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Abstract Inspired by an interesting counterexample to the
cosmic no-hair conjecture found in a supergravity-motivated
model recently, we propose a multi-field extension, in which
two scalar fields are allowed to non-minimally couple to two
vector fields, respectively. This model is shown to admit an
exact Bianchi type I power-law solution. Furthermore, sta-
bility analysis based on the dynamical system method is per-
formed to show that this anisotropic solution is indeed stable
and attractive if both scalar fields are canonical. Neverthe-
less, if one of the two scalar fields is phantom then the cor-
responding anisotropic power-law inflation turns unstable as
expected.

1 Introduction

Cosmic inflation [1–4] has played a central paradigm in
modern cosmology due to the fact that its predictions have
been well confirmed by the cosmic microwave background
(CMB) radiations probes such as the Wilkinson Microwave
Anisotropy Probe (WMAP) [5] and the Planck [6–8]. It
is widely believed that a hypothetical scalar inflaton field
is responsible for the inductance of the inflationary phase
during the early universe [9]. Remarkably, the Starobin-
sky model, one of the original inflation models [1–4], still
remains as one of the most favorable models in light of the
Planck observation [6–8]. It is important to note that the cos-
mological principle, stating that our universe on large scales
is simply homogeneous and isotropic Friedmann–Lemaître–
Robertson–Walker (FLRW) spacetime [10], has been the key
base of most inflationary models [9]. However, testing the
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validity of the cosmological principle is not a straightfor-
ward task [11–13].

Recently, observations of CMB anomalies, such as the
hemispherical asymmetry and the cold spot observed by
WMAP and Planck, have been one of the great challenges
of the standard inflationary models based on the cosmolog-
ical principle [14]. Of course, there have been a number of
mechanisms proposed to explain the origin of these anoma-
lies [14]. For example, there have been claims in Refs. [15–
17] that the CMB statistical anisotropy could be instrumental
rather than cosmological. In particular, these investigations
have shown that the asymmetric beams could be the origin
of the CMB statistical anisotropy. This resolution has, how-
ever, been tested independently by other people. Indeed, it
was pointed out that the asymmetric beams seem to be unim-
portant [18].

It turns out that investigating the origin of these exotic fea-
tures might lead to a small deviation from the cosmological
principle. One of the possible deviations is to introduce the
Bianchi spacetimes, which are homogeneous but anisotropic
metrics, instead of the FLRW one in order to describe the
early universe during the inflationary phase [19,20]. Interest-
ingly, some theoretical predictions of the Bianchi type infla-
tionary universe have already been derived in Refs. [21,22].
If the early universe was anisotropic initially, it is important to
answer the question whether the universe is still anisotropic
or not. Of course, this question is not easy to answer either
by theoretical derivation or by direct observation. On the
observational side, it is worth noting that a recent study in
Ref. [23] might provide us with an important hint to this
question. In particular, it has been claimed that the present
universe might be anisotropic rather than isotropic. On the
theoretical side, there is an important hint provided by the
so-called cosmic no-hair conjecture proposed by Hawking
and his colleagues a few decades ago [24,25]. The cosmic
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no-hair conjecture states that the late time universe should
be inevitably homogeneous and isotropic consistent with the
cosmological principle regardless of the early state of the uni-
verse. If this conjecture is not valid, the observation shown
in Ref. [23] might be a relevant evidence. It is worth noting
that the cosmic no-hair conjecture, if correct, should be valid
locally, i.e., inside of the future event horizon, as shown firstly
by Starobinsky [26,27] and then by other people [28–30]. It
turns out that a number of huge efforts have been paid to
prove this conjecture since the first partial proof by Wald for
the Bianchi spacetimes [31–37]. However, a complete proof
for this conjecture has still remained a great challenge.

