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Abstract A general appearance of two-pole structures is
exhibited in a relativistic Friedrichs–Lee model combined
with a relativistic quark pair creation model in a consistent
manner. This kind of two-pole structure could be found when
a qq̄ state couples to the open-flavor continuum state in the
S partial wave. We found that many enigmatic states, such
as f0(500)/σ , K ∗

0 (700)/κ , a0(980), f0(980), D∗
0(2300),

D∗
s0(2317), and X (3872), together with another higher state

for each, all result from this kind of two-pole structures. Fur-
thermore, an interesting observation is that this kind of two-
pole structure will contribute roughly a total of 180◦ phase
shift for the scattering process in a single channel approxima-
tion. This relativistic scheme may provide more insights into
the understanding of the properties of non-qq̄ state. It is also
suggested that such two-pole structure could be a common
phenomenon which deserves studying both from theoretical
and experimental perspectives.

1 Introduction

As is well-known, states in general are related to the poles
of the scattering matrix. In hadron physics, there are always
cases that two poles appear together and dynamically related
to each other in some scattering processes. For example, the
N (1405) signal in the K̄ N and π� system was proposed to
be contributed by two poles dynamically generated on the
same Riemann sheet [1–4]. There could also be the cases
that the two poles are located on different Riemann sheets
and represent the same state, one of them being the reso-
nance pole and the other the shadow pole. A typical example
is the N (1440) state which comes with both a second-sheet
pole and a third-sheet shadow pole[5,6]. However, there is
another case where one of the two poles comes from a seed
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state and the other so called “companion pole” [7] is dynam-
ically generated from the interaction between the same seed
state and some continuum state. These double poles may be
separated far from each other and be regarded as different
states. An old example is the Unitary Quark Model pro-
posed by Törnqvist [8] to explain the lowest scalar nonet.
This mechanism could be the cause of the generation of
the mysterious X (3872) and a heavier X (3940), that is, the
X (3872) could be regarded as being dynamically generated
by the interaction between the χc1(2P) state and the contin-
uum DD̄∗ [9–16]. Similar idea is also used in the studies on
the ψ(3770) meson [17]. In present paper, we will show that
the appearance of this kind of two-pole structures could be a
common phenomenon in hadron spectrum ranging from the
states with light quarks to those with heavy quarks, and a sim-
ple dynamical origin of these two-pole structure is revealed
in a relativistic constituent quark picture.

The quark potential models are usually regarded as a cri-
terion to characterize the observed hadron states for its gen-
erally successful predictions [18]. However, a famous long-
standing puzzle is about the lightest 0+ scalar mesons which
lie below 1.0 GeV, while the lowest 0+ scalar (uū±dd̄)/

√
2,

us̄, and ss̄ states predicted by the quark potential model are
at about 1.1–1.5 GeV [18]. The light scalar states observed
in experiments are categorized in three groups according
to their isospins: (1) Five I = 0 states: f0(500), f0(980),
f0(1370), f0(1500), and f0(1710); (2) Two I = 1/2 states:
K ∗

0 (700) and K ∗
0 (1430); (3) Two I = 1 states: a0(980)

and a0(1450) [19]. The attempt to categorize these scalar
states into suitable nonets was disturbed by the controversy
about the existence of f0(500) and K ∗

0 (700), until their poles
were determined by model-independent methods [20–26].
Nowadays, f0(500), K ∗

0 (700), a0(980), and f0(980) are sug-
gested to form a non-qq̄ nonet, while f0(1370), K ∗

0 (1430),
a0(1450), and f0(1500)(or f0(1710)) are assumed to form
the qq̄ nonets [27]. The lower nonet has an “inverse” mass
relation, which could be understood in the tetraquark model
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proposed by Jaffe [28,29]. Another method to study these
states is to restore the resonance information from the scat-
tering amplitudes in the chiral perturbation theory (χPT) with
some unitarization schemes. Large Nc analyses demonstrate
that those states below 1.0 GeV really do not behave like
the qq̄ states [30–32]. Besides the puzzle of the light scalar
states, more recently, some hadron states with heavy quarks,
such as D∗

0(2300), D∗
s0(2317), and X (3872), are also puz-

zling states which could hardly be accommodated in the pre-
dicted qq̄ states in the quark potential model. Usually, by
unitarizing the scattering amplitudes in the heavy quark chi-
ral perturbation theory (HχPT), several groups claimed that
they could be regarded as the hadronic molecular states [33–
37]. Some other attempts were also made in pursuing the
idea that they might be dynamically generated due to the
coupling of fundamental states to the continuum states [7–
13,38–49]. The basic spirit of these models here is that by
coupling a seed qq̄ state to the two-meson continuum states,
another state could be generated which could be identified as
some possible non-qq̄ states. Along these lines, we will pro-
vide an understanding of all the above possible non-qq̄ states
together using the unified Friedrichs-Lee-QPC scheme.

