j is given by

I j = m2
A
2

0�∗
2π2

[
1 − cos

(
2πφ

�∗

)
− πφ

�∗
sin

(
2πφ

�∗

)]

×
[
∂�∗
∂ω

(
ψ̄γ jψ

)
+ ∂�∗

∂�

(
ψ̄γ 5γ jψ

)]
. (16)

Below, keeping in mind the compactness of formulas, we use
many times the function T = T (φ,�∗), defined as follows:

T = m2
A
2

0�∗
2π2

[
1 − cos

(
2πφ

�∗

)
− πφ

�∗
sin

(
2πφ

�∗

)]
.

(17)

Thus the four-vector I j can be shortly rewritten as

I j = T

[
∂�∗
∂ω

(
ψ̄γ jψ

)
+ ∂�∗

∂�

(
ψ̄γ 5γ jψ

)]
. (18)

The function T = T (φ,�∗) takes zero value, when the
axions are in the equilibrium state, φ=n�∗, and the inte-
ger n, describing the serial number of the equilibrium level,
is arbitrary.

2.3.2 Equations for the axion field

Variation of the action functional (1) with respect to the axion
field gives the equation

∇k∇kφ = −m2
A�∗
2π

sin

(
2πφ

�∗

)
. (19)

The spinor field predetermines the structure of the function
�∗(S, P, H,�), and thus it regulates the behavior of the
axion field.

2.3.3 Equations for the spinor field

Variation of the action functional (1) with respect to the quan-
tities ψ̄ and ψ gives, respectively,

iγ nDnψ − Mψ = 0, i Dnψ̄γ n + ψ̄M = 0, (20)

where the matrix M is presented by the formula

M = mE − T

×
[
∂�∗
∂S

E + ∂�∗
∂P

γ 5 +
(

∂�∗
∂ω

E + ∂�∗
∂�

γ 5
)
Ukγ

k
]

.

(21)

If we consider the effective mass as the scalar function, we
can use the formula

〈M〉 ≡ (ψ̄Mψ)

(ψ̄ψ)

= m − T

S

[
S
∂�∗
∂S

+ P
∂�∗
∂P

+ ω
∂�∗
∂ω

+ �
∂�∗
∂�

]
. (22)

According to (20), (21) the axion field φ and the aether veloc-
ity form an effective mass of the spinor field.

2.3.4 Equations for the gravity field

Variation of the action functional (1) with respect to the met-
ric yields

Rpq − 1

2
gpq R − 
gpq = TU

pq + κT (A)
pq + κT (D)

pq + κT (B)
pq .

(23)

The standard stress-energy tensor of the aether T (U)
pq is known

to have the form:

T (U)
pq = 1

2
gpq Kabmn∇aUm∇bUn + λUpUq

+∇m [U(pJq)m − Jm(pUq) − J(pq)Um
]

+C1
[
(∇mUp)(∇mUq) − (∇pUm)(∇qU

m)
]

+C4DUpDUq . (24)
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The stress-energy tensor of the axion field contains one stan-
dard and one new elements:

T (A)
pq = 
2

0

[
∇pφ∇qφ + 1

2
gpq

(
V − ∇kφ∇kφ

)]

+1

2
T

{
∂�∗
∂ω

[
Up

(
ψ̄γqψ

)+Uq
(
ψ̄γpψ

)]

+∂�∗
∂�

[
Up

(
ψ̄γ 5γqψ

)
+Uq

(
ψ̄γ 5γpψ

)]}
. (25)

The new element in (25), which is proportional to the function
T , is originated from the variation of the potential V with
respect to the metric. Here we used the formulas

δXn
(a)

δgpq
= 1

4

(
X p(a)δ

n
q + Xq(a)δ

n
p

)
, (26)

δgmn

δgpq
= −1

2

(
gmpgnq + gnpgmq

)
, (27)

δγ (a)

δgpq
= 0,

δγ 5

δgpq
= 0,

δU j

δgpq
= 0. (28)

Details of variation procedure for the tetrad four-vectors can
be found, e.g., in [59,60].

