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Abstract We construct a holographic SU(2) p-wave super-
conductor model with Weyl corrections. The high derivative
(HD) terms do not seem to spoil the generation of the p-
wave superconducting phase. We mainly study the proper-
ties of AC conductivity, which is absent in holographic SU(2)
p-wave superconductor with Weyl corrections. The conduc-
tivities in superconducting phase exhibit obvious anisotropic
behaviors. Along y direction, the conductivity σyy is similar
to that of holographic s-wave superconductor. The supercon-
ducting energy gap exhibits a wide extension. For the con-
ductivity σxx along x direction, the behaviors of the real part
in the normal state are closely similar to that of σyy . However,
the anisotropy of the conductivity obviously shows up in the
superconducting phase. A Drude-like peak at low frequency
emerges in Reσxx once the system enters into the supercon-
ducting phase, regardless of the behaviors in normal state.

1 Introduction

The AdS/CFT correspondence [1–4], linking a gravity the-
ory in a (d + 1) dimensional AdS spacetime to a confor-
mal field theory on its d dimensional boundary, has pro-
vided very valuable insights into the condensed matter theory
(CMT). The holographic superconductor is one of the most
successful applications of AdS/CFT in CMT. Some univer-
sal properties of high Tc superconductor are addressed in
holographic superconductor [5–7]. Especially, the supercon-
ducting energy gap ωg/Tc is approximately 8, which belongs
to the region of some high Tc superconductor materials [8].

The simple holographic superconductor model [5–7] is
built in the large N limit. It is interesting and important to
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implement the effect beyond the large N limit in holographic
superconductor model. The top-down embedding of these
holographic superconductors in string theory can be found
in [9,10]. However, before the string theory is completely
understood, an alternative scheme is to include the higher cur-
vature/derivative corrections to the gravity, which provides
an effective method to address these problems. It is because
the higher curvature/derivative corrections on the gravity side
lead to the finite coupling correction on the boundary field
theory, which provides us a large class of holographic effec-
tive field theories we can study. Based on this idea, several
holographic superconductor models have been implemented
in Gauss–Bonnet (GB) gravity framework in which a high
curvature gravity theory contains only the curvature–squared
interaction (see [11–17] and references therein). It is found
that the superconducting energy gap in the holographic super-
conductor model with GB correction is larger than that of the
standard version of holographic superconductor. This obser-
vation is further confirmed in the holographic superconductor
model built in the framework of quasi-topological gravity,
which contains both the curvature–squared interaction and
the curvature–cubed interaction [18–20].

Another important high derivative (HD) term is the Weyl
tensor coupled with the Maxwell field. The AC (alternat-
ing current) from this HD term on the Schwarzschild-AdS
(SS-AdS) is deeply studied in [21–29]. In 4 derivative the-
ory [21–27], a so-called Damle–Sachdev (DS) peak resem-
bling the particle response [30], or a dip being similar to
the vortex response emerge at the low frequency depending
on the sign of the coupling parameter. These behaviors are
analogous to that of the superfluid-insulator quantum crit-
ical point [21,22,27]. Further, when 6 derivative terms are
considered, depending on the sign of coupling parameter, a
sharp Drude-like peak or a hard-gap-like are exhibited at low
frequency [28]. Further, based on the HD theory from Weyl
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tensor coupled Maxwell field, we have constructed the holo-
graphic superconductor model [31,32]. An important charac-
teristic is that the running of the superconducting energy gap
ranging from 5.5 to 16.2. It suggests that in this holographic
model, one can model the weakly coupled BCS theory and
also model some highTc superconductor materials. Then, lots
of holographic superconductor models in this HD framework
are constructed; see [33–40] and references therein.

