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Abstract We present the relativistic hydrostatic equilib-
rium equations for a wide class of gravitational theories pos-
sessing a scalar–tensor representation. It turns out that the
stellar structure equations can be written with respect to the
scalar–tensor invariants, allowing to interpret their physical
role.

1 Introduction

Scalar–tensor theories (STT) are a class of so-called extended
theories of gravity, whose main aim is to go beyond standard
theory of gravity formulated by Einstein in order to account
for certain phenomena that cannot be satisfactorily explained
by General Relativity (GR) itself [1–3]. They introduce an
additional mediator of gravitational interaction, a scalar field,
coupled non-minimally to the curvature and, possibly, matter
fields. Historically, this class of theories was considered first
by Jordan [4] and then by Brans and Dicke [5], who added
a scalar field in order to incorporate Mach’s Principle into
the theory; the massless field, sourced by matter distribution
(trace of energy–momentum tensor), acted as an effective
gravitational constant. The first attempts to include a new
field were, however, lacking theoretical motivation; only then
it was shown that such a field, coupled non-minimally to the
curvature, arises naturally in the low-energy limit of theo-
ries considered fundamental, such as string theory [6], for
instance.

STT found applications in various contexts. For example,
it can be demonstrated that f (R) theories of gravity [7–22],
where one replaces the Einstein–Hilbert Lagrangian with a
function of the curvature, have an equivalent scalar–tensor
(ST) representation. A noteworthy example of f (R) gravity
is the Starobinsky model [23], in which one adds a quadratic
correction in order to explain inflationary behavior of the
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early universe. This model corresponds strictly to a ST theory
with a specific potential. Other examples include attempts at
accounting for accelerated expansion of the universe, since
the field can act as quintessence [24].

The theories are analyzed both in the metric, and in the
so-called Palatini formalism (or metric-affine), where one
decouples metric structure from the affine structure of space-
time. Recently, the Palatini approach to ST gravity has been
gaining more attention [25–49]. Palatini STT theories were
analyzed in the context of inflation [31–42]. Also, a recent
paper proves that one can construct an f (R) theory à la Pala-
tini which evades Ostrogradsky’s instability, is renormaliz-
able and invariant under conformal change of the metric in its
high energy limit and reduces to GR for small energies [50].
It was also shown that for certain models, both approaches
lead to the same predictions regarding certain observables
related to inflation, such as tensor-to-scalar ratio and scalar
spectral index [51].

When analyzing STT, one usually makes an extensive use
of Weyl (or conformal) transformations of the metric tensor
[52]. Conformal transformations of the metric tensor estab-
lish a mathematical equivalence between so-called confor-
mal frames, but usually the description of physics is frame-
dependent, since Weyl transformations are not symmetries of
Nature. Therefore, in case of STT, it is important to establish
which frame is considered physical. The two most commonly
used in the literature frames are ‘Einstein’ and ‘Jordan’ [53–
60]; the main difference between them is the nature of cou-
pling of the scalar field. In the Einstein frame, the field is
coupled to matter part of the action, whereas in the Jordan
frame, the field is coupled to the curvature.

It is possible, however, to define certain quantities which
preserve their form under conformal transformations [61–
64]. Such quantities, introduced in [61], consist of functions
of the scalar field defining a conformal frame. One can also
construct an invariant metric and, in the Palatini case, an
invariant connection, allowing different conformal observers
to measure distances and calculate geodesics in the same way
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Table 1 Summary of quantities used in different frames

Frame Indication

General Wagoner parametrization Bar

Jordan (invariant) None

Einstein (invariant) Hat

[41]. The advantage of introducing such quantities is also of
different type: they allow to classify mathematically equiva-
lent theories, since a class of conformally-related frames will
yield the same values of invariants.

Stars in the scalar–tensor theories framework, relativis-
tic [65–77] and non-relativistic ones [78–88], were widely
studied in literature; however, the invariant theory has not
been applied yet to stellar objects. In this paper, we aim at
using the results of [61] in order to analyze stellar struc-
ture in ST theories in a way independent of the choice of
conformal metric. This will be achieved by expressing all
relevant equations describing structure of stars in terms of
invariants. Such a procedure will allow one not only to eas-
ily compare different conformal frames, but also inscribes in
the way of reasoning concerning the issue of physicality of
different frames described above.

The paper is organized as follows: first, we start by writ-
ing the action for STT in the most general parametriza-
tion and then, upon introducing transformation formulae for
the metric, scalar fields and functions thereof, we write out
most commonly used invariants. Having those, we obtain the
Tolman–Oppenheimer–Volkoff (TOV) equation in the invari-
ant Einstein frame, in which the calculations are particularly
simple. Then, we transform to the Jordan frame and obtain
relation between the pressure and other quantities entering
the theory. That should allow us to interpret the extra terms
written with respect to the invariants appearing in the modi-
fied/extended TOV equation.

For the reader’s convenience, we present physical quan-
tities, parameters and coordinates in different frames in the
Table 1 below:

2 Invariant quantities

2.1 General frame

The action for the class of scalar–tensor theories of gravity
written in the Wagoner parametrization takes the following
form:

S[ḡμν, �̄, χ] = 1

2κ2

∫
�

d4x
√−ḡ

[
Ā(�̄)R̄ − B̄(�̄)ḡμν∂μ�̄∂ν�̄

− V̄(�̄)
]

+ Smatter

[
e2ᾱ(�̄) ḡμν, χ

]
,

(1)

where {Ā, B̄, V̄, ᾱ} are four arbitrary functions of the scalar
field, providing, together with the choice of the metric and the
scalar field the so-called ‘conformal frame’. The function Ā
describes the coupling between the scalar field and the curva-
ture, B̄ is the kinetic coupling, V̄ – the self-interaction poten-
tial of the scalar field, and ᾱ – an anomalous coupling between
matter and the scalar field. The constant κ2 = 8πGc−4.
The equations of motion derived from this action are the
following [61]:

ĀḠμν +
(

1

2
B̄ + Ā′′

)
ḡμν ḡ

αβ∂α�̄∂β�̄

− (B̄ + Ā′′) ∂μ�̄∂ν�̄ − Ā′(ḡμν�̄ − ∇̄μ∇̄ν)�̄

+ 1

2
V̄ ḡμν = κ2T̄μν,

(2a)

2[3(Ā′)2 + 2ĀB̄]�̄�̄ + d[3(Ā′)2 + 2ĀB̄]
d�

(∂�̄)2

+ 4Ā′V̄ − 2ĀV̄ ′ = 2κ2 T̄ (Ā′ − 2ᾱ′Ā) .