The stress-energy tensor of the spinor field T (D)
pq is

T (D)
pq = −gpq L(S) + i

4

[
ψ̄γpDqψ

+ψ̄γq Dpψ − (Dpψ̄)γqψ − (Dpψ̄)γqψ
]
. (29)

The term L(S) appeared in (29)

L(S) =
{
i

2

[
ψ̄γ k Dkψ − (Dkψ̄)γ kψ

]
− mψ̄ψ

}
, (30)

takes the following form on the solutions to the modified
Dirac equations: L(S) = ψ̄(M − m)ψ . Now, in contrast to
the classical case, when �∗ is constant, the effective mass
matrix M (see (21)) does not coincide with the intrinsic mass
matrix mE , and the term L(S) does not vanish.

The last term in the right-hand side of (23) describes the
contribution of the baryonic matter, if it is considered as the
perfect fluid:

T (B)
pq = (W + �)VpVq − �gpq , (31)

where W and � are the baryonic energy density and pres-
sure, respectively, and the velocity four-vector of the fluid,
V p, is the unit timelike eigen-vector of the tensor T (B)

pq , i.e.,

T (B)
pq V p = WVq (the Landau–Lifshitz definition).

3 Application: the model of isotropic homogeneous
Universe

The isotropic homogeneous cosmological model is a good
starting point for analysis of the problem of the induced

fermion masses. We see that this problem can be success-
fully solved also in the framework of the anisotropic Bianchi
models, however we focus now on the Friedmann-type model
with the cosmological constant in order to clarify physical
aspects of the problem.

3.1 Reduced field equations

3.1.1 Metric, tetrad and connection coefficients

For description of the isotropic homogeneous spacetime we
use the metric

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2), (32)

the Hubble function H(t) = ȧ
a , and the set of the tetrad

four-vectors

Xi
(0) = Ui = δi0, Xi

(1) = δi1
1

a(t)
,

Xi
(2) = δi2

1

a(t)
, Xi

(3) = δi3
1

a(t)
. (33)

The spinor connection coefficients �k have now very simple
form

�0 = 0, �1 = 1

2
ȧγ (1)γ (0),

�2 = 1

2
ȧγ (2)γ (0), �3 = 1

2
ȧγ (3)γ (0). (34)

As a direct consequence of (34) we obtain the auxiliary for-
mula

γ k�k = −3

2
Hγ 0 = −�kγ

k . (35)

3.1.2 Reduced evolutionary equation for the unit vector
field

The symmetry of the model requires that the aether velocity
four-vector has to have the form U j = δ

j
0 , and thus the

covariant derivative is

∇kU
m = H(t)

(
δm1 δ1

k + δm2 δ2
k + δm3 δ3

k

)
. (36)

The corresponding acceleration four-vector vanishes DUk =
0, and the expansion scalar � = ∇kUk is equal to � = 3H .
Thus, the tensor Jaj is now symmetric, and its components
can be written as follows:

Jaj = H
[
(C1 + C3)

(
δa1δ1

j + δa2δ2
j + δa3δ3

j

)
+ 3C2δ

a
j

]
.

(37)

The equations for the unit vector field (14) take the form

3δ0
j

[
C2 Ḣ − (C1 + C3)H

2
]

= λδ0
j + κ I j . (38)

Clearly, due to the model isotropy, the spatial components
of the four-vector I j have to be equal to zero, Iα=0, where

123



674 Page 6 of 12 Eur. Phys. J. C (2021) 81 :674

α=1, 2, 3. It is possible in one of the following three cases.
In the first case we can require

ψ̄γ αψ = 0, ψ̄γ 5γ αψ = 0, (39)

and obtain six conditions for the four complex spinor compo-
nents. The second case corresponds to the equilibrium state
of the axionic dark matter, and the condition φ=n�∗ leads
to I j = 0 because of the vanishing of the function T (17).
In the third case we deal with the requirements ∂�∗

∂ω
= 0 and

∂�∗
∂�

= 0, i.e., the function �∗ depends on S and P only.
When Iα = 0, we obtain that only one equation for the

velocity four-vector from the set (38) is nontrivial

3
[
C2 Ḣ − (C1 + C3)H

2
]

= λ + κ I0. (40)

This equation gives the Lagrange multiplier

λ(t)=3
[
C2 Ḣ − (C1 + C3)H2

]
− κT

[
ω

∂�∗
∂ω

+ �
∂�∗
∂�

]
.