Along with these proofs, there have been claims that the
cosmic no-hair conjecture could no longer be valid [38–51].
Nevertheless, stability analysis done in Refs. [46–49] have
pointed out that some of the claimed counterexamples turn
out to be unstable during an inflationary phase, consistent
with the prediction of the conjecture. On the other hand,
there existed a very truly counterexample to the conjecture
found in the supergravity-motivated model by Kanno–Soda–
Watanabe (KSW) [50,51]. In particular, the KSW model
introduces scalar–vector coupling term f 2(φ)FμνFμν which
breaks the conformal invariance. As a result, the existence of
the non-trivial function f (φ) prevents the vector field from an
exponential dilution during the inflationary phase. Hence, the
existence of the non-vanishing vector field will lead to small
spatial anisotropies during the inflationary phase. It turns out
that the KSW model does admit the Bianchi type I spacetime
as its stable and attractive inflationary solution [50,51]. Con-
sequently, this model has been investigated extensively [52–
101]. For example, non-trivial extensions with multi scalar
fields coupled to one vector field have been proposed in Refs.
[71–75]; while other non-trivial extensions with multi vec-
tor fields coupled to one scalar field have been studied in
Refs. [76–80]. More interestingly, non-canonical scenarios,
in which a non-canonical scalar field is coupled to a vector
field, have been investigated in Refs. [81–85]. Additionally,
a higher dimensional version of the KSW model has been
examined in Ref. [86]. It turns out that many counterexam-
ples to the cosmic no-hair conjecture have been found not
only in these extensions but also in other models shown in
Refs. [52–70]. This result indicates that the unusual coupling
f 2(φ)FμνFμν does play an interesting role in the validity of
the cosmic no-hair conjecture. In order to compare with the
future CMB observations, expected to have higher sensitiv-
ity, the CMB imprints of the anisotropic inflation [102] have
been investigated systematically in Refs. [90–97]. Addition-
ally, primordial gravitational waves within the anisotropic
inflation have also been studied in Refs. [98,99]. Many other
cosmological features of the KSW anisotropic inflation can
also be found in Refs. [100,101].

It is worth noting that the conformal invariance of the elec-
tromagnetic field has been believed to be broken in order

to generate non-trivial magnetic fields [103]. Indeed, the
conformal-violating gauge coupling, exp[φ]FμνFμν , simi-
lar to the KSW model [51], has been proposed by Ratra in
Ref. [104] as a natural origin of large-scale galactic elec-
tromagnetic fields in the present universe. Hence, there is a
close relation between the existence of spatial anisotropies
during the inflationary phase and the late time large-scale
galactic electromagnetic fields. In other words, the exis-
tence of the late time large-scale galactic electromagnetic
fields might be a smoking gun for the anisotropic inflation-
ary universe. In addition, there are other types of conformal-
violating Maxwell coupling that also lead to anisotropic infla-
tion [105–107].

Motivated by these observations, we would like to propose
in this paper a non-trivial extension of the KSW model with
multi scalar fields and multi vector fields. In particular, we
will start by focusing on the model with two scalar fields non-
minimally coupled to two vector fields similar to the KSW
model. Hence, this model can be regarded as a non-trivial
combination of the two-scalar-field models [71] and the multi
vector fields models [76–80]. As a result, we are able to
obtain a set of Bianchi type I power-law inflationary solutions
to this model. Furthermore, we will also show that if both
scalar fields are canonical then the corresponding solution
will be stable and attractive. This solution, therefore, acts as
a new counterexample to the cosmic no-hair conjecture. On
the other hand, if one of the two scalar fields is a phantom
field [108–112] with negative-definite kinetic energy, then
the corresponding solution will turn unstable similar to our
previous investigations [71].

In summary, this paper will be organized as follows: (i) A
brief introduction has been presented in Sect. 1. (ii) A new
model with two scalar fields coupled to two vector fields will
be introduced in Sect. 2. (iii) Anisotropic power-law solution
will be solved in Sect. 3. (iv) Then, the stability of the new
solution will be analyzed by the dynamical system method
in Sect. 4. (v) Finally, concluding remarks will be drawn in
Sect. 5.

2 The model

In this paper, we would like to propose a multi-field extension
of the KSW model, in which two scalar fields are allowed to
couple to two vector fields, respectively, as follows

S =
∫

d4x
√−g

[
1

2
R − 1

2
∂μφ∂μφ − ω

2
∂μψ∂μψ − V1(φ) − V2(ψ)

− f 2
1 (φ)

4
FμνF

μν − f 2
2 (ψ)

4
FμνFμν

]
, (2.1)

where the reduced Planck mass Mp has been set to be one
for convenience. In addition, φ and ψ are scalar fields, while
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Fμν ≡ ∂μAν − ∂ν Aμ and Fμν ≡ ∂μAν − ∂νAμ are the field
strength of the vector fields Aμ and Aμ, respectively. Note
that ψ will be canonical or phantom [108–112] if ω is equal
to 1 or −1, respectively.