In this paper, we are interested in the effects of Weyl
corrections on the p-wave superconductors. A holographic
p-wave superconductor model was first proposed by Gub-
ser and Pufu [41]. They introduced a SU(2) Yang–Mill
gauge field, which leads to the superconducting phase tran-
sition. The conductivities of this model exhibited remark-
able anisotropic behaviors. Then, lots of holographic p-wave
superconductor models are proposed, see [42–46] and refer-
ences therein. One of them is the so-called holographic MCV
(Maxwell complex vector) p-wave superconductor [46]. In
this model the vector condensate is induced by a magnetic
field, meaning that the emergence of phase transition is
induced not only by the chemical potential/charge density,
but also by the background magnetic field. Based MCV p-
wave model, the effects of the Weyl corrections is deeply
studied in [36,47]. It is found that the presence of the higher
order Weyl corrections facilitates the emergence of the super-
fluid phase [36]. In the real part of conductivity a Drude-like
peak or an obviously pronounced peak emerges at the low
frequency and at the intermediate frequency an energy gap
emerges when temperature is enough low, which depend on
the coupling parameters [47]. Similarly, in the SU(2) p-wave
model with Weyl corrections, it is found that the condensa-
tion becomes harder with the increase of the coupling param-
eter [48]. However, the frequency dependent conductivity in
SU(2) p-wave model with Weyl corrections is still absent so
far. Therefore, in this work we will investigate the effect on
holographic SU(2) p-wave superconducting phase transition
when the higher order Wely corrections are considered. Fur-
ther, we also calculate the frequency dependent conductivity
and make an analysis.

Our work is organized as follows. In Sect. 2, we con-
struct the holographic p-wave superconductor with Weyl
corrections. The numerical results for the condensation of
the p-wave superconductor are presented in Sect. 3. Then
we numerically calculate the conductivity in Sect. 4. Con-
clusions follow in Sect. 5.

2 Holographic framework

We start with the bulk theory of the Einstein gravity includ-
ing the coupling between Weyl tensor and SU(2) Yang–
Mills field in a 4-dimensional spacetime (EYM-Weyl model),
which action reads as

S =
∫

d4x
√−g

[ 1

2κ2

(
R + 6

L2

)
− L2

8g2
F

(Fμν)a X
μνρσ (Fρσ )a

]
, (1)

where κ , gF and L are the gravitational constant, Yang–
Mills coupling constant and the AdS radius, respectively.
The Yang–Mills field strength is

(Fμν)
a = ∂μA

a
ν − ∂ν A

a
μ + εabc A

b
μA

c
ν , (2)

where εabc is the totally antisymmetric tensor. X is an infinite
family of HD terms as [28]

X ρσ
μν = I ρσ

μν − 8γ1,1L
2C ρσ

μν − 4L4γ2,1C
2 I ρσ

μν

−8L4γ2,2C
αβ

μν C ρσ
αβ

−4L6γ3,1C
3 I ρσ

μν − 8L6γ3,2C
2C ρσ

μν

−8L6γ3,3C
α1β1

μν C α2β2
α1β1

C ρσ
α2β2

+ . . . , (3)

where I ρσ
μν = δ

ρ
μ δ σ

ν − δ σ
μ δ

ρ
ν is an identity matrix and

Cn = C α1β1
μν C α2β2

α1β1
. . .C μν

αn−1βn−1
. L is introduced in the

above equations such that the coupling parameters gF and
γi, j are dimensionless. In this paper, we shall truncate the
action up to the 6 derivative terms. Since the effect of both
the 6 derivative terms are similar, we shall set γ2,2 = 0.
In addition, for later convenience, we denote γ1,1 = γ and
γ2,1 = γ1.

When HD terms (3) are included, the equations of motion
(EOMs) for the above system become a set of differential
equations beyond second order and with high nonlinearity,
which is a hard task to solve this system with full backreac-
tion. However, one can capture some qualitative properties in
the so-called probe limit, where the back reaction of Yang–
Miles field on the background is ignored. Indeed, from the
action (1), it is easy to find that if we let κ2/g2

F � 1, we
can safely ignore the back reaction of Yang–Miles field and
Weyl tensor on the background. In this case, the background
geometry is just the SS-AdS black brane

ds2 = L2

u2

(
− f (u)dt2 + dx2 + dy2

)
+ L2

u2 f (u)
du2 ,

f (u) = (1 − u)p(u) , p(u) = u2 + u + 1 . (4)

u = 0 is the asymptotically AdS boundary while the horizon
locates at u = 1. The Hawking temperature of this system
is T̂ = 3/4πL2. Then, it is straightforward to derive the
Yang–Mills EOM from the action (1), which reads as

∇μ(Faμν − 4γ L2Cμνρσ − 4L4γ1C
2Faμν)