(41)

This quantity contributes to the gravity field equation via
T (U)
ik (see (24)).

3.1.3 Reduced evolutionary equation for the axion field

Field equation (19) takes now the form

φ̈ + 3H φ̇ = −m2
A�∗
2π

sin

(
2πφ

�∗

)
. (42)

Generally, this nonlinear equation with coefficients depend-
ing on time can be analyzed only numerically, but there are
special cases, which we discuss below.

3.1.4 Reduced evolutionary equation for the spinor field

The symmetry of the problem hints, that one can search for
the components of the spinor field as the functions of time
only; then the Dirac equations simplify essentially

iγ 0
(

∂0 + 3

2
H

)
ψ = Mψ, (43)

i

(
∂0 + 3

2
H

)
ψ̄γ 0 = −ψ̄M. (44)

The replacement

ψ = a− 3
2 
, ψ̄ = a− 3

2 
̄ (45)

reduces the Dirac equations, yielding

iγ (0)
̇ = M
, i ˙̄
γ (0) = −
̄M, (46)

where the dot denotes the derivative with respect to time. Let
us consider the consequences of these equations.

3.1.5 Evolution of the spinor invariants

Keeping in mind (46), we can calculate the rate of evolution of
the invariants S, P , ω and �. Let us demonstrate the method
of derivation on the example of the scalar S. First, we see
that

d

dt

(
ψ̄ψ

) = d

dt

(

̄a−3


)

= −3H
(
ψ̄ψ

)

+ a−3
[(

d

dt

̄

)
γ (0)2


 + 
̄γ (0)2
(
d

dt



)]

= −3H
(
ψ̄ψ

)+ iψ̄
(
Mγ 0 − γ 0M

)
ψ. (47)

Using the formula for the effective mass matrix M (21) with
T given by (17) we can rewrite the evolutionary equation for
the scalar S as follows

Ṡ + 3HS = −2iT

(
�

∂�∗
∂P

+ P
∂�∗
∂�

)
. (48)

Similarly, for the pseudoinvariant P we can write the evolu-
tionary equation

Ṗ + 3HP = iψ̄
(
Mγ 0γ 5 − γ 5γ 0M

)
ψ, (49)

from which we obtain

Ṗ + 3HP = −2im� + 2iT

(
�

∂�∗
∂S

+ S
∂�∗
∂�

)
. (50)

For the scalar ω and pseudoscalar � the results are

ω̇ + 3Hω = 0, (51)

�̇ + 3H� = −iψ̄
(
Mγ 5 + γ 5M

)
ψ, (52)

or equivalently

�̇ + 3H� = −2imP + 2iT

(
P

∂�∗
∂S

− S
∂�∗
∂P

)
. (53)

When the axionic dark matter is in the equilibrium state,
φ = n�∗, and consequently, T (φ,�∗) = 0, the evolutionary
equations (48)–(53) convert into

Ṡ + 3HS = 0, ω̇ + 3Hω = 0, (54)

Ṗ + 3HP = −2im�, �̇ + 3H� = −2imP. (55)

Then we obtain the following exact solutions to these equa-
tions

S(t) = S(t0)

(
a(t0)

a(t)

)3

, (56)

ω(t) = ω(t0)

(
a(t0)

a(t)

)3

, (57)

P(t) = a3(t0)

a3(t)
[P(t0) cos 2m(t − t0)

+�(t0) sin 2m(t − t0)] , (58)
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�(t) = a3(t0)

a3(t)
[�(t0) cos 2m(t − t0)

−P(t0) sin 2m(t − t0)] . (59)

P2(t) + �2(t) =
[
P2(t0) + �2(t0)

] a6(t0)

a6(t)
. (60)

Below we use this finding for reconstruction of the guiding
function �∗.