In order to do so, relativistic effects should be considered
in a consistent way to cover both the light and the heavy
mesons. Recently, we proposed the relativistic Friedrichs–
Lee-QPC scheme [50] which combines the exactly solv-
able relativistic Friedrichs-Lee model [51] and the relativistic
quark pair creation (RQPC) model [52] to study both the low
lying meson spectrum and the heavy meson spectrum con-
sistently. In the present paper, this scheme will be applied to
study the hadron resonant states mentioned above, in order
to understand their nature in this unified framework. We will
show that all of these states could be dynamically generated
by coupling a seed state and a continuum state, and together
with the state originated from the seed state for each one,
they form two-pole structures.

The paper is organized as follows: The relativistic Friedrichs–
Lee-QPC scheme is briefly reviewed in Sect. 2. Section 3 is
devoted to the main numerical results and discussions on
these hadron states. The last section is the summary.

2 A brief review of relativistic Friedrichs-Lee-QPC
scheme

The basic idea of the Friedrichs–Lee model is that, when the
coupling between a discrete state and a continuum state is
considered, the discrete state will dissolve into the continuum
and becomes a resonant state [53,54]. There are also other
models implementing similar idea in various areas in physics,
such as in atomic physics [55] and in quantum optics [56].
The Friedrichs-Lee model is also linked to quantum field the-

ory (QFT) in [57] and also used in the context of baryons [58]
and thermal systems [59].

In fact, in the Friedrichs–Lee model, besides the pole
shifted from the original discrete state, other dynamically
generated poles could appear in the scattering amplitude [14,
60]. The characteristics of these dynamically generated states
is that when the coupling is being turned off, they will not go
back to the bare discrete state, but move to the singularities
of the form factor, which may be located at the infinity or in
the complex plane, thus justifying a dynamic nature of these
states. The form factor, as a complex analytic function after
analytic continuation with respect to one complex variable,
as long as it is not a constant, must have one or more sin-
gularities somewhere on the complex plane, as the Liouville
theorem in complex analysis tells us. Thus, this kind of sce-
nario of the dynamically generated states could be a general
mechanism.

This Friedrichs–Lee scheme was extended to a totally
relativistic scenario by including the relativistic kinematics
and introducing the creation and annihilation operators for
a single-particle state and for a two-particle continuum state
mimicked by a so-called bilocal field [50,51]. The full Hamil-
tonian of the system is written down as

P0 =
∫

d3pβ(E)dEEB†(E,p)B(E,p)

+
∫

d3pω(p)a†(p)a(p) +
∫

d3pβ(E)dEα(E)

×(a(p) + a†(−p))(B†(E,p) + B(E,−p)), (1)

where ω(p) denotes the energy of the single particle with
momentum p, a†(p) and a(p) being the operators to create
or annihilate this single particle. B†(E,p) and B(E,p) are
the so-called bilocal field creation operators and annihila-
tion operators [51] introduced to mimic a two-particle state
creation and annihilation with total energy E and momen-
tum p. The other internal quantum numbers such as orbital
angular momentum and spins are suppressed. α(E) is the
coupling form factor between the single-particle state and
the two-particle state, while β(E)dEd3p indicates the inte-
gration measure of the two-particle state.

The eigenvalue problem is resolved by finding the solution
of operator b†(E,p) in

[P0, b
†(E,p)] = p0b

†(E,p), (2)

and this equation could be exactly solved by using the stan-
dard techniques of Bogoliubov transformation [50,51]. With
the exact solution, the elastic scattering S-matrix of the two-
particle continuum state can be expressed as

S(E,p; E ′,p′) = δ(3)(p − p′)δ(E − E ′)
(

1 − 2π i
ρ(s)

η+(s)

)
,

(3)
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in which η+(s), the inverse of resolvent function, reads