(2b)

The action (1) is form-invariant under the conformal change
of the metric tensor, accompanied by a re-definition of the
scalar field:

ḡμν = e2 ¯̄γ ( ¯̄�) ¯̄gμν, �̄ = ¯̄f ( ¯̄�) (3)

if the four functions of the scalar field transform in the fol-
lowing way:

¯̄A( ¯̄�) = e2 ¯̄γ ( ¯̄�)Ā( ¯̄f ( ¯̄�)), (4a)

¯̄B( ¯̄�) = e2 ¯̄γ ( ¯̄�)

((d�̄

d ¯̄�
)2B̄( ¯̄f ( ¯̄�)) − 6

( d ¯̄γ
d ¯̄�

)2Ā( ¯̄f ( ¯̄�))

− 6
d ¯̄γ
d ¯̄�

dĀ
d�̄

d�̄

d ¯̄�

)
,

(4b)

¯̄V( ¯̄�) = e4 ¯̄γ ( ¯̄�)V̄( ¯̄f ( ¯̄�)), (4c)

¯̄α( ¯̄�) = ᾱ( ¯̄f ( ¯̄�)) + ¯̄γ ( ¯̄�). (4d)

It is possible to construct out of these functions quantities
which have the same functional dependence in every confor-
mal frame. Such quantities are called ‘conformal invariants’
[61], and their usefulness consists in possibility of express-
ing certain quantities in a frame-independent way. All math-
ematically equivalent frames (i.e. relatable by a conformal
transformation and a re-definition of a scalar field) will share
the same invariants, so it is possible to label classes of equiv-
alent theories by using them. The invariants which will be
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used in this paper are given below1:

I1 = Ā
e2ᾱ

, (5a)

I2 = V̄
Ā2

, (5b)

dĨ
d�̄

= e−ᾱ

√√√√±
(
B̄ − 6

(
dᾱ

d�̄

)2

Ā + 6
dᾱ

d�̄

dĀ
d�̄

)
, (5c)

dI
d�̄

=
√

±2ĀB̄ + 3(Ā′)2

2Ā2
. (5d)

The first invariant tells us if there is a non-minimal coupling
present in the theory. The second invariant generalizes the
notion of potential of the scalar field, while the third one can
play a role of an invariant scalar field in the Jordan frame,
and becomes zero for metric f (R) theory (but it does not
necessarily mean that the field has no dynamics). The last
one can be treated as a scalar field in the Einstein frame; if
it vanishes, then the scalar field is non-dynamical (as it hap-
pens in case of Palatini f (R) theories, where I = 0). In our
convention, we do not write any subscript in I for conve-
nience and to indicate its importance. The plus/minus sign
corresponds to positive and negative value of the expression
under the square root.

In what follows, we will examine a static, spherical-
symmetric objects whose metric is given as usually:

ḡμν = diag
(
−b̄(r̄), ā(r̄), r̄2, r̄2 sin θ̄

)
. (6)

Since all quantities are assumed to be dependent on the radial
coordinate only, the conformal transformation preserves the
static, spherical symmetric geometry. We will always write
down the coordinate transformations in the further parts of
the paper.

2.2 Einstein frame

In order to make use of the invariant quantities introduced
earlier in this paper, let us choose the following invariant
metric:

ĝμν = Āḡμν. (7)

Written in components, the metric ĝ reads:

ĝμν = diag
(
−Āb̄(r̄), Āā(r̄), Ār̄2, Ār̄2 sin θ̄

)
. (8)

We may want to introduce a new radial coordinate and re-
define the a, b functions in order to preserve the form (6) of

1 Please notice that the invariants are defined differently in [61], where

I1 = e2α

A , and the invariant I playing role of scalar field in the Einstein
frame is denoted I3.

the metric. Such a change of variables is defined as follows
(remembering that the scalar field is the function of the radial
component only):

r̂ =
√
Ā r̄ → dr̄ =

√
1

Ā

(
− r̂

2
∂r̂ ln Ā + 1

)
dr̂ . (9)

Let us notice that the new radial component is itself an invari-
ant. The new metric will take the form:

ĝμν = diag
(
−b̂(r̂), â(r̂), r̂2, r̂2 sin θ

)
, (10)

where the new metric components â and b̂ are related to the
general ones as:

b̂ = Ā b̄, (11a)

â =
(

− r̂

2
∂r̂ ln Ā + 1

)2

ā. (11b)

Let us notice that the following quantity:

1

â

(
d

dr̂

)2

= 1

Āā

(
d

dr̄

)2

(12)

is also an invariant. Therefore, if any equation contains (func-
tions of) invariant quantities and the derivative with respect
to the radial component precisely in the form shown above,
then it must be also conformally invariant.

The choice (7) of the invariant metric results in the fol-
lowing action for the theory:

S[ĝμν, I, χ ] = 1

2κ2

∫
�

d4x
√

−ĝ
[
R̂ − ĝμν∂μI∂νI − I2

]

+ Smatter

[
1

I1
ĝμν, χ

]
.

(13)

In this frame, the invariant I plays the role of the scalar field,
and all invariants are now functions of it.

As we can see, in the invariant Einstein frame, the action
takes a particularly simple form. The coupling between the
curvature and the scalar field is now non-existent, and the
kinetic coupling has a constant value. Such a simplicity is
achieved at a price: there is an anomalous coupling between
the scalar field and matter part of the action, which may lead
to undesirable consequences, such as violation of the Weak
Equivalence Principle. Nevertheless, it is convenient to per-
form the calculations in the Einstein frame and then transform
the result back to the frame which is deemed ’physical’.

The field equations resulting from this action can be
obtained quickly by comparing the action (13) with the action
(1) and identifying the corresponding scalar field functions

123



492 Page 4 of 12 Eur. Phys. J. C (2021) 81 :492

in the field equations. The result is the following:

Ĝμν+1

2
ĝμν ĝ

αβ∂αI∂βI − ∂μI∂νI + 1

2
ĝμνI2 = κ2T̂μν,

(14a)

�̂I − 1

2

dI2

dI = κ2 1

I1

dI1

dI T̂ , (14b)

where T̂ = ĝμν T̂μν = −ρ̂ + 3 p̂ ≡ 1
Ā2 (ρ̄ + 3 p̄).

Information about different ST theories, characterized by
a particular choice of the functions {Ā, B̄, V̄, ᾱ}, is stored
in two invariants {I1, I2} being now a function of the third
invariant, I. Therefore, the knowledge of the functions I1(I)

and I2(I) allows one to reconstruct the original theory after
two of the four functions of the field have been fixed.

The energy–momentum tensor is not conserved2 in this
frame:

∇̂μT̂μν = 1

2
∂ν(ln I1)T̂ . (15)

The relation between the trace of the energy–momentum ten-
sor in different frames are given in (31c) and (32b).

3 Stellar structure equations

In the following section we will derive the Tolman–Oppenhei-
mer–Volkoff equation written with respect to the invariants of
the scalar–tensor theories. Considering the Newtonian limit
of TOV equations, we will also provide the non-relativistic
hydrostatic equilibrium equation.

In order to do so, let us notice that the field equations (14)
have a particular form discussed in [90–92], that is:

σ̄ (�̄ i )(Ḡμν − W̄μν) = κ2T̄μν, (16)

where Ḡμν represents the Einstein tensor while the factor
σ̄ (�̄ i ) is a coupling to the gravity, �̄ can stand for, for
instance, curvature invariants or other fields, like scalar ones
in our case. The tensor W̄μν is a symmetric tensor which
can be treated as an additional geometrical term, whose form
depends on theory of gravity one is interested in. The Eq. (16)
do not take into account other field equations which can be
obtained by varying a specific Lagrangian with respect to,
for example, scalar fields, or an independent connection.

2 See the review [89] on non-conservative theories of gravity.

For such a representation, the TOV equations can be writ-
ten in a schematic way as: [93]3:

(
�̄

σ̄

)′
= − GM

c2r̄2

(
c2 Q̄

σ̄
+ �̄

σ̄

)(
1 + 4π r̄3 �̄

σ̄

c2M

)
ā(r̄)

− 2σ̄

κ2r̄

(
W̄θθ

r̄2 − W̄r̄r̄

ā

)
(17)

with the mass function M defined as:

M(r̄) =
∫ r̄

0
4π r̃2 Q̄(r̃)

σ̄ (r̃)
dr̃ , (18)

appearing in the solution of the static spherical-symmetric
metric:

ā(r̄) =
(

1 − 2GM(r̄)

c2r̄

)−1

. (19)

The prime ′ in the equation (17) denotes the derivative with
respect to the radial coordinate r̄ . The quantities Q̄ and �̄

appearing in the above TOV and mass equations are called
effective energy density and pressure, respectively, and are
defined as:

Q̄(r̄) := ρ̄(r̄) − σ̄ (r̄)W̄tt (r̄)

κ2c2b̄(r̄)
, (20)

�̄(r̄) := p̄(r̄) − σ̄ (r̄)W̄r̄r̄ (r̄)

κ2ā(r̄)
. (21)

Here, the energy density ρ̄ and pressure p̄ are the ones related
by the barotropic equation of state, p̄ = p̄(ρ̄), and appear in
the perfect fluid form of the energy momentum tensor T̄μν :

T̄μν = (ρ̄ + p̄)ūμūν + p̄h̄μν, (22)

where ūμ is a vector field co-moving with the fluid while
h̄μν = ḡμν + ūμūν is a projector tensor on the 3-dimensional
hypersurface.