3.1.6 Key equation for the gravity field

We work now in the approximation, for which the cosmolog-
ical baryonic matter is pressureless, � = 0, the fluid velocity
coincides with the aether velocity, Ui = V i , and the stress-
energy tensor (31) is divergence-free, i.e., ∇ pT (B)

pq = 0.
These requirements give us the known relationship for the

cosmic dust W (t) = W (t0)
[
a(t0)
a(t)

]3
. Taking into account the

structure of the stress-energy tensors of the unit vector, axion
and spinor fields given by (24), (25), (29), respectively, we
find that the key equation for the gravity field reads

3H2� − 
 − κ [mS(t0) + W (t0)]

(
a(t0)

a(t)

)3

= 1

2
κ
2

0

{
m2

A�2∗
2π2

[
1 − cos

(
2πφ

�∗

)]
+ φ̇2

}

, (61)

where we introduced a new auxiliary parameter:

� = 1 + 1

2
(C1 + 3C2 + C3). (62)

Other Einstein’s equations are the differential consequences
of the evolutionary equations for the aether, axion and spinor
fields.

3.2 Equilibrium axionic dark matter: how do we search for
the guiding function �∗?

3.2.1 Key equation for the guiding function �∗

We indicate the state of the axionic dark matter as an Equi-
librium state, when the potential V (φ,�∗) and its derivative
∂V
∂φ

take zero values. For the periodic potential (8) these con-
ditions are satisfied, if the pseudoscalar field is in one of the
minima of the potential, i.e., φ = n�∗, where n is an inte-
ger. For the Equilibrium state the Eq. (42) converts into the
equation for the guiding function �∗(t):

�̈∗ + 3H�̇∗ = 0. (63)

This equation does not depend on the integer n and admits
the first integral

�̇∗(t) = �̇∗(t0)
(
a(t0)

a(t)

)3

. (64)

Below we use the auxiliary variable x defined as follows:

x = a(t)

a(t0)
,

d

dt
= xH(x)

d

dx
. (65)

In terms of this new variable the Hubble function extracted
from (61) at φ=�∗ (we choose the level n = 1 as the basic
one) is given by

H(x) =
√




3�
+ κ[mS(t0) + W (t0)]

3�x3 + κ
2
0 �̇2∗(t0)
6�x6 . (66)

In terms of x the key equation for the function �∗(x) is

H(x)
d

dx
�∗(x) = �̇∗(t0)x−4, (67)

and we are ready for integration of this key equation.

3.2.2 Solutions for the model with nonvanishing
cosmological constant, 
 �= 0

When 
 �= 0, we can rewrite the Hubble function (66) as
follows:

H(x) = H∞
x3

√
x6 + αx3 + β, (68)

where we introduced the following auxiliary parameters:

H∞ =
√




3�
, α = κ[mS(t0) + W (t0)]



,

β = κ
2
0 �̇2∗(t0)
2


. (69)

Formal integration of (67) gives

3H∞
�∗(x)
�̇∗(t0)

+ const

= 1√
β

log

[
x3

2
√

β(x6 + αx3 + β) + αx3 + 2β

]

. (70)

Since x=1 when t=t0, the constant of integration can be
easily found, yielding

�∗(x) = �∗(t0)

+ �̇∗(t0)
3H∞

√
β

log

⎧
⎨

⎩
x3
[
2
√

β(1 + α + β) + α + 2β
]

[
2
√

β(x6 + αx3 + β) + αx3 + 2β
]

⎫
⎬

⎭
.

