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Abstract We propose to measure the τ− → K−
1 ντ →

(K−ω)ντ → (K−π+π−π0)ντ decay in order to determine
the K1 axial vector mixing angle θK1 . We derive, for the
first time, the differential decay rate formula for this decay
mode. Using the obtained result, we perform a sensitivity
study for the Belle (II) experiment. We will show that the
K−π+π−π0 spectrum of the τ− → K−

1 ντ → (K−ω)ντ →
(K−π+π−π0)ντ decay can discriminate the two solutions
θK1 =∼ 30◦ or ∼ 60◦ observed in the other measurements.

1 Introduction

The hadronic τ decay is a very useful tool to investigate
the nature of the light hadrons. The initial state being lepton
allows to study the strong decays of the final state hadrons
in a clean manner. The hadrons being produced from the
W boson provides a valuable information on the vector and
the axial vector couplings of the hadrons. In this article, we
investigate the �S = 1 hadronic τ decay. This type of decays
is Cabibbo suppressed but offers unique way to explore the
nature of the Kaonic resonances [1]. We investigate the τ− →
K−

1 ντ → (K−ω)ντ → (K−π+π−π0)ντ decay to obtain
the information of the K1 axial vector mesons, K1(1270) and
K1(1400). A better understanding of the K1 mesons is not
only an interest of its own but also is highly demanded by B
physics recently. In B physics, to disentangle the new physics
effect from the hadronic uncertainties is the essential task for
a discovery. The recent studies of B → K1γ decays [2–6],
B → K1	

+	− [7] or B → K1π decays [8–10], which are
known to be sensitive to the new physics coming from the
right-handed current or the CP violation, respectively, show
that a more accurate information of the K1 mesons would
enhance the sensitivity to the new physics.
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In this article, we propose to measure the τ− → K−
1 ντ →

(K−ω)ντ → (K−π+π−π0)ντ decay to determine the θK1

angle. The θK1 enters both in the production and the decay
of K1 meson in this process. The determination of the axial-
vector mixing angle caused a controversy. Mainly two ways
to determine θK1 have been attempted, (i) mass fit assuming
the SU (3), (ii) strong decay of K1. Both show basically two
possible solutions far apart, around ∼ 30◦ and ∼ 60◦ (see
e.g. [11–16]). In this article, we show the result of the 5
body differential decay rate, τ− → K−

1 ντ → (K−ω)ντ →
(K−π+π−π0)ντ , for the first time. Then, we use this result
to perform a sensitivity study for θK1 determination at the
Belle II experiment. This process was studied in ALEPH [17,
18] and CLEO [19] experiments and a few hundreds of events
are observed. The Belle II experiment can acquire 2–3 orders
of magnitudes more data in the future.

The remaining of the article is organised as follows. In
Sect. 2, we derive the 5 body differential decay rate. In Sect. 3,
we introduce the mixing angle and rewrite our results in terms
of θK1 . We show our numerical result and the Monte Carlo
study assuming the Belle (II) setup in Sect. 4 and we conclude
in Sect. 5.

2 Differential decay rate of τ− → K−
1 ντ →

(K−ω)ντ → (K−π+π−π0)ντ

We first present the computation for the decay rate of the five
body decay (4 momentum associated to each particle is given
in the parenthesis)

τ− (Q) → K−
1 (k1) ντ (p0) → K− (p1) ω (k2) ντ (p0)

→ K− (p1) π+ (p2) π− (p3) π0 (p4) ντ (p0) (1)
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where K1 is a J P = 1+ meson, i.e. K1(1270) or K1(1400).
The five body differential decay rate can be given as

d
 = (2π)4

2mτ

|M|2d�5 (2)

where

d�5 = 1

(2π)14

1(
27mτ

√
k2

2

) | �̃p1|| �p0|d
√
k2

2d

×
√
k2

1dm
2
23dm

2
34d(cos θ̄ )dφ̄dψ̄d�̃d�. (3)

The variables with˜and¯are the momentum and polar angles
in the rest frame of K1 and ω, respectively. Since the angu-
lar dependence is not easy to measure in τ decays, we inte-
grate them all in this work. Thus, the remaining integration
variables are the invariant masses of K1, ω and two Dalitz
variables of ω decays, which are given as

k2
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2 , k2
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2 ,
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23 = (p2 + p3)
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2 . (4)
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The decay amplitude M is obtained as a product of the
successive decay amplitudes, i.e.:

M = M3

(
ω → π+π−π0

)
× M2

(
K−

1 → K−ω
)

×M1
(
τ− → K−

1 ντ

)
. (7)

The amplitude of the τ → K1ντ can be written as

M1 (τ → K1ντ ) = GF

mτ

V ∗
us jμ〈K1|sγ μ (1 − γ5) u|0〉 (8)

where the leptonic current is given as

jμ = ντ γμ (1 − γ5) τ. (9)

The K1 meson can be produced only from the axial vector
current and the matrix element of K1 production is given by
a decay constant fK1

〈K1|sγ μ (1 − γ5) u|0〉 = −i fK1mK1ε
∗μ (k1) (10)

where K1 is only symbolic here and it can mean K1(1270)

or K1(1400). The detailed definitions of the decay constants
for these two states are given in the next section.

The amplitude of the K1 → Kω decay can be written by
the two form factors

M2 (K1 → Kω) = ε
μ
K1
Tμνε

∗ν
ω (11)

where

Tμν = f K1gμν + hK1k2μ p1ν . (12)

Note that these form factors can be related to the S-wave and
P-wave amplitudes (see Appendix D of [20] for derivation)

f K1 = −AK1
S − 1√

2
AK1
D (13)

hK1 = Ẽω√
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(14)

where Ẽω =
√

| �̃p1|2 + k2
2. As the decay rates of S-wave

and D-wave are not separately known, we must rely on the
theoretical model as we will see late-on.

The amplitude of the ω → π+π−π0 can be written by
one form factor

M3

(
ω → π+π−π0

)
= igεμναβεμ pν

2 p
α
3 p

β
4 F (15)

where assuming that the ω → 3π go through three possible
resonances, ρ+, ρ− and ρ0, we can simply write the form
factor to be

F = 1

m2
24 − m2

ρ+ + imρ+
ρ+
+ 1

m2
34 − m2

ρ− + imρ−
ρ−

+ 1

m2
23 − m2

ρ0 + imρ0
ρ0
(16)

where we assign p2,3,4 as the 4-momentum of π+,−,0.
Finally, the squared amplitudes after integration of all the

angles is obtained as1

d
 (τ → K1ν → Kων → Kπππν)
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(18)

1 As we integrate all the angles, all the spins can be summed after
squaring the amplitude.
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where

δ = cos−1

⎡
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The factor C is

C =
(

2|F0|2 + |F1|2
)

with
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K1BWK1 (19)
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[
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and
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k2
1 − m2

K1
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K1

.

As we are interested in the contributions from K1(1270) and
K1(1400) as well as their interference, we sum them at the
amplitude level and take a square. Further replacing the form
factors to the partial wave amplitudes, we obtain the C func-
tion as

C = 3
{∣∣∣ fK1(1270)A

K1(1270)
S BWK1(1270)

+ fK1(1400)A
K1(1400)
S BWK1(1400)

∣∣∣2

+
∣∣∣ fK1(1270)A

K1(1270)
D BWK1(1270)

+ fK1(1400)A
K1(1400)
D BWK1(1400)

∣∣∣2
}

. (21)

In the next section, we obtain the decay constants
fK1(1270,1400) as well as the partial wave amplitudes

AK1(1270,1300)
S,D in terms of the axial vector mixing angle θK1 .

3 The axial vector mixing angle θK1

The axial vector strange mesons have a peculiar nature, the
observed physical states, K1(1270) and K1(1400) are the
mixture of two J P = 1+ states, 3P1 and 1P1. This is dif-
ferent from the case of the non-strange axial vector mesons,
a1(1260) and b1(1235), which do not mix as the 3P1 and 1P1

states are also the eigenstates of different intrinsic charge, i.e.
(J PC = 1++, 1+−). Let us denote the unphysical 3P1 and
1P1 states as K1a and K1b, respectively. Then, the physical
states (mass eigenstates) can be written as

(
K1(1270)

K1(1400)

)
=

(
sin θK1 cos θK1

cos θK1 − sin θK1

) (
K1a

K1b

)
(22)

where θK1 is called as the axial vector mixing angle.
Investigating the nature of the strange axial vector mesons

produced from τ decay, i.e. the weak interaction, has a great

advantage. The spin singlet configuration of the s and u
quarks are suppressed with respect to the spin triplet one as
the former is chirally forbidden and furthermore, the SU (3)

and charge symmetry forbids the production of K1b [21].
This leads to, at the first order, that only the K1a is produced
from the weak interaction. Therefore, by defining the decay
constant of K1a, K1b state,