3.1 Tolman–Oppenheimer–Volkoff equation

Using the formalism briefly discussed above, we will write
down the components of the Ŵμν tensor considered in the
Einstein frame with respect to the metric ĝμν , which we will
use to construct the TOV equations. Its form in the general
frame can be found in the (Appendix A). On the other hand,
in the Einstein frame this tensor has a much simpler form

3 Let us notice that the authors of [93] use a different κ convention in
which κ is negative [94].
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written with respect to the scalar–tensor invariants as:

Ŵtt = 1

2

b̂

â
(∂r̂I)2 + b̂

2
I2, (23a)

Ŵr̂r̂ = 1

2
(∂r̂I)2 − â

2
I2, (23b)

Ŵθθ = −1

2

r̂2

â
(∂r̂I)2 − r̂2

2
I2, (23c)

Ŵ�� = sin2 θ Ŵθθ (23d)

which now can be used to construct the effective energy den-
sity and pressure given in the ST invariants’ terms as:

Q̂ = ρ̂ − (∂r̂I)2

2κ2c2â
− I2

2κ2c2 , (24a)

�̂ = p̂ − 1

2κ2â
(∂r̂I)2 + 1

2κ2 I2. (24b)

Let us remind that ρ̂ and p̂ are not considered as physical
quantities.

Consequently, we are now able to write down the TOV
equation in Einstein frame using the schematic way (17):

d�̂

dr̂
= − GM

c2r̂2

(
c2ρ̂ + p̂ − (∂rI)2

κ2â

)(
1 + 4π r̂3�̂

c2M

)

×
(

1 − 2GM
c2r̂

)−1

+ 1

κ2âr̂
(∂r̂I)2 ,

(25)

where the effective mass is defined as:

M(r̂) =
∫ r̂

0
4πr2 Q̂(r)dr. (26)

In order to rewrite it with respect to the Einstein frame pres-
sure p̂ and density ρ̂, we use the definition (24b) to get:

d p̂

dr̂
= − GM(r̂)

c2r̂2 (c2ρ̂ + p̂)

(
1 − 2GM(r̂)

c2r̂

)−1

(27)

×
[

1 + 4π r̂3

c2M(r̂)

(
p̂ − (∂r̂I)2

2κ2â
+ I2

2κ2

)]

+ T̂ ∂r̂ ln I1 − (∂r̂I)2

κ2âr̂
(28)

while the effective mass can be expressed as:

M(r̂) = M0(r̂) − η(r̂ , I, I2). (29)

We have defined the “General Relativity” mass in the Ein-

stein frame as M0(r̂) = ∫ r̂
0 4πx2ρ̂(x)dx and the additional

ingredient η(r̂ , I, I2) as:

η(r̂ , I, I2) = c2

4G

∫ r̂

0
x2

(
(∂xI)2

â
+ I2

)
dx . (30)

The Eqs. (27) and (29) are TOV equations written in Ein-
stein frame. In order to consider a physical stellar system, we

need to transform them to the (physical) Jordan frame, that
is, we need to express the TOV equations in terms of physical
metric components and quantities. Thus, they are defined as
follows (w.r.t. the initial Wagoner parametrization):

gμν = e2ᾱ ḡμν, r = eᾱ r̄ , (31a)

a = (1 − r∂r ᾱ)2ā, b = eᾱ b̄, (31b)

ρ = ρ̄

e4ᾱ
, p = p̄

e4ᾱ
, T = T̄

e4ᾱ
, (31c)

while the relations between the invariant Einstein and Jordan
frame quantities are now:

r̂ = √
I1r, â = I1a

(
dr

dr̂

)2

, (32a)

ρ̂ = ρ

I2
1

, p̂ = p

I2
1

, T̂ = T

I2
1

. (32b)

Therefore, the effective mass written as a function of the
coordinate r and Jordan frame functions ρ, p will be:

M(r) =
∫ r

0

4πr2

√I1

[
ρ − 1

2κ2c2

I1

a
(∂rI)2 − 1

2κ2c2 I2
1I2

]

×
( r

2
∂r ln I1 + 1

)
dr,

(33)

while the TOV equation can be rewritten as:

dp

dr
=

[
− GM(r)

c2r2I1/2
1

(c2ρ + p)

(
1 − 2GM(r)

c2rI1/2
1

)−1

×
⎛
⎜⎝1 + 4πI

3
2

1 r3

c2M(r)

(
p

I2
1

− (∂rI)2

2κ2aI1
+ I2

2κ2

)⎞
⎟⎠

− I2
1 (∂rI)2

κ2ar

] ( r
2
∂r ln I1 + 1

)
+

(
−c2ρ + 5p

)
∂r ln I1

(34)

The Eqs. (33) and (34) are mass and relativistic hydro-
static equilibrium equations, respectively, describing a
spherically-symmetric stellar system in the scalar–tensor the-
ory written with respect to invariants’ formalism given by
[61]. We recover the GR form for the above equations when
the invariant I1 = 1 and the remaining ones are set to zeros
(or I is a constant).

3.2 Non-relativistic limit of TOV equation

Let us consider now non-relativistic limit of the Eqs. (33) and
(34). Such equations are used to study, for instance, main-
sequence stars, or low-mass stars and substellar objects. In the
non-relativistic limit one assumes that the pressure is much
smaller then the energy density p � c2ρ, as well as that the
gravitational pressure can be neglected, r3 p � c2M0. The
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curvature effects are also neglected, that is, 2GM0/c2r � 1
holds.

Since we want to keep our equations as general as possible,
we will not assume any limiting form of the invariants I and
I2 when:

φ(r) ≈ φ0 + ε̄ϕ(r) (35)

is applied to the scalar field in the Jordan frame. However,
in order not to change significantly the physics of the Sun,
we cannot allow the coupling, which is represented by the
invariant I1, to be too strong in our case. Because of that
fact, one then requires that (we assume that ϕ(0) = 0 and
i1(0) = 0):

I1 ≈ 1 + εi1(r). (36)

such that the mass function (33) will have the form M =
M0(r)+μ(r, i1, I, I2). Thus, applying (36) to (33) and keep-
ing only the terms up to the first order, we may write:

M(r) = M0(r) + ε

∫ r

0
πr2ρ

(
2(ri ′1 − i1) (37)

− c2I2

8πGρ
(3i1 + ri ′1)

)
dr (38)

where:

M0(r) =
∫ r

0
4πr2ρ

[
1 − c2I2

16πGρ

]
dr. (39)

In the above expressions we have treated the term (dI/dr)2

as a term of the second order.
Then, in the similar way, the non-relativistic limit of the

TOV equations is given by:

dp

dr
= −GM(r)

c2r2 ρ

[
1 + ε

(
c2i ′1r2

GM0
+ i ′r − i1

2

)]
, (40)

where we have skipped the terms such as αI2/M0c2

etc. However, it may happen, similarly as with the terms
(dI/dr)2, that they will have a non-negligible contribution
but this depends on the relations between the invariants and
matter fields (thus on a particular theory under considera-
tion), given by the Klein–Gordon equation.

