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Abstract The Minimal Linear σ Model is a useful theoreti-
cal laboratory. One can investigate in a perturbative renormal-
isable model the properties of the Higgs boson as a pseudo-
Goldstone boson, the phenomenological effects of the radial
mode of the field s which spontaneously breaks the global
SO(5) symmetry and the validity of conclusions based on
the Effective Field Theory approach with the field s in the
spectrum, after the decoupling of heavy degrees of freedom.
In this paper all those issues are discussed in the framework
of the Minimal Linear σ Model with CP violating phases
leading to pseudoscalar components in the effective Stan-
dard Model Yukawa couplings. Also the character of the
electroweak phase transition in the presence of the field s
is investigated.
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1 Introduction

There has been some interest in perturbative models with the
Higgs boson as a pseudo-Goldstone boson from an extended
symmetry, both non-supersymmetric [1–4] and supersym-
metric [5–11]. Apart from investigating the Higgs boson
properties in renormalisable beyond the Standard Model
(BSM) scenarios, their simplest versions permit for study-
ing the phenomenological role of an additional electroweak
(EW) singlet s whose vacuum expectation value (VEV) vs
breaks spontaneously the extended global symmetry. The
physical scalar spectrum consists of two mass eigenstates
(we denote them by h and σ ) of the mass matrix which mixes
the radial mode of s and the neutral component of the Higgs
doublet (it is natural to assume vs > vh where vh is the VEV
of the Higgs doublet). Since the presence of the scalar σ

in the spectrum restores perturbative unitarity and assuming
that the other degrees of freedom are heavier, one can dis-
cuss such perturbative scenarios in the effective field theory
(EFT) approach. Besides those from the SMEFT [12,13], it
has to include operators, beginning with dim 5, that are built
out of the scalar s and the SM fields. In such a model inde-
pendent approach it is interesting to investigate the potential
phenomenological role of the additional to SMEFT opera-
tors whose contribution depends on vs > vh.1 Furthermore,

1 There is a vast literature in various contexts on the models with addi-
tional scalar electroweak singlet coupled to the Higgs field but the phe-
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it is interesting to compare the extended EFT approach with a
complete model which determines the correlations between
different operators in the EFT approach.

The Minimal Linear σ Model (MLσM) [14] is in this
respect a useful laboratory. It is a rare example of an explicit
non-supersymmetric perturbative renormalisable BSM with
a rich structure.2

The scalar potential of the MLσM is based on the assump-
tion of the underlying global SO(5) symmetry, which is bro-
ken spontaneously SO(5) → SO(4) by a scalar quintuplet
of SO(5) and explicitly by a small number of soft terms
(for the first through discussion of such a potential in the
context of the fine-tuning and naturalness problems of the
SM see Ref. [22]). One can then investigate the phenomeno-
logical effects of the mass eigenstate σ , mainly coinciding
with the radial mode of the fifth component of the scalar
quintuplet, which breaks spontaneously SO(5). Since the
presence of the scalar σ in the spectrum restores perturba-
tive unitarity, one can consistently discuss the hierarchy of
masses mσ < M f ermion once the model is completed with
a heavy vector-like fermion spectrum, which is the case in
the MLσM. In turn, one can investigate the EFT description
of the model, with dim 5 and dim 6 operators present, after
integrating out the heavy fermions, estimate the validity of
the EFT approach and also compare it with the SMEFT.

With the question about the possibility of the electroweak
baryogenesis in mind, the main goal of this paper is twofold.
Firstly, we generalise the MLσM Lagrangian, which was pre-
viously taken to be strictly CP conserving, to have arbitrary
complex Lagrangian parameters, that is to have additional
to the SM sources of CP violation. Secondly, after updating
the phenomenological constraints on the parameters of the
scalar potential we discuss the electroweak phase transition
in the model. One important particular aspect of the potential
is a flat direction in the limit of no explicit breaking of the
SO(5) symmetry.

Concerning the first issue we focus on the predictions of
the model on the CP violation in the effective SM fermion
Yukawa couplings. It is well known that they are most
strongly constrained by the electron Electric Dipole Moment
(EDM). After introducing complex Lagrangian parameters,
we compare the electron EDM bounds on the imaginary parts
of the Wilson coefficients for different dim 5 and dim 6 oper-
ators treated as independent with those obtained when they
are correlated by the model, pointing out the limitations of the
effective description. With regard to the electroweak phase
transition issue, we confirm the naive expectation that in the

nomenology of the special case of a radial mode of a field breaking a
global symmetry, in a minimal perturbative model, is rarely discussed.
2 The option of the Higgs boson as a pseudo-Goldstone is most often
discussed in low energy models viewed as remnants of some kind of
strong dynamics (Composite Higgs (CH) [15–25]).

presence of the flat direction in the potential and only a weak
explicit breaking of the SO(5) symmetry imposed by the
phenomenological constraints, the Higgs potential does not
have a tree level barrier. Furthermore the Coleman-Weinberg
loop and thermal effects are by far too weak to give a strong
enough electroweak baryogenesis.

The MLσM has already been highly investigated in sev-
eral different directions: its low-energy features have been
studied in Ref. [26], after projecting it to the so-called Higgs
Effective Field Theory Lagrangian [27–40]; the possibility
to solve the strong CP problem within the MLσM has been
analysed in Refs. [41–43]; the phenomenology associated to
the lightest exotic fermions has been illustrated in Ref. [44].

The structure of the paper can be read out in the table of
contents.

2 The minimal linear σ model

The global symmetry group of the MLσM is SO(5)×U (1)X ,
where the last Abelian factor ensures the correct hypercharge
assignment for the SM fields. The gauge sector coincides
with the one of the SM, while the scalar spectrum contains
a real scalar field φ in the fundamental representation of
SO(5). The fermionic sector contains elementary fermions
with the same quantum numbers as in the SM and exotic
vector-like quarks in the trivial and fundamental representa-
tion of SO(5).

The scalar field φ has five components which can be iden-
tified with the three would-be-longitudinal components of
the SM gauge bosons πi , i = 1, 2, 3, the Higgs field h and
the additional scalar field s, singlet under the SM group:

φ = (π1, π2, π3, h, s)T
u.g.−−→ φ = (0, 0, 0, h, s)T ,

(2.1)

where the last expression holds in the unitary gauge and
unbroken phase.

The exotic fermions have U (1)X charges equal to 2/3 or
−1/3 and are associated to the up-type and down-type sec-
tors, respectively. The proto-Yukawas are couplings between
the SO(5) quintuplet vector-like quarks (VLQs) ψ , the sin-
glet VLQs χ and the scalar field φ. The scalar field φ only
couples directly to the exotic fermions, and in particular does
not have direct couplings with the SM fermions. Therefore
the SM Higgs couples to the SM fermions only through the
mediation of the exotic fermions [20,45,46]. This structure
is in line with one possible dynamical explanation of the hier-
archical pattern of the SM Yukawa couplings, by mixing the
SM chiral fermions with heavy exotic vector-like fermions
with flavour-anarchical Yukawa couplings [47]. With the
electroweak baryogenesis in mind and since the electron
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EDM constraints are the strongest for the third generation
Yukawas,3 we focus only on those.

The charged lepton sector can also be described by adding
a copy of the down-quark Lagrangian with exotic fermions
with U (1)X = −1. For shortness, terms including charged
leptons will not be shown explicitly and only comments will
be added when necessary.

Table 1 summarises the scalar and exotic fermion fields
appearing in the model with their transformation properties
under SO(5) ×U (1)X .

The MLσM is a perturbative renormalisable model but it
does not address the question of the stability of the SO(5)

breaking scale. It can then be viewed as a “low-energy” renor-
malisable effective theory, valid below some naturalness cut-
off scale where new physics cuts off the quadratic divergence
destabilising that scale.

2.1 The scalar sector

The spontaneous breaking of SO(5) to SO(4) and of the EW
symmetries is described by the scalar potential V (φ) [14,22]:

V (φ) = λ
(
φTφ − f 2

)2 + α f 3 s − β f 2 h2 , (2.2)

where f is the scale at which the SO(5) breaking takes
place for α = β = 0. The last two terms, proportional to
α and β, are the soft terms which break the SO(5) symmetry
explicitly. Those terms provide the potential for the Gold-
stone bosons present in the spectrum after the SO(5) →
SO(4) breaking and are in principle calculable as quantum
Coleman-Weinberg corrections in terms of the Lagrangian
parameters of the gauge and fermion sector, that also break
SO(5) explicitly. They are sufficient to absorb the dominant
one-loop Coleman-Weinberg contributions (see Ref. [42] for
a different treatment). Since our fermion sector is not com-
plete (we do not consider the first two generations), in this
section we take them as free parameters and determine their
range consistent with the available phenomenological con-
straints. After introducing our fermion sector, we return to
the question of the compatibility of their values with the
Coleman-Weinberg calculation.