〈K1a,1b|sγ μ (1 − γ5) u|0〉 = −i fK1a,1bmK1a,1bε
∗μ (k1) ,

(23)

we have fK1a 
 fK1b � 0. Then, by using Eq. (22), the
decay constant of the physical states can be given as

fK1(1270) = fK1a sin θK1 , fK1(1400) = fK1a cos θK1 . (24)

Since the s quark mass is not completely negligible with
respect to the K1 masses, fK1b may not vanish. This effect
can be taken into account by shifting the mixing angle by

δs = tan−1
(

fK1b
fK1a

)
,

fK1(1270) = fK1a sin θ ′
K1

, fK1(1400) = fK1a cos θ ′
K1

(25)

where θ ′
K1

≡ θK1 + δs . We investigate maximum of 10% of
s quark mass effect, i.e. |δs | < 0.1 (6◦), in the following.

Next, we consider the strong decay, K1 → Kω. We use
the result of the quark model computation in [14], where
a similar process, K1 → Kρ decay, is investigated. Using
the SU (3) symmetry, the S-wave and D-wave amplitudes
for the K1a and K1b states can be written by the universal
amplitudes, SABC and DABC as (see [14] for derivation)

AK1a
S =

√
2

3
SABC , AK1a

D = − 1√
3
DABC ,

AK1b
S = 1√

3
SABC , AK1b

D =
√

2

3
DABC . (26)

Then, the amplitudes for the physical states yield

AK (1270)
S = AK1a

S sin θK1 + AK1b
S cos θK1

= SABC sin(θK1 + θ0) (27)

AK (1270)
D = AK1a

D sin θK1 + AK1b
D cos θK1

= DABC cos(θK1 + θ0) (28)

AK (1400)
S = AK1a

S cos θK1 − AK1b
S sin θK1

= −SABC cos(θK1 + θ0) (29)

AK (1400)
D = AK1a

D cos θK1 − AK1b
D sin θK1

= −DABC sin(θK1 + θ0) (30)

where θ0 = tan−1 1√
2

� 35.26◦. It is important to men-

tion that we do not expect a SU (3) breaking effect beyond
this result. It is because the K1a and K1b mixing occurs via
the very hadronic decays, K1 → Kω as well as Kρ, K ∗π
(i.e. hadronic contributions in the loop). The SU (3) breaking
effect, which comes from the mass difference among these
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intermediate states, is taken into account via the non-zero
θK1 angle.

Finally, we can simplify Eq. (21) by using the mixing
angle as

C = 3| fK1a |2
{
|SABC |2

∣∣∣ sin θ ′
K1

sin
(
θK1 + θ0

)BWK1(1270)

+ cos θ ′
K1

cos
(
θK1 + θ0

)BWK1(1400)

∣∣∣2

+|DABC |2
∣∣∣ sin θ ′

K1
cos

(
θK1 + θ0

)BWK1(1270)

+ cos θ ′
K1

sin
(
θK1 + θ0

)BWK1(1400)

∣∣∣2
}

(31)

which is our final result and will be used in the next sec-
tion. It should be emphasised that the obtained expression is
different from the one proposed in [11], where only the θK1

dependence on the τ → K1ν decay is taken into account but
not on the K1 decay.

4 The numerical results and Belle (II) sensitivity study

In this section, we present the sensitivity of the Belle II exper-
iment to the θK1 angle. First, we list up all the parameters we
use in our numerical analysis. Note that for now, we list only
the central values while we will discuss the uncertainties
associated to them later-on:

mτ = 1.777 GeV, mK1(1270) = 1.270 GeV,

mK1(1400) = 1.400 GeV

mK =0.494 GeV, mπ =0.135 GeV, mω =0.782 GeV,

mρ = 0.775 GeV


K1(1270) = 0.09 GeV, 
K1(1400) = 0.174 GeV,


ω = 0.00849 GeV, 
ρ = 0.148 GeV. (32)

Since our goal is not to estimate the total decay rate, the
overall factors not listed her, such as GF , Vus, g, fK1 · · · are
not necessary in this study. For the universal partial wave
amplitude, which we introduced in the previous section, the
result from the 3P0 model yields [14]