4 Examples

We will briefly discuss two models of gravity in both, metric
and Palatini approaches. Therefore, as a first example we will
consider f (R) gravity and then Brans–Dicke model.

Table 2 Invariant scalar field for f (R) gravity in different approaches

Invariant Metric Palatini

I
√

3
4 ln

(
�
�0

)
0

Ĩ 0
√

6(
√

� − √
�0)

4.1 f (R) gravity

Let us consider as an example the f (R) theory in order to
illustrate how the invariant quantities allow one to quantify
the difference between theories of gravity. In this section,
we will compute the invariants for both metric and Palatini
versions of the theory.

First, let us notice that f (R) gravity has a scalar–tensor

representation if d2 f
d R2 	= 0. Assuming this condition is satis-

fied, we can perform a Legendre transformation and identify
a scalar degree of freedom with the derivative of the f func-
tion w.r.t the curvature R. This procedure is canonical and
has been presented in a number of papers, for example in [7].
The result is the following:

S[gμν,�, χ ] = 1

2κ

∫
�
d4x

√−g
[
�R(g) + δ�

3

2�
gμν∂μ�∂ν�

− V (�)
]

+ Smatter[gμν, χ ].
(41)

Here, the parameter δ� assumes two possible values:

δ� =
{

1 for the Palatini theory

0 for the metric theory.
(42)

We can immediately identify the functions of the scalar field
defining the theory:

A(�) = �, B(�) = −δ�

3

2�
,

V(�) = V (�), α(�) = 0. (43)

The invariants I1 and I2 will be the same for both
approaches; however, we will be able to distinguish between
the two formalism by looking at the values of the invariants
I and Ĩ. Their values are given in the table below:

We can be more specific and take as an example the fol-
lowing model: f (R) = R+βRn , where n ∈ R, n 	= 1. Such
a choice will lead to the following parametrization in the ST
representation:
and, consequently, to the invariants:

I1(�) = �, (44a)

I2(�) = β− 1
n−1

(
n− 1

n−1 − n− n
n−1

) (� − 1)
n

n−1

�2 . (44b)

For the Palatini theory, scalar field is non-dynamical, so
the invariant I cannot be used in the theory. Therefore, the
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Table 3 Parametrization of the f (R) = R + βRn model

A B V α

metric � 0
(
n− 1

n−1 − n− n
n−1

)
(�−1)

n
n−1

β
1

n−1
0

Palatini � − 3
2�

(
n− 1

n−1 − n− n
n−1

)
(�−1)

n
n−1

β
1

n−1
0

relation between the field and the trace of energy–momentum
tensor will be purely algebraic, and the exact dependence can
be obtained from the Eq. (14b), with the derivative taken w.r.t.
the scalar field �. All the remaining invariants entering the
field equations and, consequently, the TOV equation, will
depend explicitly on T̂ .

In the Palatini case, the effective energy density and pres-
sure will have a simple form:

Q̂P = ρ̂ − 1

2κ2c2 I2(T̂ ), (45a)

�̂P = p̂ + 1

2κ2 I2(T̂ ). (45b)

The TOV equation in the Einstein frame will now read as:

d�̂P

dr̂
= −GMP

c2r̂2

(
c2ρ̂ + p̂

)(
1 + 4π r̂3�̂P

c2MP

)(
1 − 2GMP

c2r̂

)−1
,(46)

which agrees with [95]. If we set n = 2, we recover Starobin-
sky theory. For this particular choice, the invariants I1 and I2

can be expressed in terms of the trace of energy–momentum
tensor in the Jordan frame:

I1 = � = 1 + 4βκ2(c2ρ − 3p), (47a)

I2 = 4βκ4(c2ρ − 3p)2

(
1 + 4βκ2(ρ − 3p)

)2 . (47b)

The mass function will take the form:

MP (r) =
∫ r

0
4π r̃2 ρ − 2c−2βκ2(c2ρ − 3p)2

(
1 + 4βκ2(c2ρ − 3p)

)1/2

×
[

1 + r̃

2
∂r̃ ln

(
1 + 4βκ2(c2ρ − 3p)

)]
dr̃

(48)

In the non-relativistic limit, the TOV equation (34) for
quadratic Palatini gravity takes the form

dp

dr
= −GMP (r)

r2 ρ

[
1 + 4c2βκ2

(
rρ′ − ρ

2
+ c2r2ρ′

GM0

)]
.

(49)

whereas the mass reduces to:

MP (r) =
∫ r

0
4π r̃2ρ

[
1 + 2c2κ2β(−2ρ + r̃ρ′)

]
dr̃ (50)

The expression (49) has a slightly different form (in the
coefficients in the round bracket) than the result obtained in
[96]. This is because of the fact that in [96], the assumption
of the invariant polytropic equation of state for the quadratic
Palatini model was made, following the result given in [97].
In this work we do not set any particular relation between
pressure and density, neither we assume its behaviour under
the conformal transformation.

In the metric case, the relation between the scalar field and
the invariant I becomes relevant. It must be used to express
the invariants I1 and I2 as a function of I. The result is the
following:

I1(I) = �0e
2√
3
I
, (51a)

I2(I) = β− 1
n−1

(
n− 1

n−1 − n− n
n−1

) (�0e
2√
3
I − 1)

n
n−1

�2
0e

4√
3
I .

(51b)

Unlike in the Palatini case, it is now not possible to express
I as an algebraic function of ρ and p, as the relation between
these quantities is described by the Klein–Gordon equation
with a source. Applying the above forms to the Eqs. (33)
and (34), one obtains the mass function and TOV equation
for the f (R) metric gravity. Let us notice that the Eq. (34)
already includes the Klein–Gordon equation to get rid of the
second derivative of I. However, we do not write the TOV
equations explicitly because of their complex form in this
particular case.

It was shown in [98,99] that for f (R) gravity, one can use
multimessenger astronomy results to demonstrate the maxi-
mal mass and causal limit maximal mass of neutron stars, for
example in Starobinsky model. As the analysis is usually per-
formed in the Jordan frame, the use of invariants might help
to generalize the investigation by allowing one to express rel-
evant quantities in a frame-independent way, and transform
solutions easily between frames.

4.2 Brans–Dicke theory

Let us now consider a scalar–tensor theory which cannot be
derived from f (R) gravity, namely, a Brans–Dicke gravity
without the self-interaction potential, both in the metric and
the Palatini approach. The action for the theory is the follow-
ing:

S[g, �,�] = 1

2κ2

∫
�
d4x

√−g
[
ξ�R(g, �) − ω

�
gμν∂μ�∂ν�

]

+ Smatter[g, χ ].
(52)

Here, ξ and ω are parameters of the theory. We assume that
ξ > 0 and ω 	= 0, otherwise the scalar field would have no
dynamics in the Palatini formulation. Also, the action (52)
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is not specified to be either a Palatini, or a metric action;
therefore, we take a theory with the same functions of the
scalar field, but with different definitions of the curvature
scalar.

In the Palatini case, one needs to consider an additional
variation with respect to the independent conection. As a
result of this procedure, one discovers that the initially inde-
pendent connection is in fact Levi-Civita with respect to a
new metric tensor, conformally related to the initial one. The
connection introduces no additional degrees of freedom, and
can be eliminated from the action, modifying the kinetic cou-
pling of the scalar field, B, yielding effectively a metric the-
ory. The scalar field functions in this case can be written as:

A = ξ�, B = ω

�
− δ�

3ξ

2�
, V = 0, α = 0, (53)

where δ� was defined in the previous section. The invariants
are now:

I1(�) = ξ�, (54a)

I2(�) = 0, (54b)

I =
√

2ω + 3ξ(1 − δ�)

4ξ
ln

(
�

�0.