Another interesting aspect of the potential in Eq. (2.2)
is the compatibility of the phenomenologically acceptable
range of the parameters with the naturalness and fine-tuning
criteria discussed in detail in Ref. [22]. Since those concepts
are only of a qualitative nature, guided by the discussion in
Ref. [22], we consider the scale
nat ∼ O(10) f as an accept-
able upper bound for the effective MLσM and the onset of
new physics. This implies in particular the upper bound 
nat

for the physical masses of the exotic fermions introduced in

3 See Ref. [48] for the discussion on how the electron EDM bounds
apply to the other generations.

the next section. Similarly, guided by Ref. [22], one expects
the values λ, α, β ∼ O(1) to be acceptable from the fine-
tuning perspective.

Equipped with those qualitative considerations, we now
proceed to the phenomenological analysis of the potential in
Eq. (2.2).

With the symmetry breakings, h and s acquire non-
vanishing VEVs:

h = ĥ + vh , s = ŝ + vs , (2.3)

where the normalisation has been chosen to match Eq. (2.1).
While these two VEVs are undefined if α = 0 = β, their
general expression turns out to be

v2
s = f 2 α2

4β2 , v2
h = f 2

(
1 − α2

4β2 + β

2λ

)
, (2.4)

with

v2
h + v2

s = f 2
(

1 + β

2λ

)
. (2.5)

We see that the effective scale vs of the SO(5) breaking
depends also on the soft breaking parameters α and β.

The SO(5) breaking requires that f 2 > 0, while imposing
that the Higgs arises as a GB leads to |vh| < |vs|: it follows
that

2β2
(

1 + β

2λ

)
< α2 < 4β2

(
1 + β

2λ

)
. (2.6)

Once the symmetries are broken, a non diagonal 2×2 mass
matrix can be read out from Eq. (2.2). The mass eigenstates
h and σ , after diagonalising this mass matrix, can be defined
as

h = ĥ cos γ − ŝ sin γ , σ = ĥ sin γ + ŝ cos γ , (2.7)

where the mixing angle is given by

tan 2γ = 4 vh vs

3v2
s − v2

h − f 2
. (2.8)

The mass eigenvalues are complicated expressions of the
parameters appearing in the scalar potential and of the scalar
VEVs.

It is useful to express the different parameters of the scalar
potential in terms of the Fermi constantGF, the scalar masses,
the mixing angle γ :

123
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Table 1 Transformation
properties of the scalar and
exotic fields under
SO(5) ×U (1)X . The
superscripts (2/3) and (−1/3)

on the fermionic fields refer to
the top and bottom quark sectors

φ ψ(2/3) χ(2/3) ψ(−1/3) χ(−1/3)

SO(5) 5 5 1 5 1

U (1)X 0 +2/3 +2/3 −1/3 −1/3

v2
h = 1√

2 GF

vs = vh sin(2γ )(m2
σ − m2

h)

m2
σ + m2

h − (m2
σ − m2

h) cos(2γ )

λ = sin2 γ m2
σ

8v2
h

(
1 + cot2 γ

m2
h

m2
σ

)

β

4λ
= m2

σm
2
h

sin2 γ m4
σ + cos2 γ m4

h − 2m2
hm

2
σ

α2

4β2 = sin2(2γ )(m2
σ − m2

h)
2

4
(
sin2 γ m4

σ + cos2 γ m4
h − 2m2

hm
2
σ

)

f 2 = v2
h

(
sin2 γ m4

σ + cos2 γ m4
h − 2m2

hm
2
σ

)
(
sin2 γ m2

σ + cos2 γ m2
h

)2 . (2.9)

As GF and mh are fixed experimentally, the two free param-
eters are the mass of the singlet σ and of its mixing angle
with the Higgs boson. Figure 1 collects the present bounds
on the parameter space (mσ , sin2 γ ).

The red horizontal line corresponds to the upper bound on
sin2 γ that universally suppresses the couplings of h to the
SM particles with respect to their SM values and it comes
from the 125 GeV Higgs signal strengths at the LHC by
ATLAS and CMS. Very recent ATLAS results from a

√
s =

13 TeV analysis of Higgs signal strengths with 80 fb−1 of
integrated luminosity [49] set the bound

sin2 γ � 0.09 (2.10)

at 95% C.L. using a χ2 fit to the ATLAS data by assuming
a universal suppression of Higgs couplings. The whole red
shaded region is then excluded by this data.

The blue region is the excluded area due to searches of
heavy scalars decaying into SM gauge boson pairs. In order
to derive this bound, it is useful to introduced an effective
Higgs-singlet mixing angle sin2 γeff as the ratio between the
cross sections for the gluon fusion production of σ in the
MLσM and for the gluon fusion production of a SM-like
scalar hmσ , with mass mσ ,

sin2 γeff = σ(gg → σ)MLσM

σ(gg → hmσ )SM
. (2.11)

In principle, such a bound should also take into account the
VLQ loop contributions to gg → σ , whose expressions can
be found in Ref. [14]. Neglecting the VLQ loop contributions,
one simply has sin2 γeff = sin2 γ . Figure 1 shows the 95%

Fig. 1 Constraints on the mass (mσ ) and mixing angle (sin2 γ ) of the
new singlet scalar σ (see text for details)

C.L. limits in sin2 γ as an excluded blue area, after such an
identification and using the latest

√
s = 13 TeV ATLAS

search for scalar resonances in di-boson final states with 36
fb−1 of integrated luminosity [50]. The inclusion of the exotic
fermion contributions is discussed in Ref. [44].

Finally, Fig. 1 highlights the impact of theoretical con-
straints on the MLσM parameter space: the area under
the yellow curve is ruled out when requiring spontaneous
symmetry breaking of the MLσM SO(5) group. Note that
v2
h/ f

2 ≡ ξ = 1 (with ξ the non-linearity parameter typically
introduced in CH models), depicted by the orange line, and
even regions where v2

h > f 2 are not excluded by experimen-
tal bounds.

Figure 1 also shows some contours of constant values of
the SO(5) coupling λ and of the ratios α/λ = 1 and β/λ = 1.
We collect below the values of all the parameters of the scalar
potential in Eq. (2.2) for a few chosen points on the plot, for
sin2 γ = 0.08:

mσ = 0.7 TeV → λ = 0.11, β = 0.83, α = 3.36,

f = 293 GeV, vs = 590 GeV

mσ = 1.5 TeV → λ = 0.40, β = 0.17, α = 0.35,

f = 733 GeV, vs = 768 GeV
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mσ = 2.0 TeV → λ = 0.69, β = 0.15, α = 0.30,

f = 791 GeV, vs = 795 GeV .

(2.12)

We conclude that the scalar potential parameter range
allowed by the phenomenological constraints is in very good
agreement with the fine-tuning criteria discussed earlier.

2.2 The Fermionic sector

We are interested in the exotic fermion masses in the range
mσ < m f ermion < 
nat where the upper bound comes from
the expected cut-off for our effective perturbative model. The
part of the Lagrangian describing fermion interactions can be
written as follows [14]

L f = qL i /D qL + tR i /D tR + bR i /D bR+
+ ψ

(2/3) [
i /D − M5

]
ψ(2/3)

+ χ(2/3)
[
i /D − M1

]
χ(2/3)

+ ψ
(−1/3) [

i /D − M ′
5

]
ψ(−1/3)

+ χ(−1/3)
[
i /D − M ′

1

]
χ(−1/3)

−
[

y1ψ
(2/3)

L φχ
(2/3)
R + y2ψ

(2/3)

R φχ
(2/3)
L

+ y′
1ψ

(−1/3)

L φχ
(−1/3)
R + y′

2ψ
(−1/3)

R φχ
(−1/3)
L

+ 
1

(
qL


(2/3)

2×5 ψ
(2/3)
R

)

+ 
2ψ
(2/3)

L

(



(2/3)

5×1 tR

)
+ 
3χ

(2/3)
L tR

+ 
′
1

(
qL


(−1/3)

2×5 ψ
(−1/3)
R

)

+ 
′
2ψ

(−1/3)

L

(



(−1/3)

5×1 bR

)
+ 
′

3χ
(−1/3)
L bR + h.c.

]
.

(2.13)

where the U (1)X charge of the exotic fermion fields ψ and
χ has been made explicit throughout. The one associated to
the charged lepton is very similar to the down-quark one with
exotic leptons having U (1)X = −1. The canonical kinetic
terms for the SM quarks appear in the first line, where qL

for the left-handed (LH) SU (2)L -doublet, tR and bR for the
RH SU (2)L singlets. The second and third lines describe the
kinetic and mass terms for the exotic fermions. The forth line
presents the proto-Yukawa interactions between the exotic
quarks and the scalar quintuplet φ. The last two lines con-
tain the mixed terms describing the SM-exotic quark inter-
actions: those terms proportional to 


(′)
1,2 explicitly break the

SO(5) symmetry and the spurions [51–55] 
2×5 and 
5×1

are introduced to formally restore the SO(5) invariance:



(2/3)

2×5 =
(

0 0 1 0 0
0 0 0 1 0

)
,



(−1/3)

2×5 =
(

1 0 0 0 0
0 1 0 0 0

)
,



(2/3),(−1/3)

5×1 = (
0 0 0 0 1

)T
. (2.14)

According to the fermion partial compositeness paradigm no
direct elementary fermion couplings to φ are allowed.