(71)

If we are interested to find �∗ as a function of the cosmolog-
ical time t , we take the formula ẋ = xH(x) and immediately
obtain

H∞(t − t0) =
∫ a(t)

a(t0)

1

x2dx
√
x6 + αx3 + β

. (72)
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Direct integration in (72) gives

a(t) = a(t0)

2
1
3

{√
4β − α2 sinh [3H∞(t − t∗)] − α

} 1
3

. (73)

We assume that 4β > α2 providing a(t) to be the real func-
tion of time; this is possible, when the positive cosmological
constant is bigger than some critical value 
 > 
C , where


C = κ[mS(t0) + W (t0)]2

2
2
0 �̇2∗(t0)

. (74)

Also, we introduce the auxiliary time moment t∗ as

t∗ = t0 − 1

3H∞
arsh

(
2 + α

√
4β − α2

)

. (75)

Asymptotic behavior of this field configuration relates to the
de Sitter law

a(t → ∞) ∝ eH∞t . (76)

The function �∗ tends asymptotically to the constant

�∗(x → ∞) = �∗(t0) + �̇∗(t0)
3H∞

√
β

× log

{[
2
√

β(1 + α + β) + α + 2β
]

(
2
√

β + α
)

}

. (77)

Finally, it is interesting to calculate the acceleration param-
eter defined as

− q ≡ ä

aH2 = 1 + x

H

dH

dx
. (78)

For the Hubble function (68) it has the form

− q ≡ x6 − 1
2αx3 − 2β

x6 + αx3 + β
. (79)

Clearly, at the value of the reduced scale factor xT there exists
the cosmological transition point, for which q(xT) = 0 and
thus the acceleration parameter changes the sign. This point
is calculated to be the following:

xT =
⎛

⎝α

4
+
√

α2

16
+ 2β

⎞

⎠

1
3

. (80)

Using the exact solution (73), one can rewrite this equality
in terms of the cosmological time

tT = t∗ + 1

3H∞
arsh

⎡

⎣
3 +

√
1 + 32β

α2

2
√

4β

α2 − 1

⎤

⎦ . (81)

The function (79) shows that in the model under consider-
ation (we assume here that 
 > 0 and thus α > 0 and
β > 0) the Universe expands with deceleration in the time
interval t0 < t < tT. At t > tT the expansion of the Uni-
verse becomes accelerated, and asymptotically −q → 1. At

present, we obtain the late-time accelerated expansion, as it
should be.

The case, when 4β=α2 has to be considered especially,
since t∗ in (75) is now infinite.

3.2.3 Special case β= 1
4α2, 
 �= 0

This special case can be realized if the cosmological constant
takes the critical value, 
 = 
C . For this special case the
Hubble function (68) transforms into

H(x) = H∞
(

1 + α

2x3

)
, (82)

and the scale factor has the form

a(t) = a(t0)
[(

1 + α

2

)
e3H∞(t−t0) − α

2

] 1
3
. (83)

As for the guiding function, it is now of the form

�∗(x) = �∗(t0) + 2�̇∗(t0)
3H∞α

log

[
x3
(
1 + α

2

)

(
x3 + α

2

)

]

. (84)

Asymptotic regime relates to the de Sitter law a ∝ eH∞t ,
and the guiding function tends asymptotically to the constant

�∗(∞) = �∗(t0) + 2�̇∗(t0)
3H∞α

log
(
1 + α

2

)
.

In this model the acceleration parameter can be recon-
structed as follows

− q = x3 − α

x3 + α
2

. (85)

The transition point is characterized by the reduced scale

factor xT = α
1
3 , and the corresponding time moment is

tT = t0 + 1

3H∞
log

(
3α

2 + α

)
. (86)

When α > 1, we obtain that tT > t0. Again, asymptotically
the acceleration parameter tends to one, and we deal with the
late-time acceleration, typical for the models with quasi-de
Sitter asymptotes.