SABC ∝
(

3 − α| �̃p1|2
)
e−β| �̃p1|2e

− f2

(
| �̃p1|2−| �̃

p0
1|2

)
,

DABC ∝ α| �̃p1|2e−β| �̃p1|2e− f2
(
| �̃p1|2−| �̃p0

1|2
)

(33)

where α = 4.2 GeV−2, β = 0.52 GeV−2 and f2 = 3.0.
The last exponential is the so-called damping factor, which
introduces the cut off for the large momentum region. The
momentum �̃p0

1 is �̃p1 at the pole masses. For K1(1270), there
is no available phase space at the pole mass, thus, the damping
factor can be neglected.

Fig. 1 The Kπππ distribution of the τ− → K−
1 ντ → (K−ω)ντ →

(K−π+π−π0)ντ . The solid line represents the result without the extra
SU (3) breaking effect (see text), i.e. δs = 0 while the coloured area
is with this effect with amount of |δs | � 6◦ (the dashed lines are the
results for δs = 6◦ and the dotted lines are for δs = −6◦)

In order to have an idea of the D-wave contribution, let us
quote the mean values of �̃p1 for K1(1270) and K1(1400)

〈 �̃p1〉K1(1270) = (0.19 ± 0.09) GeV,

〈 �̃p1〉K1(1400) = (0.28 ± 0.09) GeV (34)

where the error comes from the spread of the 〈 �̃p1〉. This num-
ber implies that the D-wave amplitude is roughly 5(10)%
for K1(1270)(K1(1400)) of the S-wave one. As these two
contributions do not interfere, we expect the D-wave contri-
butions is very small. In order to simplify the analysis, we
use a constant SABC and DABC in the present study. So as
to take into account the momentum depending term in the S-
wave, which is not negligible, we choose different constants
for K1(1270) and K1(1400). We find the following choices
reproduce well the full expression:

SABC
K1(1270) = 3.0 GeV, DABC

K1(1270) = 0.2 GeV,

SABC
K1(1400) = 2.3 GeV, DABC

K1(1400) = 0.3 GeV (35)

which we will use in our analysis. Later in this section, we
discuss the impact of the variations of these parameters.

The Kπππ mass distribution (normalised to unity) is
shown in Fig. 1. The solid line is the result with no extra
SU (3) breaking, mentioned earlier, i.e. θ ′

K1
= θK1 . For

the small values of θK1 , let’s say around 30◦, the Kπππ

spectrum changes significantly for a variation of the mixing
angle while when the mixing angle reaches around ∼ 50◦,
K1(1270) becomes totally dominant and it becomes difficult
to distinguish the results with different θK1 . This pattern can
be readily inferred from the dominant S-wave contributions
in Eq. (31). The coefficient for the K1(1270) contribution,
sin θK1 sin(θK1 + θ0), is an increasing function in the region
of θK1 we are considering. On the other hand, the coefficient
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for K1(1400), cos θK1 cos(θK1 + θ0), rapidly decreases and
hits zero at θK1 = 90◦ − θ0 = 54.74◦. The coloured bound
in Fig. 1 is results including the extra SU (3) breaking effect
with amount of |δs | ≤ 6◦. We can see that this effect has an
impact only on the sin θK1 and cos θK1 terms, and as a result,
it is almost negligible for θK1 � 40◦.

In order to clarity the achievable limit by the Belle (II)
experiment, we perform a Monte Carlo study. The e+e− →
τ+τ− process is simulated by using the KKMC pack-
age [22,23] with the Belle beam energy, 8 GeV for electron
and 3.5 GeV for positron. We decay the tagging side of τ

by using the TAUOLA package [24–26]. We do not consider
the spin correlation as we will use only the leptonic decay
(e or μ) on the tagging side, which reduces significantly the
qq̄ background. For the signal side, we use the differential
decay rate formulae derived in this article to generate the
τ− → K−

1 ντ → (K−ω)ντ → (K−π+π−π0)ντ decay dis-
tribution.