The mass parameters M (′)
1,5 can be taken as real: indeed,

if they were complex, then the sum between the mass terms
and their hermitian conjugates would end up with the real
part of the mass parameters. On the other hand, the rest of

parameters should be taken as complex: y(′)
1,2 =

∣∣∣y(′)
1,2

∣∣∣ eiα(′)
1,2

and 

(′)
1,2,3 =

∣∣∣
(′)
1,2,3

∣∣∣ eiβ(′)
1,2,3 . Performing a field redefinition

it is possible to reduce the number of phases to the minimum
set of 4 phases: a possible choice is

ψ
(2/3)
L ,R �⇒ e−iβ1ψ

(2/3)
L ,R , ψ

(−1/3)
L ,R �⇒ e−iβ ′

1ψ
(−1/3)
L ,R ,

tR �⇒ e−i(β1+β2)tR , bR �⇒ e−i(β ′
1+β ′

2)bR ,

χ
(2/3)
L ,R �⇒ ei(β3−β2−β1)χ

(2/3)
L ,R ,

χ
(−1/3)
L ,R �⇒ ei(β

′
3−β ′

2−β ′
1)χ

(−1/3)
L ,R , (2.15)

leaving only y(′)
1,2 as complex parameters. Notice that the

phase rotations on ψL and ψR (χL and χR) are identical,
so that the mass terms remain real. Among the SM fields,
only the RH quarks are rotated and in particular qL is not
redefined to avoid mixing of the phases of the up and down
sectors and in order to not introduce any additional phase to
the SM gauge boson couplings.

It is useful to rewrite the expression in Eq. (2.13) in terms
of the SU (2)L components of the different fields:

φ = (HT , H̃ T , s)T ,

ψ(2/3) ∼ (K, Q, T5)
T , χ(2/3) ∼ T1 ,

ψ(−1/3) ∼ (
Q′, K′, B5

)T
, χ(−1/3) ∼ B1 , (2.16)

where H is the SM SU (2)L doublet, with H̃ ≡ iσ2H∗,
and K(′) and Q(′) are SU (2)L doublets and T1,5 and B1,5 are
singlets. The whole set of charge assignments can be read in
Table 2, where the hypercharge is defined as

Y = �
(3)
R + X , (2.17)

with X the U (1)X charge and �
(3)
R the third component of

the global SU (2)R , which is part of the residual SO(4) group
after the breaking of SO(5).
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Table 2 Decompositions of the exotic quarks and their transformations under the SM group

Charge/Field K Q T1,5 Q′ K′ B1,5

�
(3)
R +1/2 −1/2 0 +1/2 −1/2 0

SU (2)L ×U (1)Y (2,+7/6) (2,+1/6) (1,+2/3) (2,+1/6) (2,−5/6) (1,−1/3)

U (1)X +2/3 +2/3 +2/3 −1/3 −1/3 −1/3

U (1)EM
Ku = +5/3
Kd = +2/3

Qu = +2/3
Qd = −1/3

+2/3
Q′u = +2/3
Q′d = −1/3

K′u = −1/3
K′d = −4/3

−1/3

By using Eqs. (2.14) and (2.16), Eq. (2.13) acquires the
following form

L f = qL i /D qL

+tR i /D tR + bR i /D bR

+K
[
i /D − M5

]
K + Q

[
i /D − M5

]
Q

+T5
[
i /D − M5

]
T5 + T1

[
i /D − M1

]
T1

+Q′ [i /D − M ′
5

]
Q′ + K′ [i /D − M ′

5

]
K′

+B5
[
i /D − M ′

5

]
B5 + B1

[
i /D − M ′

1

]
B1

−
[
y1

(
KL H T1,R + QL H̃ T1,R + T5,L sT1,R

)

+y2

(
T1,L H† KR + T1,L H̃† QR

+T1,L sT5,R
)

+y′
1

(
Q′

L H B1,R + K′
L H̃ B1,R + B5,L sB1,R

)

+y′
2

(
B1,L H† Q′

R + B1,L H̃† K′
R

+B1,L sB5,R
)

+
1qLQR + 
2T5,LtR

+
3T1,LtR + 
′
1qLQ

′
R

+
′
2B5,LbR + 
′

3B1,LbR + h.c.
]
, (2.18)

where the scalar fields H and s still denote the unshifted and
unrotated fields defined in Eq. (2.1). In order to match with
the notation adopted in the previous section, notice that in
the unitary gauge

H ≡
(

0
h/

√
2

)
. (2.19)

Fermion masses and mixings arise by diagonalising the
whole fermion mass matrix that includes SM and exotic
quarks. To this end, all fermions can be grouped together
in a single vector

� =
(
Ku, T , B, K′d)T , (2.20)

where the ordering of the components is based on their elec-
tric charges, +5/3, +2/3, −1/3, and −4/3, respectively.
Notice that T and B list together all the states with the same
electric charge, +2/3 and −1/3, respectively,

T =
(
t, Qu, Kd , T5, T1, Q

′u)T ,

B =
(
b, Q′d , Ku, B5, B1, Q

d
)T

.

(2.21)

The whole fermion mass term can then be written in the
interaction basis as

LM = −�L M(vh, vs)�R, (2.22)

where the mass matrixM(vh, vs) is a 14×14 block diagonal
matrix,

M(vh, vs) = diag
(
M5, MT (vh, vs), MB(vh, vs), M ′

5

)
,

(2.23)

with

MT (vh, vs) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 
1 0 0 0 
′
1

0 M5 0 0 y1
vh√

2
0

0 0 M5 0 y1
vh√

2
0


2 0 0 M5 y1vs 0

3 y2

vh√
2

y2
vh√

2
y2vs M1 0

0 0 0 0 0 M ′
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(2.24)

and similarly for MB(vh, vs), replacing the unprimed
parameters with the primed ones and vice-versa.

The matrix in Eq. (2.23) can be diagonalised through a
bi-unitary transformation,

�̂L ,R = UL ,R� �⇒ M̂ = UL MU †
R , (2.25)

where �̂L ,R stand for the mass eigenstates and M̂ for the
diagonal matrix. The two unitary matrices can be written as
block-diagonal structures

UL ,R = diag
(

1,UT
L ,R,UB

L ,R, 1
)

, (2.26)

whereUT
L ,R andUB

L ,R diagonaliseMT (vh, vs) andMB(vh,

vs), respectively. Finally, the diagonalised mass matrix is
given by

M̂ = diag
(
M5,M̂T ,M̂B, M ′

5

)
(2.27)
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and the mass eigenstate fermion fields are defined as

�̂ =
(
Ku, T̂ , B̂, K ′d)T ,

T̂ = (t, T, T2, T3, T4, T5)
T ,

B̂ = (b, B, B2, B3, B4, B5)
T , (2.28)

with both charge 2/3 and charge −1/3 mass eigenstates
ordered by increasing masses, so that the lightest states cor-
respond to the top and bottom quarks, respectively. Notice
that the exotic charge states do not mix with the other fields
and then Ku ≡ Ku and K ′d ≡ K′d .

One can estimate the dependence of top partners masses
on the fermionic Lagrangian parameters by analytically diag-
onalizing Eq. (2.24) with vh = 0, which leads to these eigen-
values

M5, M5, M ′
5,

1

2

(
M1 + M5 −

√
M2

1 − 2 M1M5 + M2
5 + 4 v2

s y1y2

)
,

1

2

(
M1 + M5 +

√
M2

1 − 2 M1M5 + M2
5 + 4 v2

s y1y2

)
,

(2.29)

aside from the zero eigenvalue corresponding to the top quark
mass in such limit. Similar results are obtained for bottom
partners, replacing the unprimed parameters with the primed
ones and vice-versa.

2.3 The low-energy effective operators

We collect in this section the Wilson coefficients for the oper-
ators obtained after the decoupling of the exotic fermions,
calculated in terms of the original Lagrangian parameters.
The decoupling limit corresponds to considering M 

mσ 
 vh, where M represents the exotic fermion mass
scales M (′)

i in Eq. (2.13). Generically, the GB scale f is
smaller than M and therefore the additional expansion in the
ratio f/M � 1 will be also used. This integration-out exer-
cise has already been carried out in Ref. [14], but without
considering complex parameters: this section is devoted to
reproducing the results in that paper, but taking into account
the CPV sources.

For energies E < M , the effective Lagrangian describing
d ≤ 6 operators containing SM quark interactions with gauge
bosons, Higgs boson and s can be written as

Leff = qL i /D qL + t R i /D tR + bR i /D bR

+
∑

i, ci∈R
ciOi +

⎛
⎝ ∑

j, c j∈C
c jO j + h.c.