Before going to discuss this model in details, we would
like to mention that some multi-field extensions of the KSW
model have been proposed. In particular, two scalar fields
models, in which one scalar field is phantom and both of these
scalar fields coupled to a vector field, have been proposed
in Refs. [71,72]. As a result, the inclusion of the phantom
scalar field leads to an instability of the anisotropic inflation,
making the corresponding model consistent with the cosmic
no-hair conjecture [71,72]. On the other hand, multi vector
fields models, in which one canonical scalar field is coupled
to multi vector fields, have been studied in Refs. [76–80,86].
Hence, our present model turns out to be more general than
these models since it deals with multi scalar fields coupled
to multi vector ones.

As a result, the corresponding Einstein field equation of
this model is derived to be

Rμν − 1

2
Rgμν − ∂μφ∂νφ − ω∂μψ∂νψ

+ gμν

[
1

2
∂σ φ∂σ φ + ω

2
∂σ ψ∂σ ψ + V1 + V2

+1

4

(
f 2
1 F2 + f 2

2 F2
)]

− f 2
1 Fμγ Fν

γ − f 2
2 FμγFν

γ = 0. (2.2)

In addition, the corresponding field equations of these two
vector fields, Aμ and Aμ, are given by

∂μ

[√−g f 2
1 Fμν

]
= 0, (2.3)

∂μ

[√−g f 2
2 Fμν

]
= 0, (2.4)

along with that of the scalar field φ,

�φ − ∂φV1 − 1

2
f1

(
∂φ f1

)
F2 = 0, (2.5)

ω�ψ − ∂ψV2 − 1

2
f2

(
∂ψ f2

)F2 = 0, (2.6)

where ∂φ ≡ ∂/∂φ, ∂ψ ≡ ∂/∂ψ , and � ≡ 1√−g
∂μ

(√−g∂μ
)
.

In this paper, our purpose is to figure out anisotropic power-
law solutions to this model. Hence, we will work with the
Bianchi type I metric, which is the simplest homogeneous
but anisotropic spacetime, whose form is given by [50,51]

ds2 = −dt2 + exp [2α(t) − 4σ(t)] dx2

+ exp [2α(t) + 2σ(t)] (dy2 + dz2), (2.7)

where σ(t) is a deviation from the spatial isotropy governed
by α(t). This means that σ(t) � α(t) is a sufficient condition

during an inflationary phase. In addition, the vector fields,
Aμ and Aμ, are chosen as Aμ = (0, Ax (t) , 0, 0) and Aμ =
(0,Ax (t) , 0, 0) in order to be compatible with the Bianchi
metric having the y − z rotational symmetry as proposed in
Eq. (2.7). The last ingredients of the model, i.e., the scalar
fields, are assumed to be homogeneous, i.e., φ = φ(t) and
ψ = ψ(t).

As a result, the vector field equations, Eqs. (2.3) and (2.4),
can be solved to give non-trivial solutions such as

Ȧx = pA f −2
1 exp[−α − 4σ ], (2.8)

Ȧx = qA f −2
2 exp[−α − 4σ ], (2.9)

where pA and qA are integration constants. Consequently,
the field equations (2.2), (2.5), and (2.6) now turn out to be

α̇2 = σ̇ 2 + 1

3

[
φ̇2

2
+ ω

ψ̇2

2
+ V1 + V2

+1

2

(
p2
A f −2

1 + q2
A f −2

2

)
exp[−4α − 4σ ]

]
, (2.10)

α̈ = −3α̇2 + V1 + V2 + 1

6

(
p2
A f −2

1 + q2
A f −2

2

)
exp[−4α − 4σ ],

(2.11)

σ̈ = −3α̇σ̇ + 1

3

(
p2
A f −2

1 + q2
A f −2

2

)
exp[−4α − 4σ ], (2.12)

φ̈ = −3α̇φ̇ − ∂φV1 + p2
A f −3

1 (∂φ f1) exp[−4α − 4σ ], (2.13)

ψ̈ = −3α̇ψ̇ − 1

ω

[
∂ψV2 − q2

A f −3
2 (∂ψ f2) exp[−4α − 4σ ]

]
. (2.14)

It is noted that Eq. (2.10) is nothing but the Friedmann equa-
tion, which plays as a constraint field equation. In addition,
Eqs. (2.11) and (2.12) act as evolution equations of the spatial
isotropy α and anisotropy σ , respectively.