One can mention that, in both cases with 
 �= 0 studied
above the period of cosmological time t0 < t < tT is charac-
terized by the decelerated expansion, i.e., after the moment
t0 the inflationary stage can not be realized. This fact can
be explained as follows. We consider the model in which at
t > t0 the spinor field is nonvanishing, i.e., massive fermions
already filled the Universe. In other words, the moment of
the phase transition, at which the fermions were born (we
indicate it as tF) satisfies the inequality tF < t0. This means,
that the known inflection point on the graph of the scale fac-
tor evolution, which divides the epochs of the inflation and
the first decelerated expansion, also belongs to the interval
t < t0. The model of such phase transition initiated by the
dynamic aether is in progress, and we plan to extend the
model correspondingly in the nearest future.
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3.2.4 Solutions for the model with vanishing cosmological
constant, 
 = 0, and m �= 0

When 
 = 0 and the spinor field is massive, m �= 0, the
Hubble function

H(x) = H∗
x3

√
x3 + σ (87)

depends on two parameters

H∗ =
√

κ[mS(t0) + W (t0)]
3�

, σ = 
2
0 �̇2∗(t0)

2[mS(t0) + W (t0)] .
(88)

Now we obtain

�∗(x) = �∗(t0) + �̇∗(t0)
3H∗

√
σ

× log

⎡

⎢⎢
⎣

(√
1 + x3

σ
+ 1

)(√
1 + 1

σ
− 1

)

(√
1 + x3

σ
− 1

)(√
1 + 1

σ
+ 1

)

⎤

⎥⎥
⎦. (89)

The corresponding dependence of the scale factor on the cos-
mological time a(t) is given by

a(t) = a(t0)

{[
3

2
H∗(t − t0) + √

1 + σ

]2

− σ

} 1
3

. (90)

Asymptotic behavior of the scale factor is characterized by
the power laws

a(t → ∞) → a(t0)

(
3H∗t

2

) 2
3

, (91)

and the asymptotic value of the guiding function is

�∗(x → ∞) = �∗(t0) + �̇∗(t0)
3
√

σ
log

(√
1 + 1

σ
− 1

)

(√
1 + 1

σ
+ 1

) . (92)

Since the parameter σ is positive (see (88)), the acceleration
parameter is now monotonic and negative:

− q = −
[

x3 + 4σ

2(x3 + σ)

]
. (93)

This model can not explain the late-time accelerated expan-
sion.

3.2.5 Solutions for the model with 
 = 0, W (t0) = 0 and
m = 0

In this special case the Hubble function (66)

H(x) = γ x−3, γ =
√

κ
2
0 �̇2∗(t0)
6�

, (94)

tends to zero asymptotically, when x → ∞. The correspond-
ing scale factor

a(t) = a(t0)
[
1 + 3γ (t − t0)

] 1
3 (95)

is of the power-law type, and the guiding function

�∗(x) = �∗(t0) + �̇∗(t0)
γ

log x (96)

has no finite asymptotic value. The acceleration parameter is
negative −q = −2, the model is non-physical.

4 Effective fermion mass induced by the coupling of the
spinor field with axionic dark matter and dynamic
aether

4.1 Reconstruction of the function �∗(S, P, ω,�)

We discuss here the simplest example of the function �∗(ρ),
which depends on the argument

ρ = τ1S
2 + τ2ω

2 + τ3(P
2 + �2), (97)

where τ1, τ2, τ3 are some model parameters. For the equi-
librium configuration, we obtain from (56), (57), (60) that ρ

happens to be proportional to x−6:

ρ = ρ(t0)x
−6,

ρ(t0) ≡
[
τ1S

2(t0) + τ2ω
2(t0) + τ3(P

2(t0) + �2(t0))
]
.

(98)

Thus, we can put the quantity

x =
[

ρ(t)

ρ(t0)

]− 1
6

(99)

into (71), (84), or into (89) obtaining the necessary function
�∗(ρ). Particularly, when τ1 = 1 and τ2 = τ3 = 0, we see
that ρ = S2, and the behavior of the guiding function �∗
is predetermined by the fermion number density S. When
τ2 = 1 and τ1 = τ3 = 0, the interacting aether and spinor
field regulate the state of the axionic dark matter via the
function �∗(ω).