= −εabc A
b
μFcμν + 4γ L2Cμνρσ εabc A

b
μFc

ρσ + 4γ1C
2εabc A

b
μFcμν . (5)

For the Maxwell-Weyl system with a coupling between U(1)
gauge field and Weyl tensor studied in [26–28], when the
other parameters are turned off, γ and γ1 are confined to the
ranges −1/12 ≤ γ ≤ 1/12 [26,27] and γ1 ≤ 1/48 [28] on
top of SS-AdS black brane, respectively. These constraints
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Fig. 1 The condensation < J 1
x > as a function of temperature. Left plot is for the 4 derivative theory and the right plot is for the 6 derivative one

originate from the instabilities and causality of the vector
modes. However, for EYM-Weyl model, the instabilities and
causality of the vector modes must be reexamined and ana-
lyzed, which we leave for future. In this paper, we shall con-
straint the coupling parameters γ and γ1 in small space of
parameter, which is in general safe. In what follows, we shall
set L = 1 and gF = 1 for convenience.

3 Condensation

In this section, we are going to investigate the holographic
p-wave superconducting phase transition with HD terms. To
this end, following the strategy presented in [41], we take the
following ansatz

A = φ(u)τ 3dt + ψ(u)τ 1dx , (6)

where τ i with i = 1, 2, 3 are the SU (2) generators satisfying
the commutation relation [τ i , τ j ] = εi jkτ k . The nonzero
ψ(u) breaks the U(1) gauge symmetry generated by τ 3 and
results in the superconducting phase transition in the dual
boundary field theory. Since we choose x-axis as the special
direction, the operator < J 1

x > in the boundary field theory,
which is dual to ψ(u) in bulk, breaks the rotational symmetry
and so we interpret it as a p-wave superconducting phase
transition.

Under the above ansatz, we can explicitly write down the
Yang–Mills equations

f 2(4u4γ1 f
′′2 + 2u2γ f ′′ − 3)ψ ′′

+( f f ′(4u4γ1 f
′′2 + 2u2γ f ′′ − 3)ψ ′

+(4u4γ1 f
′′2 + 2u2γ f ′′ − 3)φ2ψ

+2u f 2(γ + 4u2γ1 f
′′)(2 f ′′ + u f ′′′)) = 0 , (7)

f (−4u4γ1 f
′′2 + 4u2γ f ′′ + 3)φ′′

+4u f (γ − 2u2γ1 f
′′)(2 f ′′ + u f ′′′)φ′

+(4u4γ1 f
′′2 + 2u2γ f ′′ − 3)φψ2 = 0 . (8)

Irrespective of any details of the above EOMs, we have the
asymptotical behaviors of ψ and φ at the conformal boundary

as

ψ = ψ(0) + ψ(1)u , (9)

φ = μ − ρu , (10)

where μ and ρ are the chemical potential and charge density
of the dual field theory, respectively. We take the standard
quantization, for which ψ(0) is the source and ψ(1) stands
for the expectation value of the < J 1

x > operator. And then,
we set source ψ(0) = 0, which make sure that the condensate
is not sourced. Now, this system is determined by a dimen-
sionless quantity T ≡ T̂ /μ, as well as the model parameters,
i.e., γ and γ1.

At the horizon, it is required that both fields ψ(u) and
φ(u) are regular. Combing it with the boundary conditions (9)
and (10) at the boundary, we can numerically solve the cou-
pling EOMs (7) and (8) by using a shooting method and study
the condensation behavior. The results are exhibited in Fig. 1
to demonstrate the condensation

√
< J 1

x >/Tc as a func-
tion of the temperature T/Tc. The figures explicitly describe
that when we cool the system such that the temperature is
lower than some critical temperature Tc, the superconduct-
ing phase transition happens. It indicates that the holographic
p-wave superconducting phase transition can develop in the
higher derivative theory as that of s-wave superconductor
studied in [31,32]. As the temperature is further tuned lower,
the condensation

√
< J 1

x > goes to a constant, which indi-
cates that the condensation phase becomes stable. In par-
ticular, we observe that as the coupling parameter γ or γ1

is tuned smaller, the stable condensation value increases. It
implies a larger superconducting energy gap ωg/Tc in the
frequency dependent conductivity along y direction, which
shall be explicitly demonstrated below. These observations
are qualitatively similar to that of the holographic s-wave
superconductor from higher derivative theory [31,32,49].