3 Anisotropic power-law solution

Now, we would like to investigate whether anisotropic power-
law inflation appears within this model. This investigation
follows the previous studies presented in Refs. [51,71]. It is
noted that an isotropic power-law inflation was found quite
long time ago, e.g., see Refs. [113,114]. In particular, we will
consider the following ansatz such as [51,71]

α(t) = ζ log t; σ(t) = η log t;
φ(t) = ξ1 log t + φ0; ψ(t) = ξ2 log t + ψ0 (3.1)

along with the compatible exponential potential and coupling
functions such as

V1(φ) = V01 exp[λ1φ], (3.2)

V2(ψ) = V02 exp[λ2ψ], (3.3)

f1(φ) = f01 exp[ρ1φ], (3.4)

f2(ψ) = f02 exp[ρ2ψ], (3.5)
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here φ0, ψ0, ξi , V0i , f0i , λi , and ρi are all non-vanishing
parameters. In addition, ζ and η are parameters characteriz-
ing the power-law expansion of spacetimes as

exp[2α − 4σ ] = t2ζ−4η; exp[2α + 2σ ] = t2ζ+2η. (3.6)

As a result, the value of ζ and η will be determined after
solving the field equations. It is noted that ζ −2η > 0 and ζ +
η > 0 are two sufficient constraints for expanding universe.
However, if an expanding universe become an inflationary
universe, these constraints should be modified to be ζ −2η �
1 and ζ + η � 1 [51,71].

As a result, the corresponding set of algebraic equations
derived from the field equations (2.10), (2.11), (2.12) and
(2.13) turn out to be

ζ 2 = η2 + 1

3

[
ξ2

1

2
+ ω

ξ2
2

2
+ u1 + u2 + 1

2
(v1 + v2)

]
,

(3.7)

−ζ = −3ζ 2 + u1 + u2 + 1

6
(v1 + v2) , (3.8)

−η = −3ζη + 1

3
(v1 + v2) , (3.9)

−ξ1 = −3ζ ξ1 − λ1u1 + ρ1v1, (3.10)

−ξ2 = −3ζ ξ2 − 1

ω
(λ2u2 − ρ2v2) . (3.11)

It is noted that in order to have these algebraic equations, we
have imposed the corresponding constraint equations,

λ1ξ1 = −2, (3.12)

λ2ξ2 = −2, (3.13)

2ζ + 2η + ρ1ξ1 = 1, (3.14)

2ζ + 2η + ρ2ξ2 = 1, (3.15)

which lead all terms in the field equations to be functions of
t−2. It is also noted that we have defined additional variables
ui and vi (i = 1 − 2) as

u1 =V01 exp [λ1φ0] , (3.16)

u2 =V02 exp [λ2ψ0] , (3.17)

v1 =p2
A f −2

01 exp[−2ρ1φ0], (3.18)

v2 =q2
A f −2

02 exp[−2ρ2ψ0]. (3.19)

It turns out from the above constraints that

λ1ξ1 = λ2ξ2,

ρ1ξ1 = ρ2ξ2, (3.20)

which imply

ρ1

λ1
= ρ2

λ2
= κ1, (3.21)

λ1ρ2 = λ2ρ1 = κ2, (3.22)

where κ1 and κ2 are additional constants. Up to now, we have
six variables, ζ , η, u1, u2, v1, and v2 needed to be solved from
the five independent algebraic equations (3.8), (3.9), (3.10),
(3.11), and (3.14) (or (3.15)). Hence, explicit analytical val-
ues of these variables cannot be solved altogether from these
equations. However, we will show that it is possible to fig-
ure out explicit values of ζ and η from the above algebraic
equations, even when that of ui and vi remain unsolved.

Note that the obtained solutions should satisfy the con-
straint equation (3.7), which is derived from the Friedmann
equation (2.10). As a result, we have from Eqs. (3.10) and
(3.11) that

(3ζ −1) (ρ2ξ1+ωρ1ξ2)=−κ2 (u1+u2) + ρ1ρ2 (v1+v2) .