⎞
⎠ . (2.30)

For concreteness, the “Warsaw basis” [13] will be used and
charged lepton operators will not be shown explicitly.

The light fermion kinetic terms also receive corrections
from the integration-out procedure that require wave function
renormalisation in order to recover canonically normalised
kinetic terms,

qL → Z−1/2
qL qL with ZqL = 1 + 
2

1

M2
5

+ 
′2
1

M ′2
5

tR → Z−1/2
tR tR with ZtR = 1 + 
2

2

M2
5

+ 
2
3

M2
1

bR → Z−1/2
bR

bR with ZbR = 1 + 
′2
2

M ′2
5

+ 
′2
3

M ′2
1

.

(2.31)

The effective operators and their Wilson coefficients at
leading order in f/M are shown in Table 3, where the fol-
lowing definitions are used:

(H†i
←→
Dμ H) ≡ i

(
H†

(−→
DμH

)
−
(
H†←−

Dμ

)
H
)

,

(H†i
←→
Di

μ H) ≡ i
(
H†τ i

(−→
DμH

)
−
(
H†←−

Dμ

)
τ i H

)
.

(2.32)

Moreover, the symbol Re[x] refers to the real part of the
parameter x . Notice that the coefficients of the d = 4 oper-
ators also enter in the definition of the higher dimensional
operator coefficients.

The Yukawa couplings Yt and Yb are proportional to y(′)
1

that are complex. The physical SM fermion masses receive
also contributions from operators of higher dimensions once
the scalar fields H and s develop their VEVs. The latter
contributions are additionally suppressed by powers of f/M
and therefore can be safely neglected in the approximation
considered here.

However, the complex phases entering Yt and Yb need to
be reabsorbed. By redefining the fields tR and bR so that

tR → e−iα1 tR , bR → e−iα′
1bR , (2.33)

we get

Yt → |Yt | ≡ yt , Yb → |Yb| ≡ yb , (2.34)

and the top and bottom masses at leading order in f/M turn
out to be

mt = |y1|√
2


1
3

M1M5
vhZ−1/2

qL Z−1/2
tR ,

mb = |y′
1|√
2


′
1


′
3

M ′
1M

′
5

vhZ−1/2
qL Z−1/2

bR
. (2.35)

The redefinitions in Eq. (2.33) also affect the other opera-
tors in Table 3, so that in the coefficients ct,bs1 , ct,bs2 and ct,bH2,
the couplings Yt and Yb should be replaced by their abso-

123
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Table 3 Leading order effective operators and their coefficients. The wave function renormalisation factors have been defined in Eq. (2.31)

d Operator ci Leading Order in f/M

4 q̄L H̃ tR −Yt −
(

y1
1
3
M1M5

)
Z−1/2
qL Z−1/2

tR

q̄L H bR −Yb −
(

y′
1
′

1
′
3

M ′
1M

′
5

)
Z−1/2
qL Z−1/2

bR

5 s (q̄L H̃ tR) cts1
Yt
M5

[
y∗

2

2

3

−
(

y1

2
3
M1M5

+ y∗
2


2
3
M2

1

)
Z−1
tR

]

s (q̄L HbR) cbs1
Yb
M ′

5

[
y′∗

2

′

2

′

3
−
(

y′
1


′
2
′

3
M ′

1M
′
5

+ y′∗
2


′
2
′

3

M ′2
1

)
Z−1
bR

]

6 s2 (q̄L H̃ tR) cts2 − Yt
M1M5

{
y1y∗

2 −
[

y1y∗
2

(
2


2
2

M2
5

+ 
2
3

M2
1

)
+

(|y2|2+2y∗2
2

)

2

2+|y1|2
2
3

2M1M5

]
Z−1
tR +

+2

2

2
2
3

M1M5

(
y1Re[y1]

M2
5

+ y1Re[y2]+y∗
2Re[y1]

M5M1
+ y∗

2Re[y2]
M2

1

)
Z−2
tR

}

s2 (q̄L HbR) cbs2 − Yb
M ′

1M
′
5

{
y′

1y′∗
2 −

[
y′

1y′∗
2

(
2


′2
2

M ′2
5

+ 
′2
3

M ′2
1

)
+

(|y′
2|2+2y′∗2

2

)

′2

2 +|y′
1|2
′2

3
2M ′

1M
′
5

]
Z−1
bR

+

+2

′2

2 
′2
3

M ′
1M

′
5

(
y′

1Re[y′
1]

M ′2
5

+ y′
1Re[y′

2]+y′∗
2 Re[y′

1]
M ′

5M
′
1

+ y′∗
2 Re[y′

2]
M ′2

1

)
Z−2
bR

}

|H |2 (q̄L H̃ tR) ctH2 − Yt
M1M5

[
2y1y∗

2 −
(

2y1y∗
2


2
3

M2
1

+ |y1|2 
2
3

M1M5

)
Z−1
tR

−
(

y1y∗
2


2
1

M2
5

+ |y1|2
2


2
1

M1M5

)
Z−1
qL

]

|H |2 (q̄L HbR) cbH2 − Yb
M ′

1M
′
5

[
2y′

1y′∗
2 −

(
2y′

1y′∗
2


′2
3

M ′2
1

+ |y′
1|2 
′2

3
M ′

1M
′
5

)
Z−1
bR

−
(

y′
1y′

2

′2

1
M ′2

5
+ |y′

1|2
2


′2
1

M ′
1M

′
5

)
Z−1
qL

]

(H†i
←→
Dμ H)(q̄Lγ μqL ) c(1)

L
1
4

(
|y1|2
2

1
M2

1 M
2
5

− |y′
1|2
′2

1
M ′2

1 M ′2
5

)
Z−1
qL

(H†i
←→
Di

μ H)(q̄Lτ iγ μqL ) c(3)
L − 1

4

(
|y1|2
2

1
M2

1 M
2
5

+ |y′
1|2
′2

1
M ′2

1 M ′2
5

)
Z−1
qL

lute value counterparts yt and yb, respectively, and in the
following they are always interpreted in this way. Since y(′)

1

and y(′)
2 present in those coefficients are complex, the new

sources of CPV have not been washed out by the redefinition
in Eq. (2.33).

It is worth stressing that in the considered MLσM the
effective suppression scale of the dim 5 operator and dim
6 operators are independent. In next section we investigate
the following questions, always in the context of the elec-
tron EDM bounds on the magnitude of the acceptable CP
violation:

1. What are the bounds on the imaginary parts of the differ-
ent Wilson coefficients, if one assumes that each of them
saturates by itself the experimental EDM bound?

2. What are the bounds on them when they are correlated
by the model?

3. What is the role of the scalar σ in the spectrum in each
considered above cases, in particular how do the bounds
in case 1. compare with the bound on the SMEFT operator
ctH2?

3 The electron electric dipole moment constraints

The strongest bounds on the beyond the SM sources of CP
violation come from the fermion electric dipole moments
(EDMs). The SM predictions give for them extremely small
values and therefore any NP sources of CPV may show up
at experiments as a clear signal of Beyond the SM (BSM)
physics. At present, the strongest experimental upper limit
on the EDMs is the one for the electron. The result reported
by the ACME II collaboration [56] is:

|de| < 1.1 × 10−29 e cm at 90% C.L. , (3.1)

where de is defined by the following effective Lagrangian

LEDM = − i de
2

ē σμνγ5 e F
μν with σμν ≡ i

2

[
γμγν − γνγμ

]
.

(3.2)

Although this limit is still far from the SM prediction
which accidentally gives a very small value of ≈ 10−44 e cm
[57] (a recent reevaluation of this value have been done in
Refs. [58,59]), it constraints very strongly various BSM sce-
narios.
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3.1 General EFT analysis

In this section we discuss the EDM constraints on the set of
operators listed in Table 3, which are generic for models with
an additional electroweak singlet, assuming non-vanishing
expectation value for the field s, vs > vh.

The electron EDM will receive NP contributions due to
the imaginary parts of the Higgs and σ boson couplings to
the third generation SM fermions. The effective Lagrangian
describing the fermion-scalar couplings can be parametrised
as

Leff ⊃ − yψ√
2

(
κh
ψ ψ̄ ψ + i κ̃h

ψ ψ̄ γ5 ψ
)
h

+(h → σ) with yψ ≡
√

2mψ

vh
, (3.3)

where vh = 246 GeV is the EW symmetry breaking VEV of
the Higgs field, and mψ the mass of the SM fermion ψ .