)
(54c)

How the scalar field varies will be now described by a
massless Klein–Gordon equation with a source term:

�̂I = κ2

√
4ξ

2ω + 3ξ(1 − δ�)
T̂ . (55)

As we can see, the invariant scalar field is sourced by
the trace of energy–momentum tensor. In case of radiation,
the trace vanishes, and the equation is of particularly simple
form.

The components of the Ŵμν tensor for this class of theories
are now:

Ŵtt = 1

2

b̂

â
(∂r̂I)2 , (56a)

Ŵr̂r̂ = 1

2
(∂r̂I)2 , (56b)

Ŵθθ = −1

2

r̂2

â
(∂r̂I)2 , (56c)

Ŵ�� = sin2 θ Ŵθθ , (56d)

and the effective energy density and pressure can be expressed
as:

Q̂ = ρ̂ − 1

2κ2c2â
(∂r̂I)2 , (57a)

�̂ = p̂ − 1

2κ2â
(∂r̂I)2 , (57b)

where ρ̂ = ρ

ξ2�2 , and p̂ = p
ξ2�2 . As for the metric case, we

do not write the hydrostatic equilibrium equation explicitly
because of its long form.

5 Discussion and conclusions

In the presented paper we have obtained the stellar struc-
ture equations for a general family of the modified gravity
theories, written with respect to the scalar field invariants,
introduced some time ago in [61]. We found out the invari-
ant representation very useful since it allows to study diverse
theories of gravity, such as for example f (R) and scalar–
tensor gravity in different approaches – metric, Palatini, or
hybrid, at one go [100]. The relativistic hydrostatic equilib-
rium equation (34) and the mass function (33) are thus the
master equations of our work, and their specific shape can
help us to understand effects arising by the presence of such
invariants, whose specific forms and characteristics, as shown
by a few examples in the Sect. 4, are ruled by gravitational
theories, which possess the invariant representation.

Therefore, one may also try to interpret the role of the
invariants, as it was presented for example in [101], where
the free parametrization of the TOV equation was discussed
together with physical meanings of the parameters. Let us
firstly notice that the invariantI, which carries an information
about the varying scalar field, and I2, which traces its poten-
tial, enter the part of the stellar equation (34) related to the
active gravitational effects of pressure (studied for instance
in [102]). In the case of GR, this pressure is a pure rela-
tivistic effect which does not appear in the non-relativistic
counterpart of the hydrostatic equilibrium equation. Thus,
modifications which can be related to the varying scalar field
and/or its potential, reinforce or impair, depending on their
nature, the effect of the gravitational pressure. Let us also
comment that the invariant I2 also appears in the TOV equa-
tion (34) throughout the mass function. We will discuss it in
a moment.

On the other hand, the non-minimal coupling, represented
by the invariant I1, clearly plays many roles in the stellar
structure. It also appears in the gravitational pressure part, in
a non-trivial way, strengthening or weakening this relativistic
effect. It acts, as already mentioned in the introduction, as an
effective gravitational constant which is also apparent in our
TOV equation. Moreover, it contributes to the inertial pres-
sure and intrinsic curvature contributions which are, similar
to the gravitational pressure, relativistic impacts, affecting
equation of state (see such an effect in some theories of grav-
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ity, for example [103–105]) and geometry, where the last one
is an expected result. Besides, the presence of I1 may also
be interpreted as anisotropies of the fluid (pronounced by the
last terms of (34)) [106,107].

Let us notice that the anisotropy of the fluid, as well as
the active gravitational effects of pressure provided by the
presence of the invariantsI andI1 arise in the Einstein frame,
too.

The mass equation (33) also provides some information
about the nature of the invariants. The most prominent one is
the fact that I1 cannot be a strong coupling; that is, it cannot
differ significantly from unity in order not to violate the solar
physics. It may happen, as it was discussed in, for instance,
[108–110], that the extra terms introduced by the invariants
provide a non-zero contribution to the mass function far away
from the star’s surface (when p(R) = 0, where R is the star’s
radius); that is, the mass function does not converge when
r → ∞ but can oscillate instead around a constant value.
This fact has following consequences: as proposed in [108]
and then discussed in more detail in [111], in the case of f (R)

metric gravity and general ST theories which introduce an
additional degree of freedom, this phenomena could be used
to test such theories against GR by the mean of the surface
gravitational redshift. It comes from the fact that mass mea-
sured by a distant observer (gravitational mass) differs from
the stellar mass, which is understood as a sphere bounded by
the star’s surface together with gravitational energy, in the
energy of the extra degree of freedom, which happens not
to be zero inside and outside the star. Moreover, it was also
demonstrated that the stellar mass appearing in the definition
of the mentioned redshift in the case of modified gravity is
smaller that its analogue in GR. Therefore, a high-precision
in the measurements of the surface redshift can be in future
a powerful tool to test and to discriminate different theories
of gravity.

On the other hand, the invariant I2 in the masses (37) and
(39), as well as in the TOV equation (34), can be identified
with the cosmological constant [112,113]; then, its contri-
bution is negligible to the solar gravitational mass M while
the input from i1 is also expected to be small, as already
mentioned.

It should be also highlighted that i1 is not an invari-
ant anymore. As in the case of the invariants, we do not
know its form without assuming any particular theory (in
that case, the potential of the scalar field), or without guess-
ing/adjusting its character by other means. Therefore, in
order to write down the non-relativistic hydrostatic equi-
librium equation in the terms of the matter fields only,
one should choose a particular model of gravity. Then,
the modified Klein–Gordon equation will provide the rela-
tion between the invariants (the scalar field) and the trace
of the energy momentum tensor, that is, the matter fields.
Equipped with this relation, it will be possible to write

hydrostatic equilibrium equation in such a form that it
would allow to study physical stellar system. However,
as briefly discussed in the example section, it might be
quite tough because of the complicated form of the equa-
tions.

Since the theories discussed in this work introduce an
additional scalar field permeating the space-time, it will
be necessary to invoke a screening mechanism effectively
hiding its effect outside stars. As it was shown in recent
papers, the mechanism can be broken inside stellar objects
in more general scalar–tensor theories, such us DHOST or
beyond Horndeski, where the gravitational potential is not
determined solely by the enclosed mass, but depends addi-
tionally on extra terms [76,114–116]. Moreover, another
issue concerns Noether symmetries in scalar–tensor theo-
ries, discussed for example in [117,118] in the context of
spherically-symmetric objects. In the most general case, the
invariant scalar field carries an additional degree of free-
dom that will have a non-zero contribution to Noether con-
served quantities. Because of the very nature of invari-
ants, all solutions would be relevant for whole conformally-
equivalent classes of theories. We did not investigate these
issues in this paper. Work along this line is currently under-
way.
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AppendixA:Components of the tensorWμν in thegeneral
frame

For the general case of metric scalar–tensor gravity, the tensor
W̄μν takes the following form:

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


492 Page 10 of 12 Eur. Phys. J. C (2021) 81 :492

W̄μν = − 1

Ā

(
1

2
B̄ + Ā′′

)
ḡμν ḡ

αβ∂α�̄∂β�̄

+ 1

Ā
(B̄ + Ā′′) ∂μ�̄∂ν�̄ + Ā′

Ā (ḡμν�̄ − ∇̄μ∇̄ν)�̄

− 1

2

V̄
Ā ḡμν,

(A.1)

and the σ function can be identified with Ā.
For the spherical-symmetric object

ds2 = −b̄(r̄)dt2 + ā(r̄)dr̄2 + r̄2dθ2 + r̄2 sin2 θdφ2. (A.2)

the relevant components of the W̄μν tensor are given by:

W̄tt = 1

Ā

(
1

2
B̄ + Ā′′

)
b̄

ā

(
d�̄

dr̄

)2

+ Ā′

Ā

(√
b̄

ā

d

dr̄

√
b̄

ā
+ 2

r̄ ā
− 1

2ā

db̄

dr̄

)
d�̄

dr̄

+ Ā′

Ā
b̄

ā

d2�̄

dr̄2 + 1

2

V̄
Ā b̄,

(A.3a)

W̄r̄r̄ = B̄
2Ā

(
d�̄

dr̄

)2

− Ā′

Ā

(√
ā

b̄

d

dr̄

√
b̄

ā
+ 2

r̄
+ 1

2ā

dā

dr̄

)
d�̄

dr̄

− 1

2

V̄
Ā ā,

(A.3b)

W̄θθ = − 1

Ā

(
1

2
B̄ + Ā′′

)
r̄2

ā

(
d�̄

dr̄

)2

− Ā′

Ā

(
r̄2

√
1

ā b̄

d

dr̄

√
b̄

ā
+ r̄

ā

)
d�̄

dr̄

− Ā′

Ā
r̄2

ā

d2�̄

dr̄2 − 1

2

V̄
Ā r̄2,

(A.3c)

W̄�� = sin2 θ W̄θθ . (A.3d)

Thus, we are happy that we do not need to use them in order
to write down the TOV equations.

References

1. S. Nojiri, S. Odintsov, V. Oikonomou, Modified gravity theories
on a nutshell: inflation, bounce and late-time evolution. Phys. Rep.
692, 1 (2017)

2. S. Nojiri, S.D. Odintsov, Unified cosmic history in modified grav-
ity: from F(R) theory to Lorentz non-invariant models. Phys. Rep.
505, 59 (2011)

3. Y. Fujii, K. Maeda, The Scalar–Tensor Theories of Gravitation
(Cambridge University Press, Cambridge, 2004)

4. P. Jordan, Zur empirischen Kosmologie. Naturwissenschaften 26,
417 (1938)

5. C.H. Brans, R.H. Dicke, Mach’s principle and a relativistic theory
of gravitation. Phys. Rev. 124, 925 (1961)

6. S. Capozziello, V. Faraoni, Beyond Einstein Gravity: A Sur-
vey of Gravitational Theories for Cosmology and Astrophysics
(Springer, Berlin, 2011)

7. S. Capozziello, M. De Laurentis, Extended theories of gravity.
Phys. Rep. 509, 167 (2011)

8. T.P. Sotiriou, V. Faraoni, f(R) theories of gravity. RMP 82, 451
(2010)

9. A. De Felice, S. Tsujikawa, f(R) theories. Living Rev. Relativ. 13,
3 (2010)

10. S. Capozziello, M. Francaviglia, Extended theories of gravity and
their cosmological and astrophysical applications. Gen. Relativ.
Gravit. 40, 357 (2008)

11. S. Carloni, P.K.S. Dunsby, S. Capozziello, A. Troisi, Cosmolog-
ical dynamics of Rn gravity. Class. Quantum Gravity 22, 4839
(2005)

12. T. Clifton, P.G. Ferreira, A. Padilla, C. Skordis, Modified gravity
and cosmology. Phys. Rep. 513, 1 (2012)

13. S.M. Carroll, V. Duvvuri, M. Trodden, M.S. Turner, Is cosmic
speed: up due to new gravitational physics? Phys. Rev. D 70,
043528 (2004)

14. K. Bamba, S. Capozziello, S. Nojiri, S.D. Odintsov, Dark energy
cosmology: the equivalent description via different theoretical
models and cosmography tests. Astrophys. Space Sci. 342, 155
(2012)

15. G. Allemandi, A. Borowiec, M. Francaviglia, Accelerated cos-
mological models in first order nonlinear gravity. Phys. Rev. D
70, 043524 (2004)

16. G. Allemandi, A. Borowiec, M. Francaviglia, S.D. Odintsov, Dark
energy dominance and cosmic acceleration in first order formal-
ism. Phys. Rev. D 72, 063505 (2005)

17. S. Nojiri, S.D. Odintsov, Introduction to modified gravity and
gravitational alternative for dark energy. Int. J. Geom. Methods
Mod. Phys. 4, 115 (2007)

18. T. Clifton, P.K.S. Dunsby, On the emergence of accelerating cos-
mic expansion in f(R) theories of gravity. Phys. Rev. D 91, 103528
(2015)

19. D.N. Vollick, 1/R curvature corrections as the source of the cos-
mological acceleration. Phys. Rev. D 68, 063510 (2003)

20. W. Hu, I. Sawicki, Models of f(R) cosmic acceleration that evade
solar-system tests. Phys. Rev. D 76, 064004 (2007)

21. S. Tsujikawa, Observational signatures of f(R) dark energy mod-
els that satisfy cosmological and local gravity constraints. Phys.
Rev. D 77, 023507 (2008)

22. S. Nojiri, S.D. Odintsov, Modified gravity with negative and pos-
itive powers of the curvature: unification of the inflation and of
the cosmic acceleration. Phys. Rev. D 61, 123512 (2003)

23. A.A. Starobinsky, A new type of isotropic cosmological models
without singularity. Phys. Lett. B 91, 99 (1980)

24. N. Bartolo, M. Pietroni, Scalar–tensor gravity and quintessence.
Phys. Rev. D 61, 023518 (2000)

25. U. Lindstrom, Comments on the Jordan–Brans–Dicke scalar-field
theory of gravitation. Nuovo Cim. B 32, 298 (1976)

26. U. Lindstrom, The Palatini variational principle and a class of
scalar–tensor theories. Nuovo Cim. B 35, 130 (1976)

27. U. Lindstrom, M. Rocek, A gravitational first order action for the
bosonic string. Class. Quantum Gravity 4, L79 (1987)

28. A. Iglesias, N. Kaloper, A. Padilla, M. Park, How (not) to use the
Palatini formulation of scalar–tensor gravity. Phys. Rev. D 76, 10
(2007)

29. F. Bauer, Filtering out the cosmological constant in the Palatini
formalism of modified gravity. Gen. Relativ. Gravit. 43, 1733
(2011)

30. P. Wang, P. Wu, H. Yu, A new extended quintessence. Eur. Phys.
J. C 72, 2245 (2012)

31. A. Racioppi, Coleman–Weinberg linear inflation: metric vs. Pala-
tini formulation. J. Cosmol. Astropart. Phys. 12, 041 (2017)

123



Eur. Phys. J. C (2021) 81 :492 Page 11 of 12 492

32. A. Racioppi, New universal attractor in nonmininally coupled
gravity: linear inflation. Phys. Rev. D 97, 123514 (2018)

33. L. Järv, A. Racioppi, T. Tenkanen, The Palatini side of inflationary
attractors. Phys. Rev. D 97, 083513 (2018)

34. F. Bauer, D.A. Demir, Inflation with non-minimal coupling: metric
vs. Palatini formulations. Phys. Lett. B 665, 222 (2008)

35. S. Räsänen, P. Wahlman, Higgs inflation with loop corrections
in the Palatini formulation. J. Cosmol. Astropart. Phys. 11, 047
(2017)

36. I. Antoniadis, A. Karam, A. Lykkas, K. Tamvakis, Palatini infla-
tion in models with an R2 term. J. Cosmol. Astropart. Phys. 11,
028 (2018)

37. S. Räsänen, Higgs inflation in the Palatini formulation with kinetic
terms for the metric. Open J. Astrophys. (2018)

38. V.-M. Enckell, K. Enqvist, S. Räsänen, L.-P. Wahlman, Inflation
with R2 term in the Palatini formalism. J. Cosmol. Astropart.
Phys. 02, 022 (2019)