Also we work out the critical temperature Tc of supercon-
ducting phase transition for some model parameters, which
are shown in Tables 1 and 2. From these tables, we see that
with the decrease of the model parameters, Tc goes down.
It suggests that the condensation becomes harder when the
model parameters γ or γ1 decrease. This result is also consis-
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Table 1 The critical temperature Tc for different coupling parameter
γ . Here γ1 = 0

γ −1/12 0 1/12

Tc 0.0569 0.0654 0.0854

Table 2 The critical temperature Tc for different coupling parameter
γ1. Here γ = 0

γ1 −0.02 0 0.02

Tc 0.0595 0.0654 0.0942

tent with that of s-wave superconductor from higher deriva-
tive theory [31,32,49].

4 Superconductivity

Lots of works have been developed to build holographic p-
wave superconductor models with Weyl corrections and the
properties of superconducting phase transition are also stud-
ied [36,47,48,50,51]. However, as far as we know, the fre-
quency dependent conductivity (alternating current conduc-
tivity, AC conductivity) of holographic p-wave superconduc-
tor with Weyl corrections is still absent. In this section, we
shall concentrate on this topic.

To study the AC conductivity of the system, we turn on the
following consistent linear perturbation of the SU (2) gauge
field

δA(t, u) = e−iwt [(A1
t (u)τ1 + A2

t (u)τ2)dt + A3
x (u)τ3dx + A3

y (u)τ3dy] . (11)

Above we have assumed that the perturbation has a time
dependent form as e−iwt . Plugging the above perturbation
into Yang–Mill EOM (5), we have four ordinary differential
equations for A3

y , A3
x , A1

t and A2
t . It is easy to find that the

equation of A3
y decouples from that of other components:

A3
x , A1

t and A2
t , which couple together. It suggests that the

conductivity of holographic p-wave superconductor exhibits
anisotropy, which is the characteristic different from the s-
wave superconductor. Next, we study the characteristics of
the conductivities σyy and σxx . In particular, we shall mainly
concentrate on the effects from the Weyl corrections.

4.1 σyy

To calculate the conductivity σyy , we only need the EOM for
A3
y , which reads as

A3
y
′′ +

( f ′

f
+ 2u(γ + 4u2γ1 f ′′)(2 f ′′ + u f ′′′)

−3 + 2u2 f ′′(γ + 2u2γ1 f ′′)

)
A3
y
′ +

Table 3 The constant C in Eq. (15) with different γ . Here γ1 = 0

γ −1/12 0 1/12

C 46.0118 31.7119 8.9811

Table 4 The constant C in Eq. (15) with different γ1. Here γ = 0

γ1 −0.02 0 0.02

C 38.6926 31.7119 7.5796

(ω2

f 2 + ψ2

f

)( 6u2γ f ′′

2u2 f ′′(2u2γ1 f ′′ + γ ) − 3
− 1

)
A3
y = 0 .

(12)

This perturbative equation is similar to that of the holographic
s-wave superconductor studied in [31,32]. At infinity bound-
ary (z → 0), the perturbation A3

y falls in the following form

A3
y(u) = A3(0)

y + A3(1)
y u. (13)

According to the holographic dictionary, the conductivity
reads as

σ(ω) = − i

ω

A3(1)
y

A3(0)
y

. (14)

Numerically solving the perturbative equation (12) with
ingoing boundary condition at the horizon, we can read off
A3(0)
y and A3(1)

y .
Figures 2 and 3 exhibit the real and imaginary parts of AC

conductivity σyy for 4 and 6 derivative theories, respectively.
In particular, we show the evolution of AC conductivity with
the temperature from normal state to superconducting state.
The main properties of the conductivity are closely similar
to that of holographic s-wave superconductor with Weyl cor-
rections studied in [31,32]. These properties are summarized
as:

• In the normal state, thanks to the electromagnetic (EM)
self-duality, AC conductivity without HD term is inde-
pendent of the frequency. The introduction of the HD
terms breaks the EM self-duality and so leads to the fre-
quency dependent AC conductivity (Figs. 2, 3).