η+(s) = s − ω2
0 − �(s),

�(s) =
∫
sth

ds′ ρ(s′)
s − s′ + i0

. (4)

sth is the threshold value of s, the invariant mass squared
of the continuum state, and ω0 is the bare mass of the
single particle. The spectral function ρ(s) is defined as
ρ(s) = 2ω0

k(s)E1(s)E2(s)√
s

α(s)2, in which k(s) is the mag-
nitude of the relative momentum of the two particles in their
c.m. frame, and E1(s) and E2(s) are their respective energies.
As a consequence of introducing the annihilation operators,
Eq. (4) depends on s instead of E , similar to the relativistic
dispersion relation, which is different from its counterpart in
the non-relativistic case [14,61]. This η+(s) function has a
right hand cut starting from the threshold, and could be ana-
lytically continued to the complex s-plane with two Riemann
sheets and is then denoted as η(s). With the imaginary part
of the η(s) function being just π iρ(s) above the threshold, it
is easy to see that the S matrix is automatically unitary. Since
η(s) is the denominator of the S-matrix, the zero points of the
function on the Riemann sheets are just related to the virtual-
state, bound-state, and resonance-state poles of the scattering
amplitude. The left-hand-cut contribution is not included in
this model, thus the crossing symmetry is violated. However,
since the left-hand cut only provides a smooth background
to the amplitude near the physical region, its effect can be
absorbed into the coupling constant and would not have too
much effect on the pole positions which are our main inter-
ests in this paper. In principle, the scheme could be extended
to the cases with multiple continua. Here we consider only
the elastic scattering cases with only one continuum state for
simplicity.

The coupling form factor α(s) describes how the bare dis-
crete one-particle state interacts with the bare two-particle
continuum state. In our previous works [14,15], in the norel-
ativistic Friedrichs model, the nonrelativistic QPC model
was used to describe such interactions of the mesons with
heavy quarks. The QPC model is related to the QCD since
it just parameterizes a kind of quark pair creation process
from the vacuum which can be viewed as a sub-process
of QCD, which may be important in the decay processes
involving light quarks [62–64]. This model is widely used
in describing the interaction of mesons in the literature and
is tested to be reasonable (see for example [65–67] and the
papers citing them). In present work, the RQPC model is
adopted to include some relativistic corrections to the QPC
model [50,52]. Both at the meson level and at the quark level,
the relativistic canonical one-particle and two-particle states
and their transformation properties under the Lorentz trans-
formation between the c.m. frame and the other frames are

taken into account [52,68,69], so that the whole scheme is
formulated in a consistent relativistic manner.

In the RQPC model, to describe the bare meson coupling
A → BC , the S-matrix is defined as

S f i = I − 2π iδ(E f − Ei )T, (5)

and then

〈BC |T |A〉 = δ(3)(PA − PB − PC )Mm jAm jB m jC , (6)

where | jA,m jA 〉 are the quantum numbers of the total angular
momentum of A andMm jAm jB m jC is the coupling amplitude.
Here, |A〉 corresponds to the bare discrete state and |BC〉
corresponds to the bare continuum state in the Friedrichs-
Lee model.

We could write down a relativistic mock state of a meson,
with three-momentum p, mass eigenvalue W̃ , orbital angu-
lar momentum l of two quarks, total spin s of quarks, total
angular momentum j and its third component m j , as

|(W̃ ,2s+1 l jm j )(p)〉
=

∑
mlms

∑
m1m2

∑
m′

1m
′
2

∫
d3kψlml (k)

× φ12ω12|p1, s1m
′
1〉 ⊗ |p2, s2m

′
2〉D s1

m′
1m1

[rc(lc(p), k1)]
× D s2

m′
2m2

[rc(lc(p), k2)]〈s1s2m1m2|sms〉〈lsmlms | jm j 〉
× N (p1,p2,p,k), (7)

where p1 and p2 denote the three momenta of the quark
and the antiquark in a general frame, k1 and k2 their four
momenta in the c.m. frame of the meson, φ12 the flavor
wave function, ω12 the color wave function of the meson, and
ψlml (k) is the relative wave function of the quarks in the c.m.
frame. D s1

m′
1m1

[R] is the SU (2) matrix representation of rota-

tion group R, and rc(lc(p), k1) represents the Wigner rota-
tion caused by two successive non-collinear Lorentz boosts
lc(k1) and lc(p), which is the key difference between the rel-
ativistic meson mock state and the non-relativistic one [67].
N (p1,p2,p,k) is the normalization factor.