39. T. Markkanen, T. Tenkanen, V. Vaskonen, H. Veermäe, Quantum
corrections to quartic inflation with a non-minimal coupling: met-
ric vs. Palatini. J. Cosmol. Astropart. Phys. 03, 029 (2018)

40. N. Tamanini, C.R. Contaldi, Inflationary perturbations in Palatini
generalised gravity. Phys. Rev. D 83, 044018 (2011)

41. A. Kozak, A, Borowiec, Palatini frames in scalar–tensor theories
of gravity. Eur. Phys. J. C 79, 335 (2019)

42. A. Stachowski, M. Szydlowski, A. Borowiec, Starobinsky cosmo-
logical model in Palatini formalism. Eur. Phys. J. C 77, 1 (2001)

43. D. Gal’tsov, S. Zhidkova, Ghost-free Palatini derivative scalar–
tensor theory: desingularization and the speed test. Phys. Lett. B
790, 453 (2019)

44. S. Tsujikawa, Disformal invariance of cosmological perturbations
in a generalized class of Horndeski theories. J. Cosmol. Astropart.
Phys. 1504, 043 (2015)

45. S. Saichaemchan, B. Gumjudpai, Non-minimal derivative cou-
pling in Palatini cosmology: acceleration in chaotic inflation
potential. J. Phys. Conf. Ser. 901, 012010 (2017)

46. N. Kaewkhao, B. Gumjudpai, Cosmology of non-minimal deriva-
tive coupling to gravity in Palatini formalism and its chaotic infla-
tion. Phys. Dark Univ. 20, 20 (2018)

47. C. Muhammad, S. Saichaemchan, B. Gumjudpai, Palatini NMDC
gravity: cosmological scalar field phase portraits in exponential
potential. J. Phys. Conf. Ser. 1144, 012128 (2018)

48. X. Luo, P. Wu, H. Yu, Non-minimal derivatively coupled
quintessence in the Palatini formalism. Astrophys. Space Sci.
350(2), 831 (2014)

49. E. Davydov, Comparing metric and Palatini approaches to vector
Horndeski theory. Int. J. Mod. Phys. D 27, 1850038 (2017)

50. D. Coumbe, Asymptotically weyl-invariant gravity. Int. J. Mod.
Phys. A 34, 31 (2019)

51. L. Järv, A. Karam, A. Kozak, A. Lykkas, A. Racioppi, M. Saal,
Equivalence of inflationary models between the metric and Pala-
tini formulation of scalar–tensor theories. Phys. Rev. D 102, 4
(2020)

52. E.E. Flanagan, The conformal frame freedom in theories of grav-
itation. Class. Quantum Gravity 21, 3817 (2004)

53. L. Järv, P. Kuusk, M. Saal, O. Vilson, Transformation proper-
ties and general relativity regime in scalar–tensor theories. Class.
Quantum Gravity 32, 235013 (2015)

54. V. Faraoni, E. Gunzig, P. Nardone, Conformal transformations in
classical gravitational theories and in cosmology. Fund. Cosm.
Phys. 20, 121 (1999)

55. V. Faraoni, E. Gunzig, Einstein frame or Jordan frame? Int. J.
Theor. Phys. 38, 217 (1999)

56. S. Capozziello, P. Martin-Moruno, C. Rubano, Physical non-
equivalence of the Jordan and Einstein frames. Phys. Lett. B 689,
117 (2010)

57. N. Banerjee, B. Majumder, A question mark on the equivalence
of Einstein and Jordan frames. Phys. Lett. B 754, 129 (2016)

58. V. Faraoni, S. Nadeau, The (pseudo)issue of the conformal frame
revisited. Phys. Rev. D 75, 023501 (2007)

59. X. Calmet, T-Ch. Yang, Frame transformations of gravitational
theories. Int. J. Mod. Phys. A 28, 1350042 (2013)

60. A.Y. Kamenshchik, C.F. Steinwachs, Question of quantum equiv-
alence between Jordan frame and Einstein frame. Phys. Rev. D
91, 084033 (2015)

61. L. Järv, P. Kuusk, M. Saal, O. Vilson, Invariant quantities in the
scalar–tensor theories of gravitation. Phys. Rev. D 91, 024041
(2015)

62. P. Kuusk, M. Runkla, M. Saal, O. Vilson, Invariant slow-roll
parameters in scalar–tensor theories. Class. Quantum Gravity 33,
195008 (2016)

63. A. Karam, T. Pappas, K. Tamvakis, Frame-dependence of higher-
order inflationary observables in scalar–tensor theories. Phys. Rev.
D 96, 064036 (2017)

64. A. Karam, A. Lykkas, K. Tamvakis, Frame-invariant approach
to higher-dimensional scalar–tensor gravity. Phys. Rev. D 97,
124036 (2018)

65. M.W. Horbatsch, C.P. Burgess, Semi-analytic stellar structure
in scalar–tensor gravity. J. Cosmol. Astropart. Phys. 1108, 027
(2011)

66. A. Cisterna, T. Delsate, M. Rinaldi, Neutron stars in general sec-
ond order scalar–tensor theory: the case of nonminimal derivative
coupling. Phys. Rev. D 92, 044050 (2015)

67. P.C.K. Cheong, T.G.F. Li, Numerical studies on core collapse
supernova in self-interacting massive scalar–tensor gravity. Phys.
Rev. D 100, 024027 (2019)

68. H.O. Silva, H. Sotani, E. Berti, M. Horbatsch, Torsional oscilla-
tions of neutron stars in scalar–tensor theory of gravity. Phys. Rev.
D 90, 124044 (2014)

69. T. Harada, Neutron stars in scalar tensor theories of gravity and
catastrophe theory. Phys. Rev. D 57, 4802 (1998)

70. D.D. Doneva, S.S. Yazadjiev, N. Stergioulas, K.D. Kokkotas, Dif-
ferentially rotating neutron stars in scalar–tensor theories of grav-
ity. Phys. Rev. D 98, 104039 (2018)

71. R.F.P. Mendes, N. Ortiz, Highly compact neutron stars in scalar–
tensor theories of gravity: spontaneous scalarization versus grav-
itational collapse. Phys. Rev. D 93, 124035 (2016)

72. P.C.C. Freire et al., The relativistic pulsar-white dwarf binary PSR
J1738+0333 II. The most stringent test of scalar–tensor gravity.
Mon. Not. R. Astron. Soc. 423, 3328 (2012)

73. H. Sotani, K.D. Kokkotas, Maximum mass limit of neutron stars
in scalar–tensor gravity. Phys. Rev. D 95, 044032 (2017)

74. R.F.P. Mendes, N. Ortiz, New class of quasinormal modes of neu-
tron stars in scalar–tensor gravity. Phys. Rev. Lett. 120, 201104
(2018)

75. T. Kobayashi, T. Hiramatsu, Relativistic stars in degenerate
higher-order scalar–tensor theories after GW170817. Phys. Rev.
D 97, 104012 (2018)

76. D. Langlois, R. Saito, D. Yamauchi, K. Noui, Scalar–tensor the-
ories and modified gravity in the wake of GW170817. Phys. Rev.
D 97, 061501 (2018)

77. T. Damour, G. Esposito-Farese, Tensor–scalar gravity and binary
pulsar experiments. Phys. Rev. D 54, 1474 (1996)

78. S. Capozziello, M. De Laurentis, S.D. Odintsov, A. Stabile,
Hydrostatic equilibrium and stellar structure in f (R)-gravity.
Phys. Rev. D 83, 064004 (2011)

79. R. Farinelli, M. De Laurentis, S. Capozziello, S.D. Odintsov,
Numerical solutions of the modified Lane–Emden equation in
f (R)-gravity. Mon. Not. R. Astron. Soc. 440, 2909 (2014)