(3.23)

As a result, by setting two additional variables

u = u1 + u2, (3.24)

v = v1 + v2, (3.25)

we are able to figure out the value of ζ and η. Indeed, u and
v can be solved from two Eqs. (3.8) and (3.9) as

u = ζ (3ζ − 1) − v

6
, (3.26)

v = 3η (3ζ − 1) . (3.27)

Additionally, η can be figured out from Eq. (3.14) (or (3.15))
to be

η = −ζ + κ1 + 1

2
. (3.28)

As a result, plugging these solutions into Eq. (3.23) with the
help of the constraint (3.20) leads to an equation of ζ ,

(3ζ − 1) [6λ1λ2 (κ2 + 2ρ1ρ2) ζ − λ1λ2

× (2κ1 + 1) (κ2 + 6ρ1ρ2) − 8 (ωλ1ρ1 + λ2ρ2)] = 0.

(3.29)

Noting that the Friedmann equation (3.7) can also be reduced
to another equation of ζ as

6λ2
1λ

2
2 (2κ1 + 1) ζ − λ2

1λ
2
2(12κ2

1 + 8κ1 + 1)

−8(ωλ2
1 + λ2

2) = 0. (3.30)
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Ignoring a trivial solution, ζ = 1/3, which leads to an
isotropic universe with η = 0, we obtain a non-trivial solu-
tion of ζ from the above Eq. (3.29),

ζ = λ1λ2 (2κ1 + 1) (κ2 + 6ρ1ρ2) + 8 (ωλ1ρ1 + λ2ρ2)

6λ1λ2 (κ2 + 2ρ1ρ2)
.

(3.31)

It is straightforward to verify that this non-trivial solution
does satisfy the constraint equation (3.30) with noting the
constraints shown in Eqs. (3.21) and (3.22). Another quick
cross-check is setting λ2 = λ1 = λ, ρ2 = ρ1 = ρ, and
ω = +1, which corresponds to the KSW model with double
identical scalar and vector fields. As a results, this solution
will be reduced in this case to

ζ = λ2 + 8λρ + 12ρ2 + 16

6λ2 (λ + 2ρ)
, (3.32)

which is consistent with the solution obtained in Ref. [51]
for one scalar coupled to one vector field. In other words, the
solution shown in Eq. (3.31) is exactly our desired solution.
Hence, the corresponding η can now be defined to be

η = κ2λ1λ2 (2κ1 + 1) − 4 (ωλ1ρ1 + λ2ρ2)

3λ1λ2 (κ2 + 2ρ1ρ2)
. (3.33)

Now, we would like to see whether these solutions represent
anisotropic inflationary universe. It turns out that if ρi � λi
then κ1 � 1 and κ2 � ρ1ρ2. Consequently,

ζ � κ1 � 1, (3.34)

η � 1

3
, (3.35)

u � 3κ2
1 , (3.36)

v � 3κ1. (3.37)

This result confirms our expectation that the present model
does admit an anisotropic power-law inflation with a small
spatial hair. More interestingly, it is straightforward to verify
that we always have the result ζ � κ1 for anisotropic power-
law solutions, regardless of the nature of scalar fields as well
as the number of scalar and vector fields counted in the KSW
model. The reason is based on the fact that we can always
define u and v as

u =
n∑

i=1

ui ; v =
n∑

i=1

vi , (3.38)

and therefore we can always find out ζ , whose leading term
is nothing but κ1 ≡ ρi/λi = ρk/λk . However, it appears that

the ζ solution, ζ � κ1, is a half of that obtained in the two-
scalar-field models [71,72]; while the η solution, η � 1/3,
remains the same, assuming ρ1/λ1 = ρ2/λ2 � 1.

4 Stability analysis

In this section, we would like to investigate whether the
obtained anisotropic power-law solution is attractive during
the inflationary phase, following the previous investigations
[51,72,82–85]. In order to do this task, we will transform the
field equations into the corresponding autonomous equations
of dynamical system. In particular, we will define dynamical
variables as

X = σ̇

α̇
; Y1 = φ̇

α̇
; Y2 = ψ̇

α̇
, (4.1)

Z1 = pA f −1
1

α̇
exp[−2α − 2σ ], (4.2)

Z2 = qA f −1
2

α̇
exp[−2α − 2σ ], (4.3)