The interaction operator for the quark pair creation could
be expressed as [52,65]

T = −√
8πγ

∫
d3p3d3p4√
ε3(p3)ε4(p4)

δ3(p3 + p4)

×
∑
m

∑
m3m4

〈1,m, 1,−m|0, 0〉〈1/2,m3, 1/2,m4|1,−m〉

× Y m
1

(
p3 − p4

2

)
φ34

0 ω34
0 b†

m3
(p3)d

†
m4

(p4), (8)

where p3 and p4 denotes the three-momenta of the quark
and the anti-quark produced from the vacuum respectively,
φ34

0 and ω34
0 their flavor and color wave functions, and γ
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the quark pair production strength. Y m
l (p) = |p|lYm

l ( p̂) is

the solid harmonics. b†
m3 and d†

m4 are the creation operators
of the quark and the anti-quark. Here, the spins and angular
momentum of quark and antiquark are combined to form a
J PC = 0++ quark pair from the vacuum. The γ parame-
ter describes the strength of generating the light quark pairs
from the vacuum, which was proposed to be universal in the
original QPC model. However, many factors could affect its
value for different energy scales. First, since the pair produc-
tion process must be governed by QCD, the strength would
be affected by the running of the QCD coupling with the
energy scale. Second, the γ parameter may also effectively
absorb some interactions which are not included in the quark
production processes, such as the left-hand-cut effects. Thus,
these effects may renormalize the γ parameter such that it
may not be the same for low energy and high energy pro-
cesses. We first try a universal γ parameter for both the light
and in the heavy cases. We will see that for the system with
heavier quarks, choosing another γ really causes the pole
positions closer to the experimental results.

To connect to the large Nc results, we note that by the large
Nc power counting, the three point amplitude of the mesons
in (6) should behave as O(1/

√
Nc). Since this amplitude is

proportional to γ , we can effectively put this Nc dependence
into γ , i.e. γ ∝ 1/

√
Nc. Then the large Nc limit is the same

as γ → 0 limit. Similar method is also used in [32,48].
By the standard derivation from Eqs. (6), (7) and (8), one

could obtain the coupling amplitude Mm jAm jB m jC [50]. Fur-
thermore, if we choose the direction of meson B along the
z-direction, the amplitude with the BC system having rela-
tive angular momentum L and the total spin S of meson pair
is written down as [70,71]

M LS(qz) =
√

4π(2L + 1)

2 jA + 1

×
∑

m jB ,m jC

〈LS0(m jB + m jC )| jA(m jB + m jC )〉

× 〈 jB jCm jBm jC |S(m jB + m jC )〉
× M (m jA=m jB +m jC )m jB m jC (qz). (9)

Since this amplitude describes the interaction between the
discrete state and the continuum, we identify it as the cou-
pling form factor αLS(s) used in Eq. (1) in the relativistic
Friedrichs-Lee model in the center of mass system.

The wave functions in the c.m. frame of the quark-
antiquark system in Eq. (7) could be obtained by considering
the quark-antiquark interaction in the potential model, such
as the Godfrey-Isgur (GI) model [18] which is adopted here.
The relativistic effect is already implemented in the GI model
such that it is consistent with the relativistic Friedrichs-Lee
scheme. The wave functions for the bare states are then
numerically solved from the GI model. With these wave func-

tions, the α(s) can be obtained according to Eq. (9) by cal-
culating the matrix element of T in Eq. (8) as in Eq. (6). The
interested reader are referred to our previous work [50] for
details. With all these preparations, the emergent physical
states could be obtained by finding out the zero points of the
η(s) function in Eq. (4), which just relate to the poles of the
scattering amplitude of the continuum state. Furthermore, the
physical phase shifts of the scattering amplitude could also
be represented as δ(s) = π − Arg[η(s)]. In principle, this
relativistic scheme provide a consistent method to study the
meson state with light quarks or heavy quarks and could be
viewed as including the hadron-loop corrections into the GI’s
results.

3 Numerical results and discussions

The main purpose of this paper is to present the general emer-
gence of two-pole structures in meson spectrum rather than
making a systematic fit. Thus, only one of the most important
continuum for every bare qq̄ state is chosen. Such a simpli-
fication to one-continuum scenario could also make the two-
pole picture clearer by avoiding the complexity introduced
in multi-continuum cases [72].