80. R. André, G.M. Kremer, Stellar structure model in hydrostatic
equilibrium in the context of f (R)-gravity. Res. Astron. Astro-
phys. 17, 122 (2017)

123



492 Page 12 of 12 Eur. Phys. J. C (2021) 81 :492

81. R. Saito, D. Yamauchi, S. Mizuno, J. Gleyzes, D. Langlois, Mod-
ified gravity inside astrophysical bodies. J. Cosmol. Astropart.
Phys. 1506, 008 (2015)

82. C. Wibisono, A. Sulaksono, Information-entropic method for
studying the stability bound of nonrelativistic polytropic stars
within modified gravity theories. Int. J. Mod. Phys. D 27, 1850051
(2018)

83. J. Sakstein, Hydrogen burning in low mass stars constrains scalar–
tensor theories of gravity. Phys. Rev. Lett. 115, 201101 (2015)

84. R.K. Jain, C. Kouvaris, N.G. Nielsen, White dwarf critical tests
for modified gravity. Phys. Rev. Lett. 116, 151103 (2016)

85. I.D. Saltas, I. Sawicki, I. Lopes, White dwarfs and revelations. J.
Cosmol. Astropart. Phys 1805, 028 (2018)

86. S. Chowdhury, T. Sarkar, Small anisotropy in stellar objects in
modified theories of gravity. Astrophys. J. 884(1), 95 (2019)

87. J. Sakstein, Testing gravity using dwarf stars. Phys. Rev. D 92,
124045 (2015)

88. A. Rosyadi, A. Sulaksono, H. Kassim, N. Yusof, Brown dwarfs in
Eddington-inspired Born–Infeld and beyond Horndeski theories.
Eur. Phys. J. C 79, 1030 (2019)

89. H. Velten, T.R.P. Caramês, To conserve, or not to conserve: a
review of nonconservative theories of gravity. Universe 7(2), 38
(2021)

90. S. Capozziello, F.S. Lobo, J.P. Mimoso, Energy conditions in
modified gravity. Phys. Lett. B 730, 280 (2014)

91. S. Capozziello, F.S. Lobo, J.P. Mimoso, Generalized energy con-
ditions in extended theories of gravity. Phys. Rev. D 91, 124019
(2015)

92. J.P. Mimoso, F.S. Lobo, S. Capozziello, Extended theories of grav-
ity with generalized energy conditions. J. Phys. Conf. Ser. 600,
012047 (2014)

93. A. Wojnar, H.E.S. Velten, Equilibrium and stability of relativistic
stars in extended theories of gravity. Eur. Phys. J. C 76, 697 (2016)

94. S. Weinberg, Gravitation and Cosmology: Principles and Appli-
cations of the General Theory of Relativity (Wiley, New York,
1972)

95. A. Wojnar, On stability of a neutron star system in Palatini gravity.
Eur. Phys. J. C 78, 421 (2018)

96. A. Wojnar, Polytropic stars in Palatini gravity. Eur. Phys. J. C 79,
51 (2019)

97. A. Mana, L. Fatibene, M. Ferraris, A further study on Palatini
f (R)-theories for polytropic stars. J. Cosmol. Astropart. Phys.
15, 040 (2015)

98. A.V. Astashenok, S. Capozziello, S.D. Odintsov, V.K.
Oikonomou, Extended gravity description for the GW190814
supermassive neutron star. Phys. Lett. B 811, 135910 (2020)

99. A.V. Astashenok, S. Capozziello, S.D. Odintsov, V.K.
Oikonomou, Causal limit of neutron star maximum mass in
f (R) gravity in view of GW190814. Phys. Lett. B 816, 13622
(2021)

100. A. Borowiec, A. Kozak, New class of hybrid metric-Palatini
scalar–tensor theories of gravity. J. Cosmol. Astropart. Phys. 07,
003 (2020)

101. H. Velten, A.M. Oliveira, A. Wojnar, A free parametrized
TOV: modified gravity from Newtonian to relativistic stars. PoS
MPCS2015, 025 (2016)

102. J. Schwab, S.A. Hughes, S. Rappaport, The self-gravity of pres-
sure in neutron stars. arXiv:0806.0798

103. H.-C. Kim, Physics at the surface of a star in Eddington-inspired
Born–Infeld gravity. Phys. Rev. D 89, 064001 (2014)

104. A. Delhom-Latorre, G.J. Olmo, M. Ronco, Observable traces
of non-metricity: new constraints on metric-affine gravity. Phys.
Lett. B 780, 294 (2018)

105. A. Wojnar, Early evolutionary tracks of low-mass stellar objects
in modified gravity. Phys. Rev. D 102, 124045 (2020)

106. V.I. Afonso, G.J. Olmo, D. Rubiera-Garcia, Mapping Ricci-based
theories of gravity into general relativity. Phys. Rev. D 97, 021503
(2018)

107. V.I. Afonso, G.J. Olmo, E. Orazi, D. Rubiera-Garcia, Correspon-
dence between modified gravity and general relativity with scalar
fields. Phys. Rev. D 99, 044040 (2019)

108. A.V. Astashenok, S.D. Odintsov, A. de la Cruz-Dombriz, The
realistic models of relativistic stars in f (R) = R + αR2 gravity.
Class. Quantum Gravity 34, 205008 (2017)

109. A.V. Astashenok, A.S. Baigashov, S.A. Lapin, Rotating neutron
stars in F(R) gravity with axions. Int. J. Geom. Methods Mod.
Phys. 16, 1950004 (2018)

110. G.J. Olmo, D. Rubiera-Garcia, A. Wojnar, Stellar structure models
in modified theories of gravity: lessons and challenges. Phys. Rep.
876, 1 (2020)

111. S. Sbis, P.O. Baqui, T. Miranda, S.E. Jorás, O.F. Piattella, Neutron
star masses in R2-gravity. Phys. Dark Univ. C 27, 100411 (2020)

112. H.L. Liu, G.L. Lü, Properties of white dwarfs in Einstein-� grav-
ity. J. Cosmol. Astropart. Phys. 02, 040 (2019)

113. K. Kainulainen, V. Reijonen, D. Sunhede, The interior spacetimes
of stars in Palatini f(R) gravity. Phys. Rev. D 76, 043503 (2007)

114. K. Koyama, J. Sakstein, Astrophysical probes of the Vainshtein
mechanism: stars and galaxies. Phys. Rev. D 91, 124066 (2015)

115. T. Kobayashi, Y. Watanabe, D. Yamauchi, Breaking of Vainshtein
screening in scalar–tensor theories beyond Horndeski. Phys. Rev.
D 91, 064013 (2015)

116. M. Crisostomi, K. Koyama, Vainshtein mechanism after
GW170817. Phys. Rev. D 97, 021301 (2018)

117. S. Capozziello, A. Stabile, A. Troisi, Spherically symmetric solu-
tions in f(R)-gravity via noether symmetry approach. Class. Quan-
tum Gravity 24, 2153 (2007)

118. A. De Laurentis, Noether’s stars in f (R) gravity. Phys. Lett. B
780, 205 (2018)

123

http://arxiv.org/abs/0806.0798

	Invariant quantities of scalar–tensor theories for stellar structure
	Abstract 
	1 Introduction
	2 Invariant quantities
	2.1 General frame
	2.2 Einstein frame

	3 Stellar structure equations
	3.1 Tolman–Oppenheimer–Volkoff equation
	3.2 Non-relativistic limit of TOV equation

	4 Examples
	4.1 f(R) gravity
	4.2 Brans–Dicke theory

	5 Discussion and conclusions
	Acknowledgements
	Appendix A: Components of the tensor Wµν in the general frame
	References