W1 =
√
V1

α̇
; W2 =

√
V2

α̇
, (4.4)

whereW1 andW2 are auxiliary dynamical variables [72,109].
Thanks to these definitions, we are now able to define the
following results,

dX

dα
= σ̈

α̇2 − α̈

α̇2 X, (4.5)

dY1

dα
= φ̈

α̇2 − α̈

α̇2 Y1, (4.6)

dY2

dα
= ψ̈

α̇2 − α̈

α̇2 Y2, (4.7)

dZ1

dα
= − [2(X + 1) + ρ1Y1] Z1 − α̈

α̇2 Z1, (4.8)

dZ2

dα
= − [2(X + 1) + ρ2Y2] Z2 − α̈

α̇2 Z2, (4.9)

dW1

dα
=

(
λ1

2
Y1 − α̈

α̇2

)
W1, (4.10)

dW2

dα
=

(
λ2

2
Y2 − α̈

α̇2

)
W2, (4.11)

where α acts as a new time coordinate, which is related to
the cosmic time t as dα = α̇dt . Thanks to the field equations
(2.11)–(2.14), we are able to have the following dynamical
system involving autonomous equations defined as

dX

dα
= X

[
3
(
X2 − 1

)
+ 1

2

(
Y 2

1 + ωY 2
2

)

+1

3

(
Z2

1 + Z2
2

)]
+ 1

3

(
Z2

1 + Z2
2

)
, (4.12)
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dY1

dα
= Y1

[
3
(
X2 − 1

)
+ 1

2

(
Y 2

1 + ωY 2
2

)

+1

3

(
Z2

1 + Z2
2

)]
+ ρ1Z

2
1 − λ1W

2
1 , (4.13)

dY2

dα
= Y2

[
3
(
X2 − 1

)
+ 1

2

(
Y 2

1 + ωY 2
2

)

+1

3

(
Z2

1 + Z2
2

)]
+ ρ2

ω
Z2

2 − λ2

ω
W 2

2 , (4.14)

dZ1

dα
= Z1

[
3
(
X2 − 1

)
+ 1

2

(
Y 2

1 + ωY 2
2

)

+1

3

(
Z2

1 + Z2
2

)
− 2X − ρ1Y1 + 1

]
, (4.15)

dZ2

dα
= Z2

[
3
(
X2 − 1

)
+ 1

2

(
Y 2

1 + ωY 2
2

)

+1

3

(
Z2

1 + Z2
2

)
− 2X − ρ2Y2 + 1

]
, (4.16)

dW1

dα
= W1

[
3X2 + 1

2

(
Y 2

1 + ωY 2
2

)

+1

3

(
Z2

1 + Z2
2

)
+ λ1

2
Y1

]
, (4.17)

dW2

dα
= W2

[
3X2 + 1

2

(
Y 2

1 + ωY 2
2

)

+1

3

(
Z2

1 + Z2
2

)
+ λ2

2
Y2

]
. (4.18)

It is noted that the Friedmann constraint equation (2.10),
which can be rewritten as

W 2
1 + W 2

2 = −3(X2 − 1) − 1

2
(Y 2

1 + ωY 2
2 ) − 1

2
(Z2

1 + Z2
2),

(4.19)

has been used in order to derive the above autonomous equa-
tions. Now, we would like to figure out anisotropic fixed
points with X �= 0 to this dynamical system. Mathematically,
fixed points, both isotropic and anisotropic, are solutions of
the following set of equations,

dX

dα
= dY1

dα
= dY2

dα
= dZ1

dα
= dZ2

dα
= dW1

dα
= dW2

dα
= 0.

(4.20)

As a result, we have from two equations, dW1/dα =
dW2/dα = 0, that

λ1Y1 = λ2Y2, (4.21)

3X2 + 1

2
(Y 2

1 + ωY 2
2 ) + 1

3
Z2 = −λ1

2
Y1, (4.22)

provided another requirement that W1 �= 0 and W2 �= 0.
Hence, it appears that

Y2 = λ1

λ2
Y1. (4.23)

Note that Z is additional variable introduced as

Z2 = Z2
1 + Z2

2, (4.24)

for convenience. In addition, two equations, dZ1/dα =
dZ2/dα = 0, imply, with the help of Eq. (4.22), that

ρ1Y1 = ρ2Y2, (4.25)

2X +
(

λ1

2
+ ρ1

)
Y1 + 2 = 0, (4.26)

provided a requirement that Z1 �= 0 and Z2 �= 0. Hence,
it is straightforward to recover the constraints shown in
Eqs. (3.21) and (3.22) needed for the existence of the above
anisotropic power-law solution. Hence, Eq. (4.26) can be
reduced to