The main background comes from τ → 3ππ0ν decay,
where 3π does not necessarily come from ω but all possi-
ble intermediate states, such as a1π, ρρ, . . .. Thus, we select
the four charged tracks with no net charge and evaluate the
thrust axis. Here, the ‘good’ charged tracks are defined as
dr < 5 mm, |dz| < 5 cm, pt > 100 MeV and ‘good’
gamma is the one with Eγ > 50 MeV within the detec-
tor fiducial volume. We select the events which have three
charged tracks parallel to the thrust axis (signal side) and
one anti-parallel (tag side). The signal side should contain
two γ with 120 MeV < Mγ γ < 150 MeV and ππγ γ in
the ω mass region, 760 MeV < Mππγ γ < 800 MeV. We
select only those γ γ in the barrel region to avoid the back-
ground. For the simplicity, we ignore the multi-candidate
case: if more than two sets of γ satisfy the above condition,
we reject such events (the fraction is around a few percents).
The charged track which does not construct ω is considered
to be kaon. For the detection efficiency computation, we use
the Belle detector simulation with the improved kaon iden-
tification (ID). That is, we assume kaon ID of Belle II, 90%
for kaon ID and 4% for π fake rate for kaon ID [1], which is
about twice better than Belle.

We found that the detection efficiency is 1–2%, which
results in ∼10k event for each ∼1 ab−1 of data. Thus, this
amount of data is already available in the Belle experiment.
We use 15k event as a benchmark experimental setup in the
following analysis.

For the Belle (II) sensitivity study to the axial vector mix-
ing angle θK1 , we first generate events for different values
of θK1 from 0◦ to 90◦. We use the same input parameters
as Fig. 1. The MKπππ spectrum after taking into account
the detector effects is given in Fig. 2. The similar spectrums
are observed in Figs. 1 and 2, which show that our selection
criteria is appropriate.

Fig. 2 The Kπππ invariant mass distribution of the τ− → K−
1 ντ →

(K−ω)ντ → (K−π+π−π0)ντ after taking into account the detector
effect of Belle

Next, using the generated events, we fit the θK1 angle.
With the 15k of events, we find the statistical error to be

σ(
θK1=15◦) = 0.3◦, σ(

θK1=30◦) = 0.2◦,
σ(

θK1=45◦) = 0.4◦, σ(
θK1=60◦) =1.1◦, σ(

θK1=75◦) =1.9◦.
(36)

The very small errors estimated with the amount of data
which will be soon available, are very encouraging. Thus,
we further investigate the various systematic uncertainties.
This is particularly important as the Kπππ invariant mass
distributions for θK1 � 40◦ seem to be very difficult to dis-
tinguish and the systematic effect could dominate. To evalu-
ate the experimental systematic error is beyond the scope of
this article while we investigate the systematic errors coming
from the input parameters in the following.

As mentioned earlier, since our goal is to determine the
mixing angle and not the total branching ratio, the overall
factors do not induce an uncertainty. The most uncertain input
parameters are the mass and width of the K1(1270) resonance
in Eq. (32) as well as the S-wave and D-wave amplitudes
in Eq. (35). Both induce the similar kinds of uncertainties
in the line shape of the K1 resonances. To identify the line
shape of the K1 resonance is a long-standing challenge: the
dominant decay channel K1(1270) → ρK has no phase
space at the pole mass, which distorts the line shape [27]. This
issue is investigated intensively in [14] using the kaon beam
experiment data [28]. Our prescription, to take into account
the line shape ambiguity, here is that we free the mass and
width of K1(1270) while fitting the θK1 . We emphasise that
this prescription can accommodate not only the mass and
width uncertainties but also the uncertainties induced by the
model parameters, the S-wave and D-wave amplitudes. Our
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result for 15k event yields,

σ(
θK1 =15◦) = 1.3◦, σ(

θK1=30◦) = 1.4◦,
σ(

θK1=45◦) = 1.3◦, σ(
θK1=60◦) =2.6◦, σ(

θK1=75◦) =8.2◦.
(37)

The fitted mass and width are well within their uncertainties,
i.e. (1.270 ± 0.006) GeV and (0.090 ± 0.013) GeV, respec-
tively. This clearly shows the difficulty of determining the
θK1 angle at a few degree precision above ∼ 45◦. However,
it is quite faire to say that the τ− → K−

1 ντ → (K−ω)ντ →
(K−π+π−π0)ντ decay has certainly an ability to discrimi-
nate the two solutions, θK1 ∼ 30◦ and θK1 ∼ 60◦, obtained
by the other experiments.