Based on the theoretical background above, the emergence
of the two-pole structures in a rather broader spectrum could
be studied. The two-pole structure here means that, although
there is only one bare seed state interacting with the contin-
uum state, two sets of S-matrix poles related with each other
appear. One set of poles come from the bare seed state (refers
to as “bare” poles) and the other set of poles are dynamically
generated by the interaction between the seed and the contin-
uum state (refers to as “dynamical” poles). The “dynamical”
poles in general may be originated from the singular point of
the interaction form factor, which may be located at infinity
or faraway from the seed [60]. Usually, the “bare” poles are
a pair of complex conjugate poles representing a resonance.
The “dynamical” poles could be a pair of complex conjugate
poles, a pair of bound-state and virtual-state poles, or only one
bound (or virtual) state, depending on the coupling form fac-
tor and its strength. To demonstrate this general phenomenon,
only one Okuba-Zweig-Iizuka (OZI) allowed continuum for
each bare qq̄ state is chosen. Furthermore, the masses of
some bare states are slightly deviated from GI’s prediction
to make the observables, such as the phase shifts, consistent
with the measured values in the experiments. This is reason-
able, since GI’s calculations do not consider the interactions
among the mesons. If these interactions are included, and
then do the same thing as GI, which is similar to what we are
doing here, the masses should be “renormalized” from GI’s
results. For our purpose, we will consider nine cases, ranging
from the lowest scalars to the one with one bottom quarks
and the cc̄(23P1) cases related to X (3872).
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Table 1 Correspondence of the discrete states and the continuum states as the parameter γ = 4.3 GeV. The values in the fourth column are the
input mass of bare states. Unit is GeV

“Discrete” “Continuum” GI mass Input Poles Experiment states PDG values [19]

uū+dd̄√
2

(13P0) (ππ)I=0 1.09 1.3
√
sr1 = 1.34 − 0.29i f0(1370) 1.35±0.15 − 0.2±0.05i

√
sr2 = 0.39 − 0.26i f0(500) 0.475±0.075 − 0.275±0.075i

us̄(13P0) (πK )I= 1
2

1.23 1.42
√
sr1 = 1.41 − 0.17i K ∗

0 (1430) 1.425±0.05 − 0.135±0.04i
√
sr2 = 0.66 − 0.34i K ∗

0 (700) 0.68±0.05 − 0.30±0.04i

ss̄(13P0) K K̄ 1.35 1.68
√
sr1 = 1.71 − 0.16i f0(1710) 1.704±0.012 − 0.062±0.009i√
sb = 0.98,

√
sv = 0.19 f0(980) 0.99±0.02 − 0.028±0.023i

uū−dd̄√
2

(13P0) πη 1.09 1.3
√
sr1 = 1.26 − 0.14i a0(1450) 1.474±0.019 − 0.133±0.007i

√
sr2 = 0.70 − 0.42i a0(980) 0.98±0.02 − 0.038±0.012i

cū(13P0) Dπ 2.4 2.4
√
sr1 = 2.58 − 0.24i D∗

0 (2300) 2.30±0.019 − 0.137±0.02i√
sr2 = 2.08 − 0.10i

cs̄(13P0) DK 2.48 2.48
√
sr1 = 2.80 − 0.23i

√
sb = 2.24,

√
sv = 1.8 D∗

s0(2317) 2.317±0.0005 − 0.0038±0.0038i

bū(13P0) B̄π 5.76 5.76
√
sr1 = 6.01 − 0.21i√
sr2 = 5.56 − 0.07i

bs̄(13P0) B̄K 5.83 5.83
√
sr1 = 6.23 − 0.17i√
sb = 5.66,

√
sv = 5.3

cc̄(23P1) DD̄∗ 3.95 3.95
√
sr1 = 4.01 − 0.049i X (3940)√
sb = 3.785 X (3872) 3.87169±0.00017

Fig. 1 Real and imaginary parts of �(s) for the scalar (uū + dd̄)/
√

2
state

When the parameter γ is chosen at about 4.3 GeV, the
poles of the resolvents are extracted and listed in Table 1.
A general consistency between the pole positions, which are
defined as

√
s = M − i�/2, and the states in the PDG table

could be found.
For the scalar (uū+dd̄)/

√
2 sector, the real part and imag-

inary part of self-energy function of �(s) are depicted in
Fig. 1. Since there is an exponentially decaying factor in the
GI’s wave function, the interaction form factor approaches
zero fast enough in the high energy limit such that the inte-
gration in the self-energy function converges automatically.
This is a general feature in our scheme. The resolvent 1/η(s)
has two pairs of poles on the second Riemann sheet when it

Fig. 2 |1/η(s)| for the scalar (uū + dd̄)/
√

2 on the complex s plane
of the second Riemann sheet with γ = 4.3 GeV

is analytically continued to the complex-s plane, as shown in
Fig. 2.