• At ω = 0, a pole emerges in the imaginary part of the
conductivity (right plots in Figs. 2, 3). According to the
Kramers–Kronig (KK) relation, there is a corresponding
delta function in its real part at ω = 0, which suggests
the emergence of the superconductivity.

• More specifically, in the limit of ω = 0, the real part
of conductivity follows Re[σ(ω)] ∼ πnsδ(ω) and the
imaginary part behaves as Im[σ(ω)] ∼ ns/ω, where ns
is the superfluid density. We can fit the data near the
critical temperature and find that the superfluid density
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Fig. 2 Real and imaginary parts of AC conductivity σyy in 4 derivative theory

follows the same behavior for the different couplings γ

and γ1 as [5,52]

ns 
 CTc
(

1 − T

Tc

)
, (15)

whereC is a constant. We show the values ofC for the dif-
ferent couplings γ and γ1 in Tables 3 and 4, from which
we see that the values of C change with the coupling
parameters γ or γ1. The superfluid density ns vanishes
linearly as T → Tc.

• On the other hand, in the superconducting phase, there is
still a contribution of the normal, non-superconducting,
component to the DC conductivity, which we refer to as
normal fluid density nn and is defined by

nn = lim
ω→0

Re[σ(ω)] . (16)

We work out the normal fluid density nn for different
temperature in Tables 5 and 6. We find that when the
system just enters into the superconducting phase, nn is
still finite near the critical temperature. It means that it is
coexist of superfluid density ns and normal fluid density
nn in the superconducting phase. Therefore, the system
resembles a two-fluid model as the standard holographic
superconductor model [5–7]. As the temperature falls nn
goes down and vanishes at extremal low temperature. It
suggests that the normal component of the electron fluid
is going down to develop into the superfluid component
and vanishes at extremal low temperature.

• For 6 derivative theory with positive γ1, the AC con-
ductivity displays a hard-gap-like at low frequency in
the normal state. Then a pronounced peak emerges at
intermediate frequency [28]. After the superconducting
phase transition happens, the pronounced peak gradu-
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Fig. 3 Real and imaginary parts of AC conductivity σyy in 6 derivative theory

Table 5 The normal fluid density nn in the superconducting phase for the different temperature in 4 derivative theory (γ1 = 0)

nn
T
Tc

= 1 T
Tc

= 0.95 T
Tc

= 0.90 T
Tc

= 0.85 T
Tc

= 0.80 T
Tc

= 0.50 T
Tc

= 0.20

γ = −1/12 0.5221 0.2064 0.0837 0.0307 0.0131 2.0513 × 10−5 5.0903 × 10−15

γ = 0 0.8795 0.5535 0.3627 0.1815 0.1137 0.0011 1.4325 × 10−10

γ = 1/12 1.2125 1.0802 0.8418 0.6937 0.5571 0.0522 5.4112 × 10−6

Table 6 The normal fluid density nn in the superconducting phase for the different temperature in 6 derivative theory (γ = 0)

nn
T
Tc

= 1 T
Tc

= 0.95 T
Tc

= 0.90 T
Tc

= 0.85 T
Tc

= 0.80 T
Tc

= 0.50 T
Tc

= 0.20

γ1 = −0.02 1.7841 0.8497 0.4620 0.2005 0.0968 0.0007 1.8302 × 10−11

γ1 = 0 0.8795 0.5535 0.3627 0.1815 0.1137 0.0011 1.4325 × 10−10

γ1 = 0.02 0.0389 0.0323 0.0267 0.0191 0.0156 0.0014 1.1349 × 10−7

ally decreases with the temperature (the bottom panels in
Fig. 3).

• The superconducting energy gap ωg/Tc runs with the
coupling parameters ranging from approaching the value
predicted by BCS theory, to the one of the strong coupling
high temperature superconducting energy gap (see Fig. 2,
Tables 7 and 8). These observations are in agreement with
that of the U (1) gauge field over SS-AdS black brane
[31,32].