As long as only the CP violation effects in the Higgs boson
Yukawa couplings are considered (e.g. in SMEFT), the elec-
tron EDM introduces a constraint on the three-dimensional
space of the effective fermion parameters κ̃h

t , κ̃h
b , κ̃h

τ , with
upper bounds on each of them (for a recent analysis see
Ref. [60]). Particularly strong bounds are obtained for κ̃h

t <

O(10−3) but the bounds for κ̃h
τ and κ̃h

b are two orders of
magnitude weaker. It is well known that the same effective
parameters κ̃ψ can be responsible for the contribution of dif-
ferent third generation fermions to the baryon asymmetry in
the universe in the electroweak phase transitions, provided it
is a strong enough first order transition (see Refs. [60–65])
(which is not the case in the SM). The stringent bound on
κ̃h
t excludes its dominant role in the electroweak baryogen-

esis but it can still be driven by κ̃h
τ (see Refs. [60,66]). In

this paper we are mainly focused on the comparison of the
constraints on the complex parameters in the EFT approach
with those in a renormalisable perturbative model and we
shall do it taking the top Yukawa coupling as an example, as
it gives the leading contribution to the electron EDM. The
case of the τ Yukawa would exactly parallel our discussion,
with appropriate rescalings.

New contributions to the electron EDM arise through the
so-called Barr-Zee diagram in Fig. 2. The different vertices
are labelled with letters: we assume that the vertices“B”,
“D” and “E” are purely SM (the photon couplings are left
untouched in particular within the MLσM ). In a full three
generation model, vertex “A” may acquire an imaginary part
due to new physics contributions, but it is expected to be
suppressed accordingly to the fermion partial composite-
ness mechanism: the lightest fermions are mainly elemen-
tary, while the top, the bottom and tau are composite objects.
The only vertex where new sources of CPV can play a role
is “C”.

Fig. 2 Two-loop Barr–Zee diagram for the electron EDM

The explicit computation of the Barr-Zee diagram, allow-
ing new CPV sources only in vertex “C”, provides the fol-
lowing contribution to the electron EDM [67]:

de
e

= −
∑

ψ=t,b,τ

4 Qe Q
2
ψ Nc

αem

(4π)3

√
2 GF me

×
[
κh
e κ̃h

ψ f1(xψ/h) + κσ
e κ̃σ

ψ f1(xψ/σ )

]
,

(3.4)

where Qψ is the ψ electric charge, Nc = 3 if ψ is a quark
and Nc = 1 if ψ is the τ , αem is the fine structure constant
at the scale of the electron mass, GF the Fermi constant, and
f1 is a function of xψ/s ≡ (mψ/ms)

2 defined by

f1(x) = 2x√
1 − 4x

[
Li2

(
1 − 1 − √

1 − 4x

2x

)

−Li2

(
1 − 1 + √

1 − 4x

2x

)]
(3.5)

being Li2 the dilogarithm

Li2(z) = −
∫ 1

0

ln(1 − zt)

t
dt , z ∈ C , t ∈ R .

(3.6)

Taking the central experimental values for the fermion
masses, mt = 172.8 GeV, mb = 4.18 GeV and mτ =
1.78 GeV, and the Higgs mass as mh = 125.1 GeV [57],
and setting mσ = 1.5 TeV and sin2 γ = 0.08 as the
benchmark values, the numerical results for the function
f1 computed for the top, bottom and τ fermions read:
f1(xt/h) � 2.87, f1(xb/h) � 0.055 and f1(xτ/h) � 0.015
when the Higgs boson is exchanged in the Barr-Zee dia-
gram, while f1(xt/σ ) � 0.30, f1(xb/σ ) � 0.0011 and
f1(xτ/σ ) � 0.00026 when it is the scalar singlet. These val-
ues have been obtained implementing in C++ the sub-routine
Vegas [68] from the Monte Carlo-based multi-dimensional
Cuba library [69].

For a check of our calculation, we report the results for the
upper bounds on the Higgs boson CPV effective couplings,
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assuming one contribution at the time, using the experimental
bound in Eq. (3.1):

κ̃h
t = 0.0012 , κ̃h

b = 0.25 , κ̃h
τ = 0.31 , (3.7)

They agree very well with the values for Tψ
I obtained in Ref.

[60] (see their Eq. (4.5)), after the identification4

Tψ
I = cos γ

2
√

2
κ̃ψ , (3.8)

since, due to the mixing between h and σ , the SM Yukawa
couplings for the electron end up suppressed as follows:

L ⊃ − ye√
2
hēLeR + h.c. ⊃ − ye√

2
(hēe cos γ + σ ēe sin γ )

⇒
{

κh
e = cos γ

κσ
e = sin γ .

(3.9)

Our next task is to take the point of view of an EFT
approach and to obtain the bounds on the imaginary parts
of the Wilson coefficients, one by one, of the dimension 5
and 6 operators collected in Table 3. Keeping only the top
quark loop in the calculation, we get:

κ̃h
t = −(vs cos γ − vh sin γ ) Im[cts1]/yt − vs(vs cos γ − 2 vh sin γ )

×Im[cts2]/yt − 3

2
v2
h cos γ Im[ctH2]/yt ,

κ̃σ
t = −(vs sin γ + vh cos γ )Im[cts1]/yt − vs(vs sin γ

+2vh cos γ ) Im[cts2]/yt − 3

2
v2
h sin γ Im[ctH2]/yt , (3.10)

where Im[x] is the imaginary part of x .
For illustrating the role played by the h and σ exchange,

it is convenient to introduce the effective parameter κ̃
e f f
t :

κ̃
e f f
t = κh

e κ̃h
t f1(xt/h) + κσ

e κ̃σ
t f1(xt/σ ) . (3.11)

For the benchmark point mσ = 1.5 TeV and sin2 γ =0.08,
if only one operator enters in the electron EDM, the h (σ )
contribution to κ̃

e f f
t is 98% (2%), 97% (3%) and 99% (1%)

for cts1, c
t
s2 and ctH2, respectively.

Although the contribution in Eq. (3.10) of the different
operators to the parameters κ̃h

t and κ̃σ
t is comparable, the

contribution of the latter to the electron EDM is suppressed
by the function f1 and by κσ

e = sin γ . From Eq. (3.10) we
also see that the coefficients of Im[cts2] are larger than those
of Im[ctH2] because vs > vh. Therefore, the bounds on the
Im[cts2] should be stronger than the one on the Im[ctH2]. Fur-
thermore, we see that, because of the mixing between h and
σ , the square of the coefficients of Im[cts1] are close to the
coefficients of Im[cts2].

The bounds on Im[cts1]/yt in units of TeV−1 should then
be comparable to those on Im[cts2]/yt in units of TeV−2, lead-
ing to obvious implications for their interpretation in terms of

4 Ref. [60] based their calculus on Ref. [70], where the formula in
Eq. (2.33) should be corrected including a factor 1/

√
2 according to

Ref. [67].

the common suppression scale 
 (
2), respectively. This dis-
cussion is also very important for understanding the results
of next section.

The bounds on the imaginary parts of the Wilson coef-
ficients, assuming the contribution to the electron EDM of
only one operator at a time, in the range of the parameters
(mσ , sin2 γ ) consistent with the Fig. 1, are shown in the
Fig. 3. They confirm the above described qualitative expec-
tations. The Im[cts1,2]/yt have stronger suppression for larger
mσ because the prefactor in Eq. (3.10) depends on vs that
increases as mσ increases. On the other hand, Im[ctH2]/yt
has the opposite behaviour because in this case the dominant
effect comes from the function f1(xt/σ ) in Eq. (3.11) that
decreases with increasing mσ .

Here are the bounds of the suppression scale 
 following
from the bounds on each of the Wilson coefficients, taking
their phases as O(1): 
 > (5.5 × 102, 20, 9) TeV, for cts1,
cts2, ctH2, respectively, taking mσ = 1.5 TeV and sin2

γ =
0.08. As expected, the strongest constrain on the new physics
scale comes from the dim 5 operator. It is more than one
order of magnitude stronger than the bounds from both cts2
and ctH2. The difference between the bounds coming from
cts2 and ctH2 is due to the hierarchy vs > vh.

In next section we will compare the obtained bounds with
the results obtained using the complete MLσM Lagrangian.

3.2 MLσM calculations

Our first question is: how the bounds on the imaginary parts of
the Wilson coefficients change (compared to the results of the
previous section) once we include the correlations between
them which follow from the structure of the Lagrangian
Eq. (2.13). This can be done by using the explicit expres-
sions for the Wilson coefficients in terms of the Lagrangian
parameters given in Table 3.