The enigmatic broad f0(500) appears naturally as the
“dynamical” state represented by the lighter pair of poles
in Fig. 2, while the “bare” one is shifted to become f0(1370)

represented by the higher ones in Fig. 2. Similarly, K ∗
0 (700)

and K ∗
0 (1430) are the “dynamical” pole and the “bare” pole
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of scalar us̄ states respectively. The coupling of scalar ss̄ bare
state and the K K̄ continuum, which is OZI-allowed, leads to
a “dynamical” bound-state pole just below the K K̄ threshold
which corresponds to the f0(980) and another virtual-state
pole at 0.19 GeV which is too low to be observed. If the
ππ continuum coupling to ss̄ is considered, which is OZI-
suppressed, there will be a new cut from the ππ threshold and
the bound state will move onto the second sheet and becomes
a narrow resonance pole. This general argument is in agree-
ment with the characteristics of f0(980), which appears as a
peak structure in J/ψ → φπ+π− while being nearly invisi-
ble in J/ψ → ωπ+π− [73]. At the same time, the bare ss̄ is
shifted onto the complex plane at 1.71 − 0.16i GeV, whose
properties is consistent with the f0(1710), which has a large
ss̄ components as observed in experiments [74]. To make
f0(980) appear in the ππ scattering channel, one must also
consider the coupling of the scalar (uū+dd̄)/

√
2 to both the

ππ and the K K̄ continua, and then the f0(980) will come
into the ππ interaction through K K̄ loop, i.e. through the
off-diagonal matrix elements of the inverse resolvent. This
will not affect the existence of the f0(500) and f0(1370)

poles, but only shift them a little. Since we are confining our-
selves to the single channel cases in our present paper, we
will leave this for future work.

For the isovector scalar (uū−dd̄)/
√

2 state, only coupling
to the πη continuum is considered in this work and a broad
resonance at about 0.7 GeV is found. Actually, coupling to
K K̄ continuum could be comparable with the coupling to
πη, and the K K̄ threshold could truncate the contribution of
a broad resonance pole to produce a narrow peak below the
threshold as illustrated in the Flatté effect [8,44,75]. A more
reasonable description might need a two-channel scenario,
which is beyond the scope of this work.

For the scalar cū and cs̄ states, two-pole structures are
also found. Clearly, due to coupling between the scalar cs̄
state and the DK continuum, the “dynamical” bound-state
pole at 2.24 GeV could correspond to the D∗

s0(2317) state.
The “bare” pole originated from the cs̄(13P0) seed state is
located at about 2.80 − 0.23i GeV. The scalar cū state could
also produce two poles at 2.08−0.10i GeV and 2.58−0.24i
GeV, in which the lower one is the “dynamical” one and
the higher is the “bare” one. Although the experiment only
claimed a broad resonance called D∗

0(2300), it could be con-
tributed by two poles. Further efforts to distinguish these two
close poles are quite valuable, because this occasion is dif-
ferent from other two-pole structures whose poles separate
from each other. Such a two-pole structure has also been
found by the calculations based on unitarizing the HχPT
amplitudes [35,36,76], and they are also comparable with
the LQCD simulation [77]. Similarly, their counterparts for
the scalar bū and bs̄ states could also be found here, and the
two poles for each case are listed in Table 1. In the unita-
rized HχPT approach, the two poles are found to come from

Table 2 The poles’ positions for the heavy mesons as γ = 3.0 GeV.
Unit is GeV

“States” Bare poles Dynamical poles

cū(13P0)
√
sr1 = 2.39 − 0.18i

√
sr2 = 2.21 − 0.28i

cs̄(13P0)
√
sr1 = 2.68 − 0.26i

√
sb = 2.32,

√
sv = 1.9

bū(13P0)
√
sr1 = 5.85 − 0.26i

√
sr2 = 5.62 − 0.13i

bs̄(13P0)
√
sr1 = 6.11 − 0.22i

√
sb = 5.72,

√
sv = 5.4

cc̄(23P1)
√
sr = 3.99 − 0.05i

√
sb = 3.84

two different SU (3) multiplets in the SU (3) limit. However,
after the SU (3) breaking effect is turned on, there should be
mixing between these two kinds of SU (3) multiplets and one
can no longer distinguish them by different representations.
In our approach, we are working with broken SU (3) from
the beginning with different s quark and u/d quark masses
and the seed should also couple to both triplet and sextet of
the continuum. Whether the two-pole structure here is really
related to the one in unitarized HχPT is not trivial and is
beyond the scope of our present work.