4.2 Oscillations of the effective spinor mass, induced by
the axionic dark matter in the presence of the dynamic
aether

4.2.1 Scheme of analysis

We have found the guiding function �∗(ρ) as the exact solu-
tion to the field equations of the model, for which the axionic
dark matter is in the first Equilibrium state φ=�∗. Since in all
the basic formulas (see, e.g., (61)) the spinor mass m appears
in the combination with the baryon energy density W (t0),
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as [mS(t0) + W (t0)], in this subsection only, for the sake of
simplicity, we put W (t0) = 0. Now we consider the effective
mass matrix of spinor particles based on the formula (22)
with �∗=�∗(ρ) for the pseudoscalar field φ near the Equi-
librium (φ = �∗ + ξ ). We can estimate the induced mass
μ ≡ 〈M〉 − m as follows:

μ = −2

(
T

S

)
ρ
d�∗
dρ

≈ −m2
A
2

0

3S(t0)

(
x4 d�∗

dx

)
ξ(t). (100)

The function ξ(t) satisfies the linearized equation

ξ̈ + 3H ξ̇ + m2
Aξ = 0. (101)

We assume that on the late-time expansion stage H << mA,
and the third term in (101) seems to be much bigger than the
second one. Thus, if we put the approximate solution

ξ(t) = ξ(t1) cosmA(t − t1) + ξ̇ (t1)

mA
sinmA(t − t1) (102)

into (100) we can illustrate the idea about an axionically
induced fermion mass oscillations. Clearly, the properties of
the function H = x4 d�∗

dx predetermine the behavior of the
effective mass variation μ; below we calculate μ(t) for three
cases described above.

4.2.2 Induced mass μ in the case 
 �= 0 and β �= 1
4α2

In this general case the function H(x) has the form:

H(x) = x4 d�∗
dx

= x3
√
x6 + αx3 + β

, (103)

thus, taking into account (73) we obtain

μ(t) = −ξ(t)
m2

A
2
0 �̇(t0)

3S(t0)

×
⎧
⎨

⎩

sinh [3H∞(t − t0)] − α√
4β−α2

cosh [3H∞(t − t0)]

⎫
⎬

⎭
. (104)

In the asymptotic regime H(x) → 1. If the spinor field is
massless, m = 0, we see that α = 0 and we deal with the
formula

μ(t) = −ξ(t)
m2

A
2
0 �̇(t0)

3S(t0)
tanh [3H∞(t − t0)]. (105)

4.2.3 Induced mass μ in the case 
 �= 0 and β = 1
4α2

In this special case, according to (84) and (83), the spinor
mass variation is given by the formula

μ = −ξ(t)
m2

A
2
0 �̇∗(t0)

3S(t0)H∞

×
[

1 − κmS(t0)

κmS(t0) + 

e−3H∞(t−t0)

]
. (106)

By the way, for the massless spinor field, m = 0, and in
the absence of a baryonic matter, this quantity behaves as
μ(t) = −μ∗ξ(t), with

μ∗ = m2
A
2

0 �̇∗(t0)
3S(t0)H∞

. (107)

4.2.4 The case 
 = 0, m �= 0

The function H(x) calculated using the formula (89)

H(x) = − �̇∗
H∗

· x3

√
x3 + σ

, (108)

shows that asymptotically, at x → ∞ the spinor mass varia-
tion does not tend to constant, i.e., the model is instable.

5 Discussion and conclusions

Whenever we remember the grand event: the detection of
neutrinos emitted due to the explosion of Supernova 1987A,
we try to imagine what could happen during the 168.000
light-years traveling of that neutrinos from the Large Magel-
lanic Cloud to the Earth? The neutrinos born in such catas-
trophes could interact with dark matter and dark energy, and
one can try to find the fingerprints of the cosmic dark fluid
in the data of neutrino observations. On the other hand, the
neutrino flow from the Supernovae of the Type II (SN core-
collapse) is predicted to be so huge, that the neutrinos can
influence the state of dark matter in the source environment.