The imaginary part of the Wilson coefficients in Eq. (3.10)
are given by

Im[cts1]/yt = − 1

M5

[
|y1|


2
3

M1M5
Z−1
tR sin α1

+|y2|
(


2


3
− 
2
3

M2
1

Z−1
tR

)
sin α2

]

Im[cts2]/yt = − 1

M1M5

[
|y1||y2|

(
1 −

[
2


2
2

M2
5

+ 
2
3

M2
1

]
Z−1
tR

+2

2

2

2
3

M2
1 M

2
5

Z−2
tR

)
sin(α1 − α2)

+|y1|2

2

2

2
3

M1M3
5

Z−2
tR sin(2 α1)

+|y2|2
(


2
2

M1M5
Z−1
tR − 
2

2

2
3

M3
1 M5

Z−2
tR

)
sin(2 α2)

]
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Fig. 3 Bounds on the imaginary parts of the Wilson coefficients,
∣∣Im[cts1]

∣∣ /yt (a),
∣∣Im[cts2]

∣∣ /yt (b) and
∣∣Im[ctH2]

∣∣ /yt (c), assuming the contribution
to the electron EDM of only one operator at a time

Im[ctH2]/yt = − 2

M1M5
|y1||y2|

[
1 − 
2

3

M2
1

Z−1
tR

− 
2
1

2 M2
5

Z−1
qL

]
sin(α1 − α2) (3.12)

In Fig. 4, we show the results of a scan over certain regions
of the parameter space of the model and impose the most rel-
evant experimental constraints. We follow Ref. [44], which
contains a comprehensive study of the model phenomenol-
ogy addressing in particular the effects of relatively light
top and bottom partners. This analysis includes the study of
the modification of the Zb̄b coupling having an impact on
the ratios of partial widths Rb = �(Z → b̄b)/�(Z →
hadrons), Rc = �(Z → c̄c)/�(Z → hadrons), on
the forward-backward charge asymmetry Ab

FB and on the
coupling Ab from left-right forward-backward asymmetry,

which have been precisely measured at LEP [71]. The bounds
from S and T oblique parameters have also been considered,
aside from constraints on the MLσM scalar sector, already
discussed in Sect. 2.1. Reproduction of experimental values
formt andmb has been required as well. Although in our scan
all those constraints are imposed at the level of real parame-
ters, we checked that introducing the phases typically change
the results by only a few percent.

The scatter plots shown in Fig. 4 have been obtained for
the following ranges of the parameters:

mσ = 1.5 TeV , sin2 γ = 0.08 ,

M1 = (3.0 − 3.5) TeV , M5 = (6.0 − 7.0) TeV ,

M ′
1 = (4.5 − 6.5) TeV , M ′

5 = (7.5 − 10.0) TeV ,


1 = (5.5 − 7.5) TeV , 
2,3 = (1.5 − 2.0) TeV ,


′
1,2,3 = (0.75 − 1.5) TeV ,
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Fig. 4 Values of Im[cts1]/yt , Im[cts2]/yt , Im[ctH2]/yt , κ̃h
t and κ̃σ

t for the points of our MLσM parameter scan. The colour of the scan points
marks the range of values they give for κ̃h

t in (a), (b) and (c), and for |de/e| in (d). The electron EDM was required to be in the range |de/e| =
(0.5 − 1.1) × 10−29 cm

|y2| = (1.00 − 1.25) , |y′
2| = 0 ,

α1,2 = (0 − π) , α′
1,2 = 0 , (3.13)

Both |y1| and |y′
1| where set to satify Eq. (2.35), for the cen-

tral experimental values formt andmb. (See some benchmark
examples in Tab 4.) It has ben required that the electron EDM
is in the range |de/e| = (0.5 − 1.1) × 10−29 cm. The main
observation is that the Wilson coefficients of different oper-
ators are strongly correlated with each other and the bounds
on them are up to two orders of magnitude weaker than in the
previous section. The cancellations between contributions of
different operators occur naturally, as a consequence of cor-
relations between them when they are expressed in terms of
the Lagrangian parameters. No significant fine tuning of the
Lagrangian parameters is needed, excluding α2, whose value
is discussed below. In addition to the structures encoded in

Eq. (3.12) the important role in the cancellations is played by
the fact that in the full model the suppression scales of dim
5 and dim 6 are independent.

In Fig. 4d there are collected the results for the measurable
parameters κ̃h

t and κ̃σ
t . The two bands correspond to positive

and negative values of κ̃
e f f
t . It is interesting to observe that,

contrary to the expectations based on a single operator dom-
inance discussed in the previous section, typically κ̃σ

t 
 κ̃h
t ,

as a consequence of the large cancellations. Interestingly,
the EDM bound on the imaginary part of the htt coupling
in the full model is about 50% weaker than in the effective
approach.

Figure 5a shows the scatter plot of the CPV Yukawa phases
α1,2 compatible with |de/e| = (0.5 − 1.1) × 10−29 cm, for
the range of the parameters in Eq. (3.13). One can ask if
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Table 4 In the upper panel, four different sets of input parameters are
shown as examples. In all cases, mσ = 1.5 TeV, sin2 γ = 0.08 and
α′

1,2 = 0. The corresponding imaginary parts of the Wilson coeffi-

cients, effective coefficients κ̃
h,σ
t and the electron EDM are collected in

the middle panel, together with the respective Higgs and singlet contri-
butions to the later. In the lower panel are shown the resulting lightest
T and B quark partner masses, the 


h,σ
1,2 that quantify the amount of

tuning in the MLσM CPV phases and the |αCW| and |βCW| parameters
calculated from the Coleman-Weinberg potential

M1 M5 M ′
1 M ′

5 
1 
2 
3 
′
1 
′

2 
′
3 |y1| |y2| α1 α2 |y′

1| |y′
2|

(TeV) (TeV) (TeV) (TeV) (TeV) (TeV) (TeV) (TeV) (TeV) (TeV)

P1 3.4 6.9 5.1 8.0 7.1 1.5 2.0 1.2 1.1 1.0 2.8 1.1 0.03 3.11 1.2 0

P2 3.1 6.4 6.3 8.3 7.1 1.6 1.9 1.5 1.3 1.3 2.7 1.1 0.22 2.80 1.1 0

P3 3.2 6.0 6.1 9.1 5.7 1.9 1.9 1.1 1.2 1.3 3.0 1.0 0.50 2.90 1.3 0

P4 3.1 6.1 5.1 7.6 6.2 1.5 1.7 1.5 1.0 1.2 2.9 1.2 0.75 2.42 0.8 0

Im[cts1]/yt Im[cts2]/yt Im[ctH2]/yt κ̃h
t κ̃σ

t (de/e)h × 1029 (de/e)σ × 1029 |de/e| × 1029

(TeV−1) (TeV−2) (TeV−2) (cm) (cm) (cm)

P1 −0.004 0.006 0.008 −0.0006 −0.0014 −0.57 −0.04 0.6

P2 −0.048 0.056 0.076 −0.0003 −0.0099 −0.31 −0.27 0.6

P3 −0.061 0.069 0.111 −0.0008 −0.0118 −0.70 −0.32 1.0

P4 −0.126 0.140 0.204 0.0017 −0.0226 1.56 −0.62 0.9

mT mB 
h
1 
h

2 
σ
1 
σ

2 |αCW| |βCW|
(TeV) (TeV)

P1 4.0 5.1 1.3 31.6 0.7 27.0 0.22 0.05

P2 3.7 6.3 12.1 149.1 0.6 1.0 0.24 0.06

P3 3.6 6.1 4.3 121.6 0.7 2.0 0.32 0.09

P4 3.6 5.2 7.1 85.9 0.3 4.2 0.12 0.05

such values of the CPV phases are “natural” or perhaps they
correspond to some undesired tuning. Following traditional
naturalness criterion [72], the amount of tuning in α1,2 for
the effective coupling κ̃ t

h can be quantified by


h
1,2 ≡

∣∣∣∣
α1,2

κ̃h
t

∂κ̃h
t

∂α1,2

∣∣∣∣ . (3.14)

Similar quantities can be defined for κ̃σ
t . Tab 4 collects the

values of 

h,σ
1,2 for some benchmarks, showing that for α2

a tuning of 10% to 1% is required in the parameter space
region (3.13). This is the price for the cancellations between
contributions from different effective operators.

In Table 4 we collect the parameters and the results for a
few generic points from our scan. One new important obser-
vation is that in the full model the mass scale of new fermions
compatible with the electron EDM bound is around 3 TeV,
for the O(1) phases of the Yukawa phases in the lagrangian.
This is the effect of the already discussed cancellations.

Finally, the second question we discuss in this section is
this: can the scalar potential parameter range shown in Fig. 1
be naturally obtained from radiative corrections induced by
the soft SO(5) breaking terms in the MLσM Lagrangian
Eq. (2.2) (respecting the naturalness cut-off 
nat ≈ O(10) f
for the heaviest exotic fermion mass).

The αCW and βCW parameters arising form the Coleman-
Weinberg (CW) one-loop potential are given by

|αCW| ≡
∣∣∣∣

1

64 π2

d2

f 3

∣∣∣∣ , |βCW| ≡
∣∣∣∣

1

64 π2

d3

f 2

∣∣∣∣ , (3.15)

where d2,3 have been calculated in Ref. [14] (see Ref. [42]
for a different treatment)

d2 = 4 
2
3
(
M1

∣∣y1

∣∣ cos α1 + M5
∣∣y2

∣∣ cos α2
)

+ 4 
′
2


′
3

(
M ′

1

∣∣y′
1

∣∣ cos α′
1 + M ′

5

∣∣y′
2

∣∣ cos α′
2

)
,

d3 = 2
∣∣y1

∣∣2 
2
2 − ∣∣y2

∣∣2 
2
1 + 2

∣∣y′
1

∣∣2 
′2
2

− ∣∣y′
2

∣∣2 
′2
1 . (3.16)

Recall that y′
1 and y′

2 were set to be real since the bottom role
in the EDM is subleading.