2X +
(

λ1

2
+ λ1κ1

)
Y1 + 2 = 0. (4.27)

It is noted that the equation dX/dα = 0 implies

X

(
λ1

2
Y1 + 3

)
− 1

3
Z2 = 0. (4.28)

Finally, combining both equations, dY1/dα = 0 and
dY2/dα = 0, imply that

−
(

λ1

2
Y1 + 3

) [(
ρ2 + ωρ1

λ1

λ2

)
Y1 + κ2

]
+

(
ρ1ρ2 + κ2

6

)
Z2 = 0

(4.29)

with the help of Eqs. (4.19) and (4.22).
Up to now, we have obtained three Eqs. (4.27), (4.28), and

(4.29) for three variables X , Y1, and Z2. As a result, solving
these equations will give us non-trivial solutions

X = 2 [κ2λ1λ2 (2κ1 + 1) − 4 (ωλ1ρ1 + λ2ρ2)]

λ1λ2 (2κ1 + 1) (κ2 + 6ρ1ρ2) + 8 (ωλ1ρ1 + λ2ρ2)
,

(4.30)

Y1 = −12λ2 (κ2 + 2ρ1ρ2)

λ1λ2 (2κ1 + 1) (κ2 + 6ρ1ρ2) + 8 (ωλ1ρ1 + λ2ρ2)
,

(4.31)

Z2 = 18 [κ2λ1λ2 (2κ1 + 1)−4 (ωλ1ρ1 + λ2ρ2)]

[λ1λ2 (2κ1 + 1) (κ2 + 6ρ1ρ2)+8 (ωλ1ρ1 + λ2ρ2)]2

× {λ1λ2 [2ρ1ρ2 (6κ1 + 1) + κ2 (2κ1 − 1)]

+8 (ωλ1ρ1 + λ2ρ2)} . (4.32)
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It is noted that a trivial solution corresponding to Z2 = 0 has
been ignored. It is also noted that the corresponding value
of Y2 can be obtained in terms of Y1 as shown in Eq. (4.23).
It is straightforward to see that this anisotropic fixed point
is equivalent to the anisotropic power-law solutions found
in the previous section. Indeed, one can easily verify that
X = η/ζ , according to the solution shown in Eqs. (3.31),
(3.33), and (4.30).

As a result, during the inflationary phase with ρi � λi ,
we can approximate the anisotropic fixed point as

X � 1

3κ1
� 1, (4.33)

Y1 � − 2

ρ1
� 1, (4.34)

Y2 � − 2

ρ2
� 1, (4.35)

Z2 � 9X � 1, (4.36)

W 2
1 + W 2

2 � 3. (4.37)

In addition, it turns out that Z2 � 1 implies that Z2
1 � 1 as

well as Z2
2 � 1, according to the definition in Eq. (4.24).

Now, we would like to investigate the stability of the
obtained anisotropic fixed point by perturbing the dynam-
ical system around this fixed point as follows [51,72]

dδX

dα
� −3δX, (4.38)

dδY1

dα
� −3δY1 + 2ρ1Z1δZ1 − 2λ1W1δW1, (4.39)

dδY2

dα
� −3δY2 + 2ρ2

ω
Z2δZ2 − 2λ2

ω
W2δW2, (4.40)

dδZ1

dα
� −Z1 (2δX + ρ1δY1) , (4.41)

dδZ2

dα
� −Z2 (2δX + ρ2δY2) , (4.42)

dδW1

dα
� λ1

2
W1δY1, (4.43)

dδW2

dα
� λ2

2
W2δY2. (4.44)

Taking the exponential perturbations as

δX = A1 exp[τα]; δY1 = A2 exp[τα]; δY2 = A3 exp[τα],
δZ1 = A4 exp[τα]; δZ2 = A5 exp[τα]; δW1 = A6 exp[τα];
δW2 = A7 exp[τα], (4.45)

will lead the above perturbed equations to the following
homogeneous linear system of Ai , which can be written as a
homogeneous matrix equation as

M

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1

A2

A3

A4

A5

A6

A7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−3 − τ 0 0 0 0 0 0
0 −3 − τ 0 2ρ1Z1 0 −2λ1W1 0
0 0 −3 − τ 0 2ρ2