Keeping in mind this idea, we established the model of
interaction between spinor field, axionic dark matter and
dynamic aether. The central element of this model is the so-
called guiding function �∗, which is the detail of the potential
of the pseudoscalar (axion) field (see (8)). Since this guid-
ing function depends on the spinor field and dynamic aether
via some scalars (we considered here four scalar (9)), we are
faced with the nonlinear modifications of the equations for
the vector, axion, spinor and gravitational fields. We have
found the exact solutions to these modified field equations
in the model with equilibrium axionic dark matter, in the
framework of the isotropic homogeneous cosmology. For the
model with nonvanishing cosmological constant the exact
solutions for the guiding function are presented by (71) and
(84); when 
 = 0, the corresponding exact solutions are of
the form (89) and (96).

The influence of the dynamic aether reveals in the mod-
ification of the model working parameters by the factor �,
which contains Jacobson’s phenomenological constants (62).
The constraint on the sum of two parameters C1 + C3 has
been obtained in 2017 due to the observation of the binary
neutron star merger (the event encoded as GW170817 and
GRB 170817A, see [61]). It was established that the ratio of

123



Eur. Phys. J. C (2021) 81 :674 Page 11 of 12 674

the velocities of the gravitational and electromagnetic waves
differs from one by the quantity about 10−15, and thus, the
sum of the parameters C1 + C3 is estimated as follows:
−6 × 10−15 < C1 + C3 < 1.4 × 10−15. If we assume that
C3 
 −C1, we have to write � = 1 + 3

2C2 and to redefine
correspondingly the parameter H∞.

Then we use the obtained exact solutions for �∗ for find-
ing of the so-called effective spinor mass (see (21) for the
effective spinor mass matrix, and (22) for the effective mass
scalar). The results of calculations, which demonstrate the
possibility of the induced spinor mass oscillations in the
cosmological context, are presented by the formulas (104)–
(106). Clearly, the parameter μ∗ defined by (107) plays the
role of effectiveness of oscillation production. We have to
emphasize that for finding of the guiding function �∗ and of
the induced spinor mass μ we do not calculate directly the
components of the spinor field, but we have found the exact
solutions for the spinor scalars (pseudoscalars) S, P , ω and
�, which are the arguments of the guiding function �∗ (see
the details in Sect. 3.1.5).

The obtained results allow us to formulate the following
three main conclusions.

1. The cosmic spinor field influences the state of the axionic
dark matter via the guiding function �∗ (the argument of
the periodic potential of the axion fieldV (φ,�∗)), which
is a time depending analog of the vacuum average value
of the pseudoscalar field.

2. Spinor particles (massive and massless) acquire effective
masses due to the interaction with the axionic dark mat-
ter; variations of this effective mass are predetermined
by the dynamics of the Universe expansion.

3. The effective mass of the spinor field is proportional to
the square of the axion mass, is inversely proportional
to the square of the constant of the axion-photon cou-
pling, depends on cosmological time, and is exposed to
oscillations with the frequency proportional to the axion
mass mA.

The final question, which we would like to touch, concerns
the possibility to observe the predicted effect of axionically
induced spinor mass oscillations. According to the recent
report [62], the unique new Hyper-Kamiokande detector is
announced to be able to monitor the atmospheric, supernova
and solar neutrinos. We do not discuss the details and design
of a new test, but its idea could be the following. The distance
between the Sun and Earth is much less than the distance
between the Supernova and Earth. If the detecting system
is able to measure the time difference between a solar flare
and a solar neutrino appearance in the terrestrial laboratory,
it could give the difference between the velocities of the pho-
tons and neutrinos, and thus could be considered as a standard
for the estimation of the neutrino mass in the model free of

the dark matter influence. In contrast to this reference infor-
mation, one can try to measure the corresponding time delay
in the Supernova burst search; now the supernova neutrinos
are assumed to be influenced by the axionic dark matter in
the long trip to the Earth. Comparison of the corresponding
estimation of the neutrino mass taking into account the axion-
ically induced oscillations, with the reference one, could help
to test our hypothesis.
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