The cc̄(23P1) state could also produce a two-pole structure
as we have shown in the non-relativistic Friedrichs model [14,
15]. Here, the “dynamical” pole is also a bound state below
the DD̄∗ threshold but much lower at about 3.78 GeV.

The lower results of X (3872) and D∗
s0(2317) compared

with the observed values might indicate that the γ parameter
for heavy mesons may be different from the light states as
discussed before. If the γ parameter is chosen at 3.0 GeV
to produce the accurate mass of D∗

s0(2317), the masses of
the other states are listed in Table 2, which are worth pursu-
ing in future experiments. The results of cc̄(23P1) are also
improved, closer to our previous works [14,15]. Neverthe-
less, this still demonstrates the existence of the two-pole
structure.

Besides the coincidence of the poles’ positions with the
experiment, further evidences of two-pole structures come
from the properties of the scattering phase shifts. A care-
ful analysis of this scheme shows a sum rule for the single
channel phase shift here, δ(∞) − δ(sth) = 180◦ [50]. This
means that the two-pole structure contributes a total phase
shift of 180◦, which should generally not be satisfied if the
two poles are independent1. This property could be easily
verified in I = 1/2 πK scattering phase shift as shown in

1 A frequently used parameterization of an S-wave resonance contri-

bution to the S-matrix is S = s−M2−iρ(s)G1
s−M2+iρ(s)G1

which contributes 180◦ to

the phase shift, where ρ(s) = 2k/
√
s is the kinematic factor, G1 being

a constant. However, this representation only works for narrow reso-
nances, since besides a pair of resonance poles on the second Riemann
sheet, there is also a virtual state pole. A more suitable parametrization

is S = s−M2−is ρ(s)G2
s−M2+is ρ(s)G2

which contributes less than 180◦ (see [86] for
details).
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Fig. 3 Comparisons of experimental phase shifts and the theoretical
calculations when γ = 4.3 GeV. The left one is that of I J = 00 ππ

scattering and the right one is that of I J = 1
2 0 πK scattering. The solid

line is the contribution of two-pole structure

Fig. 3, where the K ∗
0 (700) and K ∗

0 (1430) contribute a total of
roughly 180◦ at about 1.7 GeV, consistent with the extracted
data from the Kπ scattering [78–81]. The phase shift data
of the I J = 00 ππ scattering also provide some hints to
this sum rule, even though it is more complicated for being
contributed by both the states generated from (uū+dd̄)/

√
2

and ss̄ states. As shown in Fig. 3, if the sharp rise of about
180◦ at about 1.0 GeV contributed by the narrow f0(980) is
removed, the experimental phase shift is just rising smoothly
with a total phase shift about 180◦ at around 1.6 GeV, which
may suggest the same sum rule for f0(500) and f0(1370).
It is worth noting that the unitarized χPT also suggests that
only σ or κ would not provide a phase shift of 180◦ [82].

Some further remarks about the sensitivity of the param-
eters is in order. Notice that the wave functions of the bare
meson states are completely fixed by the GI model whose
parameters are totally determined by fitting the meson mass
spectrum as in Ref. [18]. Thus, in principle, there is only one
free parameter γ that denotes the production strength of the
qq̄ from the vacuum. Once γ is chosen, the hadron resonance
poles will be determined at the same time. When γ changes,
all the poles will change simultaneously. As we have men-
tioned above, to make all the poles’ position reasonable we
chose γ to be at 4.3 or 3.0 GeV. The consistency with the
experiment values can be seen from Table 1 and 2, which is
enough to demonstrate our proposal that the two-pole struc-
ture could be a general phenomenon.