The results of a scan over the parameters of the Lagrangian
are shown in Fig. 5b. There can be a good agreement with
the values of the parameters indicated in Eq. 2.12.

The largeness of the y1 parameter at the average scale of
the decoupling of the heavy fermions may raise the ques-
tion about the appearance of Landau poles. However, that
scale is also similar to 
nat that is the natural cut-off for
the MLσM at which a (still perturbative) completion of the
theory is expected. The running of the couplings above 
nat

would depend on that completion so the question about the
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Fig. 5 Values of the CPV phases α1,2 (a) and Coleman–Weinberg parameters |αCW| and |βCW| for the points of our MLσM parameter scan. The
electron EDM was required to be in the range |de/e| = (0.5 − 1.1) × 10−29 cm

Landau pole is beyond the MLσM itself. However, just for
controlling the effects of the possible short running in the
MLσM (given the uncertainty of the scale at which the value
of y1 should be assigned to), we have checked that with the
1-loop beta-function for y1 calculated for our spectrum, the
corresponding Landau pole would arise at ∼ 13 TeV with
y1(M5 = 6 TeV) = 3.

4 Electroweak phase transition

The MLσM is an example of extension of the SM with an
additional scalar. Various extensions of the SM with addi-
tional scalars have been widely studied to make the EW
phase transition first order and strong [73–85]. This is one of
the necessary conditions for a successful EW baryogenesis
[61,62,64]. A natural question is if the MLσM can manifest
such strong phase transition.

To analyze the phase transitions a model exhibits, the
effective potential of the scalar sector at finite temperature
needs to be studied. This is calculated using the methods
presented in the “Appendix A”. At finite temperature, the
quadratic terms of the scalar potential receive thermal con-
tributions, so above some critical temperature Tc the EW
symmetry is restored.

The transition between the two phases is first order if at Tc,
there is a barrier in the effective potential between the two
degenerate minima: the EW symmetric minimum at h =
0, and the EW breaking minimum at h = vh,c. Then, the
phase transition occurs through bubble nucleation: at T > Tc
the plasma is in the EW symmetric phase, and at T < Tc,

bubbles in the EW breaking phase start to grow and percolate.
This is a highly out-of-equilibrium process, and an excess of
baryon number can be generated in the bubble walls [63,65].
To explain the observed baryon number excess, the phase
transition must also be strong enough: vh,c/Tc > 0.6 − 1.6
(see Refs. [82,86]).

In the SM the phase transition has a cross over character
(the Higgs gets a VEV smoothly without nucleation), but
extensions with scalar fields can change this in a number of
ways [78]. If the extra-scalar VEVs are invariant during the
EW phase transition and only renormalizable interactions
are allowed, the tree level potential cannot have a barrier
[76], but loop and thermal contributions of the extra scalars
can generate it [73]. Those models typically require sizeable
couplings to make the phase transition strong. A second class
of models are those ones where the extra-scalar VEVs change
during the EW phase transition. In this case, the tree level
potential may have a barrier assuming only renormalisable
interactions [76].

Models with an extra scalar with a Z2 symmetry, and a
vanishing VEV at 0 temperature are considered in [79,80,
82]. If the VEV of the extra scalar also vanishes in the EW
symmetric phase, it corresponds to the first case explained
above. The second case can also be realized with a two-step
phase transition if the extra scalar gets a VEV before the EW
symmetry is broken. In CH models, the second case can be
implemented with help of extra pseudo-Goldstone bosons in
non-minimal models [77,83] or the dilaton [84,85].

In the MLσM there is an extra scalarσ which arises mainly
from the radial mode of a scalar 5-plet, whose VEV f breaks
spontaneously the global SO(5) symmetry. As explained in
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detail below, although the VEV of s does change during the
EW phase transition, the underlying SO(5) global symme-
try of the potential does not allow for a tree-level potential
with a barrier. Several effects also suppress the quantum and
thermal contributions of σ to create a barrier: very strong
experimental upper bound on the h−s mixing and the hier-
archy f/vh 
 1 at zero temperature. The phase transition is
by far too weak to be consistent with electroweak baryogen-
esis.

4.1 Leading temperature corrections

The first step is to analyse the effective potential including
only leading high temperature corrections (see Appendix A.1”).
This approximation can neglect important contributions from
higher orders, but it gives a first analytic approach to the prob-
lem. In the next section the full numerical analysis will be per-
formed. The effective potential in this approximation (A.14)
has the same functional form as the tree level potential (2.2)
with some temperature-dependent coefficients (up to con-
stant terms):

Veff,0(h,s) = λ
(
h2 + s2 − f (T )2

)2

+α(T ) f (T )3s − β(T ) f (T )2h2, (4.1)

where

f (T )2 = f 2 − 7

12
T 2, (4.2)

α(T ) = α
f 3

f (T )3 , (4.3)

β(T ) = 1

f (T )2

(
f 2β − T 2

8v2
h

(m2
Z + 2m2

W + 2m2
t )

)
.

(4.4)

The possible first order phase transitions can be studied
looking for the parameters that give a potential (4.1) with
two degenerate minima. Then, evolving the parameters from
T = Tc to T = 0, the zero temperature tree level parameters
can be found [76]. However, if α �= 0, the potential (4.1)
cannot even have two local minima if one of them breaks
the EW symmetry. This potential has a stationary point with
vh �= 0 if and only if the condition

f (T )2 α(T )2 < 4 f (T )2 β(T )2
(

1 + β(T )

2λ

)
(4.5)

is satisfied. Notice that, assuming f 2 > 0, this condition is
the right inequality (2.6) . The stationary point is unique (up
to SO(4) transformations) and it is a minimum if and only if

f (T )2β(T ) > 0. (4.6)

If there is a second minimum, it has to be located alongh = 0.
However, once the inequalities (4.5) and (4.6) are satisfied,

all roots of ∂Veff/∂s alongh = 0 are contained in the interval
where ∂2Veff/∂h2 is negative. All stationary points alongh =
0 are then either maxima or saddle points. Therefore, in this
approximation all phase transitions are second order (VEVs
evolve continuously with the temperature). The absence of a
tree level barrier is related to the flat direction of the SO(5)

potential, which is too weakly perturbed.5

The symmetry-breaking pattern as the temperature
decreases is as follows. At very high temperatures, both
f (T )2 and f (T )2β(T ) are negative, so the quadratic terms
for h and s at the origin are positive, and the SO(5) symme-
try is not spontaneously broken. The f (T )2 is negative for
temperatures higher than

TSO(5) =
√

12

7
f. (4.7)

When the conditions (4.5) and (4.6) are satisfied, the
EW symmetry is broken. The saturating point of (4.5)
once f 2(T )β(T ) ≥ 0 gives the EW critical temperature
TEW . If the zero-temperature parameters satisfy

β <
α2/3λ1/3

21/3 + 3

14v2
h

(
m2

Z + 2m2
W + 2m2

t

)

= α2/3λ1/3

21/3 + 0.287, (4.8)

then TEW < TSO(5). At TSO(5), the SO(5) symmetry is
broken spontaneously but the EW symmetry is preserved
because of the explicit SO(5) breaking. The VEV vs(T )

starts to receive increasing contributions from this breaking
while vh(T ) keeps vanishing. The EW symmetry is later
broken at a lower temperature. If the condition (4.8) is not
satisfied, then TEW ≥ TSO(5) and the EW symmetry is bro-
ken at the same time as the SO(5) symmetry, before f (T )2

becomes positive. However, in that case, f < vh (TEW is still
at the EW scale), and it corresponds to a very tiny region in
the allowed parameter space very close to the f 2 = 0 limit.

4.2 Full analysis

Although leading temperature contributions do not trigger
a first order phase transition, it is well known that higher
orders can generate a barrier from the bosonic contribution
in the Higgs potential if the coupling between the Higgs and
the scalar is large enough. A natural question is whether the
loop-contribution of s in the potential is enough to generate
such a barrier in the EW phase transition.