4.2 σxx

We study the conductivity along x direction σxx in this sub-
section. To this end, we need to solve the coupling equations
of A3

x , A1
t and A2

t , which read as

A3
x
′′ +

( f ′

f
+ 2u(γ + 4u2γ1 f ′′)(2 f ′′ + u f ′′′)

−3 + 2u2 f ′′(γ + 2u2γ1 f ′′)

)
A3
x
′

+ω2

f 2 A
3
x − φψ

f 2 A1
t − iωψ

f 2 A2
t = 0 , (17)

A1
t
′′ + 4u(γ − 2u2γ1 f ′′)(2 f ′′ + u f ′′′)

3 + 4u2 f ′′(γ − u2γ1 f ′′)
A1
t
′
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Table 7 The superconducting energy gap ωg/Tc of σyy with different
γ . Here γ1 = 0

γ −1/12 0 1/12

ωg/Tc 9.3515 8.1634 6.3019

Table 8 The superconducting energy gap ωg/Tc of σyy with different
γ1. Here γ = 0

γ1 −0.02 0 0.02

ωg/Tc 8.9350 8.1634 5.7065

+φψ

f

(
1 + 6u2γ f ′′

−3 − 4u2 f ′′(γ + u2γ1 f ′′)

)
A3
x = 0 , (18)

A2
t
′′ + 4u(γ − 2u2γ1 f ′′)(2 f ′′ + u f ′′′)

3 + 4u2 f ′′(γ − u2γ1 f ′′)
A2
t
′

+ψ2

f

(
− 1 + 6u2γ f ′′

3 + 4u2 f ′′(γ − u2γ1 f ′′)

)
A2
t

+ iωψ

f

(
− 1 + 6u2γ f ′′

3 + 4u2 f ′′(γ − u2γ1 f ′′)

)
A3
x = 0 .

(19)

Notice that there exist two additional constraints:

iωA1
t + φA2

t
′ − φ′A2

t = 0 , (20)

(4u4γ1 f
′′2 − 4u2γ f ′′ − 3)(φA1

t
′ + iωA2

t
′
)

+(4u4γ1 f ψ f ′′2 + 2u2γ f ψ f ′′ − 3 f ψ)A3
x
′

−(4u4γ1φ
′ f ′′2 − 4u2γφ′ f ′′ − 3φ′)A1

t

−(4u4γ1 f ψ
′ f ′′2 + 2u2γ f ψ ′ f ′′ − 3 f ψ ′)A3

x = 0 . (21)

The constraints (20) and (21) are not independent of the
EOMs (17), (18) and (19). In fact, the constrained second
order equations follow algebraically from the EOMs.

Now, we are ready to numerically solve the EOMs (17),
(18) and (19). Near the horizon, one expands A3

x , A1
t and A2

t
as

A3
x = (1 − u)−iω/4πT [1 + A3(1)

x (1 − u)

+A3(2)
x (1 − u)2 + · · ·] , (22)

A1
t = (1 − u)−iω/4πT [A1(2)

t (1 − u)2

+A1(3)
t (1 − u)3 + · · ·] , (23)

A2
t = (1 − u)−iω/4πT [A2(1)

t (1 − u)

+A2(2)
t (1 − u)2 + · · ·] , (24)

where all the coefficients Aa(i)
u are determined by the model

parameters as well as ω. Notice that above we have imposed
the ingoing wave conditions at the horizon. Near the UV
boundary, the perturbative fields A3

x , A1
t and A2

t fall in the
following forms

A3
x = a3(0)

x + ua3(1)
x + · · · , (25)

Table 9 The values of log10[σ0] and log10[τ ] from the fitting points in
4 derivative theory with different γ . Here γ1 = 0

γ log10[σ0] log10[τ ]
−1/12 6.0216 5.2517 × 106

0 6.7471 1.3677 × 107

1/12 7.5161 1.1245 × 107

Table 10 The values of log10[σ0] and log10[τ ] from the fitting points
in 6 derivative theory with different γ . Here γ = 0

γ1 log10[σ0] log10[τ ]
−0.02 8.1874 2.8467 × 107

0 6.7471 1.3677 × 107

0.02 2.9457 4.2623 × 103

A1
t = a1(0)

t + ua1(1)
t + · · · , (26)

A2
t = a2(0)

t + ua2(1)
t + · · · . (27)

Through the holographic dictionary, the conductivity σxx can
be compute as

σxx = − i

ωA3(0)
x

(
A3(1)
x + ψ(1) iωA2(0)

t + μA1(0)
t

μ2 − ω2

)
. (28)

We show the numerical results in Figs. 4 and 5. The behav-
iors of the real part of σxx in the normal state are closely
similar to that of σyy . That is to say, a dip exhibits in low fre-
quency for γ = −1/12, while a peak emerges for γ = 1/12
in 4 derivative theory. In 6 derivative theory, a Drude-like
peak exhibits in low frequency for γ1 = −0.02, while for
γ1 = 0.02, we observe a hard-gap-like behavior at low fre-
quency and a pronounced peak at intermediate frequency.
Therefore, in the normal state, we cannot observe an obvious
anisotropic behavior.