It seems that the relative positions of the two poles in dif-
ferent cases are different. However, a numerical experiment
could show some common behavior of the pole trajectories
as shown in Fig. 4, which shed more light on the general
properties of the two-pole structure. For all the J P = 0+
cases, as the coupling constant γ increases from zero, the
“bare” pole will move away from the real axis to the second
Riemann sheet and becomes a pair of conjugate resonance
poles. At the same time, another pair of “dynamical” conju-
gate poles come from the deep complex s-plane, and move
towards the real axis and meet on the axis below the thresh-
old becoming a pair of virtual-state poles when the coupling
is large enough. As the coupling strength keeps increasing,
one of the virtual state pole will move down along the real

Fig. 4 The general trajectories of two pairs of poles for the two-pole
structures on the second Riemann sheet of the s-plane as γ increases.
When γ becomes large enough, one of the dynamical pole will move
across the threshold and become a bound-state pole as shown in a blue
arrow line

axis and the other one moves up across the threshold to the
first Riemann sheet and becomes a bound state. On which
part of the trajectory the pole position is located will depend
on the renormalization effect on γ , wave functions and the
specific parameters such as quark masses in each cases. For
the scalar ss̄, cs̄, and bs̄ states, the coupling is so strong that
a bound state and a virtual state are produced for each case,
but for other scalar cases the “dynamical” poles remains to
be resonances.

Based on the above observation, we would extract some
general features in these two-pole phenomena. First, the
appearance of a “dynamical” pole needs a nontrivial form
factor, which is produced by the coupling of mesons com-
posed of more fundamental quarks. Thus we reach our first
general statement: coupling the seed and continuum where
all particles involved are composite particles would always
produce “dynamical” poles such that this kind of two-pole
structure is possible. We have also seen another feature: as
the coupling increases from zero, the “dynamical” resonance
poles come from far away towards the physical region and
may become bound states or nearby virtual states when the
coupling becomes stronger. The “dynamical” pole and the
“bare” pole may contribute a total phase shift of about 180◦
if the single channel approximation can be applied.

Other approaches in the literature also support such a
phenomenon. In χPT, one can also introduce intermediate
s-channel resonance in the meson scattering, and after uni-
tarization there could also be dynamically generated accom-
panying states, such as in [83], where f0(600)/σ , κ , a0(980)

and f0(980) are dynamically generated by coupling a nonet
around 1.0 GeV and 1.4 GeV to the low lying pseudoscalars.
Another effective field theory method used by Wolkanowski
et al. [16,48,49,84] also presented such a phenomenon,
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where the name “companion pole” is used. Their results
are similar to ours here. In particular, the pole trajecto-
ries and the phase shifts for the K ∗

0 (700) and K ∗
0 (1430)

in Ref. [48] also demonstrate the similar general features
listed in the previous paragraph. In quark model, Beveran and
Rupp’s approach [38–42] is in the same spirit as ours. Instead
of using the Friedrichs-Lee model they directly solved the
Schrödinger equation with the potential extracted from the
QPC model or put by hand, and their relativistic extension
of the QPC model [38,39] is different from ours. However,
their results and pole trajectories are also similar to ours
here and thus demonstrates the general features listed above.
More recent works [47,85] using the so called chiral confin-
ing Lagrangian also produce similar results for the lightest
scalars.

4 Summary

To sum up, the interaction between discrete states and the
continuum in general may dynamically generate new states
and thus results in the two-pole structures, which may be a
general mechanism in the strong interactions among hadrons.
We show here that the light 0+ scalars f0(500)/ f0(1370),
f0(980)/ f0(1710), K ∗

0 (700)/K ∗
0 (1430), a0(980)/a0(1450),

are this kind of two-pole structures by using the relativis-
tic Friedrichs-Lee-QPC scheme. Furthermore, the two-pole
structures D∗

0(2210)/D∗
0(2390), D∗

s0(2317)/D∗
s0(2680) and

their counterparts with b quark are also suggested for the
future experiments to explore. Though the single channel
assumption and the limitation of RQPC may bring in some
uncertainty in the pole positions, our results for a wide
range of resonances being consistent with the experiment are
enough to show the general phenomenon of two-pole struc-
ture. Some of the similar two-pole structures were also found
in the unitarized HχPT approach [35,36,76]. However, our
mechanism here provides a unified constituent quark picture
on how these two-pole structures is generated. It is surpris-
ing that these two very different approaches converge to the
similar results. These are two very different pictures and it
is hard to tell which picture is correct or wrong and to make
a simple comparison. Or maybe both pictures are partially
correct and are just dual to each other in describing the same
physics from different facets. Besides the two-pole structures
listed above, there could be other two-pole structures gener-
ated by the same mechanism which should be paid attention
to and be searched for in future experiments. Furthermore,
this mechanism could be much more general beyond hadron
physics. In molecular physics, atomic physics or condense
matter physics, there could also be composite particles scat-
tering where a seed couples with two-particle continuum,
and such two-pole structure may also be present. Further

exploration in this direction in these areas may reveal new
phenomena in future.
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