ω
Z2 0 − 2λ2

ω
W2

−2Z1 −ρ1Z1 0 −τ 0 0 0
−2Z2 0 −ρ2Z2 0 −τ 0 0

0 λ1
2 W1 0 0 0 −τ 0

0 0 λ2
2 W2 0 0 0 −τ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1

A2

A3

A4

A5

A6

A7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0. (4.46)

Mathematically, non-trivial solutions, i.e., Ai �= 0, of the
homogeneous linear system exist if and only if

det M = 0, (4.47)

which can be reduced to the following equation of τ ,

τ 2 (τ + 3)
(
τ 2 + 3τ + λ2

1W
2
1 + 2ρ2

1 Z
2
1

)

×
(
ωτ 2 + 3ωτ + λ2

2W
2
2 + 2ρ2

2 Z
2
2

)
= 0. (4.48)

Now, we would like to examine whether the equation,
det M = 0, admits any positive root τ > 0 corresponding to
unstable modes. For ω = +1, it is straightforward to see that
Eq. (4.48) does not admit any positive root τ > 0 since its
coefficients all turn out to be positive definite. Therefore, the
corresponding anisotropic fixed point turns out to be stable
during the inflationary phase. On the other hand, it appears
for ω = −1 that Eq. (4.48) does admit at least one positive
root τ > 0, which is nothing but that of the equation,

−τ 2 − 3τ + λ2
2W

2
2 + 2ρ2

2 Z
2
2 = 0. (4.49)

This result implies that the corresponding anisotropic fixed
point is indeed unstable during the inflationary phase. This
result is consistent with our previous investigations in Refs.
[71,72,82–85], in which we have shown that the inclusion
of the phantom field with ω = −1 breaks down the stabil-
ity of the anisotropic inflation. It is worth noting that the
stability of the anisotropic fixed point can be numerically
confirmed through its attractor behavior. In particular, the
stable or unstable fixed points will be shown to be attrac-
tive or unattractive, respectively. Therefore, we would like
to examine whether this anisotropic fixed point is an attrac-
tor one or not, similar to the previous studies [51,82–86].
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Fig. 1 Attractor behavior of the anisotropic fixed point with the field parameters chosen as ω = +1, λ1 = 0.1, λ2 = 0.2, ρ1 = 50, and ρ2 = 100.
These two plots clearly display that trajectories with different colors corresponding to different initial conditions all converge to the anisotropic
fixed point

To do this, we will numerically solve the dynamical system
with different initial conditions and then plot the correspond-
ing phase spaces of dynamical variables X , Y1, Y2, and Z .
As a result, the numerical plots in Fig. 1 confirm that the
anisotropic fixed point is indeed attractive for ω = +1 as
expected. For ω = −1, it turns out that the anisotropic fixed
point is unattractive as expected since all trajectories con-
verge to the isotropic fixed point with X = Z = 0.

5 Conclusions

We have proposed a multi-field extension of the KSW
anisotropic inflation, in which two scalar fields, φ and ψ ,
are allowed to non-minimally couple to two vector fields,
Aμ and Aμ, respectively, through two corresponding cou-
plings, f 2

1 (φ)FμνFμν and f 2
2 (ψ)FμνFμν . As a result, we

have found an exact anisotropic power-law solution to this
model. It turns out that we always have the result ζ � κ1

for anisotropic power-law solutions, regardless of the nature
of scalar fields as well as the number of scalar and vector
fields counted in the KSW model. However, it appears that
the ζ solution, ζ � κ1, is a half of that obtained in the two-
scalar-field models [71,72]; while the η solution, η � 1/3,
remains the same, assuming ρ1/λ1 = ρ2/λ2 � 1. More
interestingly, this solution has been shown in the case, in

which both scalar fields are canonical, through a dynamical
system method, to be stable and attractive during the infla-
tionary phase. Hence, the cosmic no-hair conjecture is really
violated in this case. However, the stability of the found solu-
tion has been shown to be broken down once one of these two
scalar fields is phantom with ω = −1. This result together
with previous investigations [71] indicate that the phantom
field does favor the conjecture. It should be noted that this
paper is devoted to examine the validity of the cosmic no-
hair conjecture within the multi-field extension of the KSW
anisotropic inflation. Other cosmological aspects such as the
CMB imprints [90–97] of this model will be our future stud-
ies and will be presented elsewhere. We hope that our model
would be useful to studies of the early time universe.
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