However, when the systems enter into the superconduct-
ing phase, the obvious anisotropic behavior can be observed
as previous studies [20,41,53]. The most important feature
of σxx is that a Drude-like peak in Re[σxx ] shows up in
the frequency. Especially, this feature is independent of the
model parameters. In addition, with the decrease of the tem-
perature, the Drude-like behavior becomes more evident. In
Im[σxx ], a pole in high frequency emerges. It means that the
anisotropic effect plays a dominant role in the behavior of
σxx .

Finally, we make a special focus on the Drude-like behav-
ior of σxx , which is firstly noticed in [41] and further studied
in [20,53]. The real part of the conductivity for Drude model
follows the following behavior

Re(σ )Durde = σ0

1 + ω2τ 2 , (29)
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Fig. 4 The conductivities σxx as a function of the frequency for different γ . The left panels are for the real part and the right panels are for the
imaginary one

where σ0 = ne2τ/m is a constant related to the electron
density, charge, mass and the relaxation time. Based on the
formula (29), we can fit our numerical results to evaluate σ0

and τ in low frequencies and the fitting results of σ0 and τ

are shown in the Tables 9 and 10. In addition, we plot the
relations between log10[Re] and log10[ω] for fixed different
γ and γ1 in Figs. 6 and 7. It is easily find that the DC con-
ductivity σ0 and the relaxation time τ depend on the coupling
parameters. The σ0 increases with the γ growing and the τ

increases first and then goes down with the γ growing, while
for the case of γ1, the monotonous decreasing changing ten-
dencies of σ0 and τ was observed. From Figs. 6 and 7, the
anisotropic behavior of conductivity is very remarkable.

5 Conclusions and discussions

In this paper, we construct a holographic p-wave supercon-
ductor model in a four-dimensional bulk spacetimes with
Weyl corrections including the 4 derivative term and the 6
derivative term. The numerical results indicate that the super-
conducting phase happens with the decrease of the temper-
ature and the HD terms do not seem to spoil the generation
of the p-wave superconducting phase. And then, we mainly
study the properties of AC conductivity. For p-wave super-
conductor, the conductivity exhibits anisotropic behaviors.
The features of the conductivity σyy are very closely simi-
lar to that of holographic s-wave superconductor. The main
characteristics are summarized as what follows.

• From the behaviors of DC conductivity along y direction,
i.e., coexistence of superfluid density ns and normal fluid
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Fig. 5 The conductivities σxx as a function of the frequency for different γ1. The left panels are for the real part and the right panels are for the
imaginary one

densitynn in the superconducting phase, we can conclude
that the systems are two-fluid models.

• But for 6 derivative theory with positive γ1, the AC con-
ductivity displays a hard-gap-like at low frequency in the
normal state and so the DC conductivity vanishes. When
the system enters into the superconducting phase, the
pronounced peak at intermediate frequency is gradually
decreasing to form the superfluid component. Therefore,
the formation of the superfluid component for 6 deriva-
tive theory with positive γ1 is different from that for 4
derivative theory and 6 derivative theory with negative
γ1.

• The superconducting energy gap can be observed in the
conductivity σyy , which is similar to that of holographic

s-wave superconductor. The superconducting energy gap
runs with the coupling parameters.

The behaviors of the real part of the conductivity σxx in
the normal state are very similar to that of σyy . However,
the anisotropy of the conductivity obviously shows up in the
superconducting phase. A Drude-like peak at low frequency
emerges in Re[σxx ] once the system enter into the supercon-
ducting phase, regardless of Drude-like peak or hard-gap-like
in normal state. Therefore, anisotropy plays a dominant role
in the behavior of σxx .
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