Next, we study a possible systematic uncertainty caused
by the SU (3) breaking effect. We discuss this systematic
effect separately here, since, as mentioned earlier, the exis-
tence of the SU (3) effect is still debatable: more theoretical
investigation is needed to clarify whether this effect must be
taken into account or not. We estimate the SU (3) breaking
effect as follows. We perform a fit of the same 15k event
sample by introducing non-zero δs and measure the shift of
the θK1 value. In order to estimate the maximum effect, we
vary δs maximally, i.e. δs = −6◦(+6◦). The obtained results
are (mass and width are fitted simultaneously)

�θK1
(
θK1 =15◦) = +3.8◦ (−3.7◦) , �θK1

(
θK1 =30◦) = +2.8◦ (−2.8◦) ,

�θK1
(
θK1 =45◦) = +1.4◦ (−1.6◦) , �θK1

(
θK1 =60◦) = +1.7◦ (+4.7◦) ,

�θK1
(
θK1 =75◦) = −7.7◦ (−3.5◦) .

(38)

The results show that the positive (negative) δs leads to a
positive (negative) shift of the mixing angle for θK1 � 45◦,
which is consistent to what we can observe in Fig. 1. And for
this lower range of θK1 , the uncertainties from the unknown
SU (3) effect could exceed the statistical error. For 60◦ and
75◦, the trend of the sign of the shift is not seen and this
is probably due to the large statistical error which causes a
fluctuation, that is, the statistical error dominates over the
SU (3) breaking effect in this range of θK1 . The bottom line
is, even after taking into account the systematic error com-
ing from the SU (3) breaking effect, on top of the statistical
error, this measurement can still eliminate one of the two
solutions, θK1 ∼ 30◦ and θK1 ∼ 60◦, obtained by the other
experiments.

5 Conclusions

In this article, we proposed to measure the τ− → K−
1 ντ →

(K−ω)ντ → (K−π+π−π0)ντ decay to determine the
axial vector mixing angle θK1 . We first derived the τ− →
K−

1 ντ → (K−ω)ντ → (K−π+π−π0)ντ differential decay

rate formula in order to understand the θK1 dependence of
the Kπππ spectrum. The theoretical formula for this five
body differential decay rate is obtained for the first time
in this article. Using the obtained result, we performed a
sensitivity study for determining the θK1 angle by assuming
the Belle (II) experiment environment. The Kπππ spec-
trum contains two K1 resonances, K1(1270) and K1(1400).
The contribution from K1(1400) diminishes as the θK1 value
increases. As a result, for a larger values of θK1 , let’s say
above ∼ 45◦, the K1(1400) resonance becomes nearly invis-
ible, which makes it difficult to distinguish the spectrums
with different values of θK1 in this range. More quanti-
tatively, the expected statistical errors for 15k event are
σθK1

= {±1.3◦,±1.4◦,±1.3◦,±2.6◦,±8.2◦} for θK1 =
{15◦, 30◦, 45◦, 60◦, 75◦}. This amount of data will be very
soon available at the Belle (II) experiment.

We also discussed a possible correction to this result due
to the SU (3) breaking effect, which is related to the produc-
tion of K1b (1P1) state from the axial vector current. The
existence of this contribution is not confirmed and we urge
a theoretical progress on this matter. In order to evaluate its
possible impact, we included the maximum of ±10% SU (3)

breaking effect. The result shows that it can shift the measure-
ment of θK1 by �θK1 = {±3.8◦,±2.8◦,±1.4◦} for θK1 =
{15◦, 30◦, 45◦}. We find that the statistical error dominates in
the case of the higher values of θK1 , i.e. θK1 = 60◦ and 75◦.

The other experiments found the θK1 angle to be ∼ 30◦ or
∼ 60◦ and to eliminate one of the solutions is a very impor-
tant matter. For these values of θK1 , the τ− → K−

1 ντ →
(K−ω)ντ → (K−π+π−π0)ντ can determine θK1 at the
precision of

δθK1 = ±3.1◦ (
for θK1 = 30◦), δθK1 = ±5.4◦ (

for θK1 = 60◦)

where the statistical uncertainty with 15k event at Belle
(II) and the systematic uncertainty from 10% SU (3) break-
ing effect are added by quadrature. Therefore, we conclude
that the τ− → K−

1 ντ → (K−ω)ντ → (K−π+π−π0)ντ

measurement can discriminate the two solutions for the θK1

angle obtained by the other experiments and determine it at
this level of precision.
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