If we assume vh � f and TEW � TSO(5), the VEV of s
will be approximately constant in the EW phase transition.
If we perform a shift on s to make vs = 0, the situation

5 It remains to be seen if adding more SO(5)-breaking terms can give
us a strong first order phase transition suitable for baryogenesis.
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Fig. 6 Strength of the EW phase transition (vh,c/Tc) as function of
the singlet mass (mσ ) and the mixing angle (sin2 γ ). The blue solid
lines correspond to vh,c/Tc = 0.3, 0.45, 0.6, 0.75. In addition, the
black dashed lines depict λ = 0.5, 1, 1.5, 2, 2.5, calculated with the
one-loop effective potential. According to the criterion of Ref. [82], in
the region where λ � 1.5, the one-loop analysis of the phase transition
breaks down due to higher loop corrections

becomes similar to the one-step phase transition discussed
in Ref. [82]. There, the EW phase transition for the SM plus
a scalar that does not develop a VEV (before and after the
phase transition) was studied. By analogy, in our case, the
operator responsible for the barrier in the potential V (h, vs)

ish2(s−vs)
2. In the MLσM , the coupling of this operator is

2λ. Translating directly the results of Ref. [82] to the MLσM
case one obtains that, if the mass of the singlet is in the range
0.5−1 TeV, the coupling must be λ � 0.75−1.5 for the phase
transition to be relatively strong vh,c/Tc � 0.6. However,
these values require a Higgs-singlet mixing sin2 γ > 0.7
which is completely excluded (see Eq. (2.10)). This suggests
that a strong first order phase transition is unlikely in the
MLσM.

To confirm the previous argument, the full numerical cal-
culation has been performed, including all finite temperature
corrections up to one-loop and ring corrections according
to “Appendix A”. The results are presented in Fig. 6. For
the non-excluded low mixing angles (sin2 γ � 0.09), the
contribution of the singlet to the barrier is absolutely negli-
gible. Because of this, the full range of the mixing angle is
depicted in order to access to the range of parameters where
the phase transition becomes strong. Indeed, only for com-
pletely excluded mixing angles sin2 γ � 0.9, the system
manifests a strong phase transition (vh,c/Tc � 0.6).

5 Conclusions

The SMEFT Lagrangian extended by operators built in terms
of an additional electroweak scalar field s which has a non-

vanishing vacuum expectation value is an EFT approxima-
tion to a class of perturbative theories with the Higgs boson
appearing as a Goldstone boson of a spontaneously broken
global symmetry. In particular it contains dim 5 and dim 6
operators.

We have analysed the electron EDM bounds on the pseu-
doscalar Yukawa couplings of the top quark in such an EFT.
The contributions from the new operators, if uncorrelated,
leads to much stronger bounds on the scale of new physics
than in SMEFT. This is because they depend on the large
VEV of the field s.

The MLσM is an example of a model with the radial mode
of a scalar s breaking a global symmetry in the spectrum.
The Wilson coefficients of the EFT operators are calculable
in terms of the original parameters of the Lagrangian and
strongly correlated. Those correlations weaken the bounds
on the scale of new states in the model by more than two
orders of magnitude compared to the “uncorrelated” EFT
approach. The price is some fine-tuning in the phases of the
Yukawa couplings in the Lagrangian, of the order of 10% to
1%.

Thus, the model provides an explicit example that in UV
complete models the lightest NP mass eigenstates can be in
the range of 
 = O(1 TeV) even for O(1) phases of the
Lagrangian parameters, and remaining consistent with the
EDM bound on the complex top Yukawa coupling. This is
in contrast to the EFT approach if the correlations between
Wilson operators are neglected.

The UV complete model allows for an unambiguous cal-
culation of the electroweak phase transition. In the allowed
parameter range (Higgs and scalar singlet mixing), it turns
out to be by far too weak for a successful baryogenesis.

Acknowledgements We thank J. R. Espinosa, M. Olechowski, K.
Sakurai, J. van de Vis and G. A. White for fruitful discussions. S.P.
is grateful to Anna Lipniacka (Bergen University) for discussions on
the prospects of measuring CPV in the tau Yukawa coupling.
J.A.G. and L.M. acknowledge partial financial support by the Span-
ish MINECO through the Centro de excelencia Severo Ochoa Program
under grant SEV-2016-0597, by the Spanish “Agencia Estatal de Inves-
tigacíon”(AEI) and the EU “Fondo Europeo de Desarrollo Regional”
(FEDER) through the projects FPA2016-78645-P and PID2019-10889
2RB-I00/AEI/10.13039/501100011033. J.A.G. and L.M. also acknowl-
edge support from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agree-
ment No 860881-HIDDeN. J.M.L. acknowledges financial support from
the Polish National Science Center under the Beethoven series grant
number DEC-2016/23/G/ST2/04301, and from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation program under grant agreement 833280 (FLAY).
L.M. acknowledges partial financial support by the Spanish MINECO
through the “Ramón y Cajal” programme (RYC-2015-17173). The
research of S.P. has received funding from the Norwegian Financial
Mechanism for years 2014-2021, grant nr 2019/34/H/ST2/00707.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: Since results
are straightforward to verify using the information provided in the

123



Eur. Phys. J. C (2021) 81 :538 Page 17 of 19 538

manuscript (e.g., equations, approximations, benchmark values col-
lected in tables), no further data are deposited.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

A Finite temperature effective potential

In order to study possible phase transitions, we need to cal-
culate the finite-temperature effective potential for the scalar
sector. We will work at one loop including ring corrections:

Veff(T ;φ) = V (φ) + VCW(φ) + VT(T ;φ) + Vr(T ;φ).

(A.1)

Here, V is the tree level scalar potential (2.2), VCW is the
Coleman-Weinberg correction (one-loop zero temperature
correction), VT is the one-loop finite temperature correction,
and Vr, the ring correction. It is convenient to keep all the
components of the scalar φ = (π1, π2, π3,h,s) because
in the calculation of every piece of the effective potential
we have to take into account the Goldstone bosons π . Once
computed, we can always take the unitary gauge π = 0.

The Coleman-Weinberg correction [87] in MS is given by

VCW(φ) =
∑

i=(φ, f,V )

(−1)Fi
ni

64π2 Tr

×
[

M4
i

(
log

M2
i

μ2
MS

− Ci

)]
. (A.2)

Here, i runs over the different spin sectors i = (φ, f, V )

(scalars, fermions, and gauge bosons), Fi is the fermion num-
ber (1 for fermions, 0 for bosons), and Mi is the mass matrix
for the sector i for a given VEV for φ = (π1, π2, π3,h,s).
For the scalar and vector sectors (in gauge basis):

(
M2

φ

)
ab

= ∂2V

∂φa∂φb
, (A.3)

M2
V = (h2 + π2)

v2
h

×

⎛
⎜⎜⎜⎜⎝

m2
W 0 0 0

0 m2
W 0 0

0 0 m2
W −mW

√
m2

Z − m2
W

0 0 −mW

√
m2

Z − m2
W m2

Z − m2
W

⎞
⎟⎟⎟⎟⎠

.

(A.4)

In the fermion sector, we neglect the contributions from the
effective operators of dimension 5 or higher of Table 3, and
the contribution from all SM fermions except the top. The
fermion sector reduces then to

M2
f = m2

t

v2
h

(h2 + π2). (A.5)

Lastly,

ni = (1, 12, 3), (A.6)

Ci =
(

3

2
,

3

2
,

5

2

)
, (A.7)

where we have included the color factor in n f . For the cal-
culations in this work we set the renormalization scale to be
μMS = vh.

The one-loop finite temperature correction is [88,89]

VT(T ;φ) =
∑

i=(φ, f,V )

(−1)Fi
ni T 4

2π2 TrJFi (M
2
i /T

2), (A.8)

where J0 and J1 are the thermal bosonic and fermionic func-
tions:

JFi (y
2) =

∫ ∞

0
dx x2 log

[
1 − (−1)Fi e−

√
x2+y2

]
. (A.9)

Finally, if T 
 Mi , the so-called ring diagrams, which are
bosonic multi-loop diagrams, can give important contribu-
tions due to large T/μMS ratios, so they have to be resummed
[90]. For this we use the truncated full dressing method [91]:

Vr (T ;φ) =
∑

i=(φ,V )

T

12π
Tr

[
M3

i − (M2
i + �i (T ))3/2

]
,

(A.10)

where �i is zero momentum thermal self-energies, that, in
the high temperature limit are

(�φ(T ))ab =
∑

i=(φ, f,V )

T 2 n
′
i

24

∂2 TrM2
i

∂φa∂φb
, (A.11)

�V (T ) = 22

3

T 2

v2
h

diag
(
m2

W ,m2
W ,m2

W ,m2
Z − m2

W

)
,

(A.12)

where

n′
i = (1, 6, 3). (A.13)
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Notice that both self-energies are φ-independent: for the
scalar self-energy, the squared mass matrix depends at most
quadratically on the fields φa .

A.1 High temperature approximation

Expanding in the high temperature limit, the leading finite-
temperature correction comes at order O(T 2) from the Taylor
expansion of the thermal functions (A.9) around y2 = 0.
Including only these terms, the finite-temperature effective
potential is

Veff,0(T ;φ) = V (φ) +
∑

i=(φ, f,V )

T 2 n
′
i

24
TrM2

i . (A.14)

In this approximation, only the quadratic and linear terms of
the potential receive finite temperature contributions.
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