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Abstract It is investigated the cosmological dynamics of
scalar-torsion f (T, φ) gravity as a dark energy model, where
T is the torsion scalar of teleparallel gravity and φ is a canon-
ical scalar field. In this context, we are concerned with the
phenomenology of the class of models with non-linear cou-
pling to gravity and exponential potential. We obtain the crit-
ical points of the autonomous system, along with the stability
conditions of each one of them and their cosmological prop-
erties. Particularly, we show the existence of new attractors
with accelerated expansion, as well as, new scaling solu-
tions in which the energy density of dark energy scales as the
background fluid density, thus, defining the so-called scaling
radiation and scaling matter epochs. The scaling solutions
are saddle points, and therefore, the system exits these solu-
tions to the current epoch of cosmic acceleration, towards an
attractor point describing the dark energy-dominated era.

1 Introduction

The discovery that the Universe is expanding at an accel-
erated rate, through the analysis of observational data of
supernovas Ia [1,2], radically modified our understanding
of Cosmology because it indicated the existence of a new
component that constitutes 68% of the total energy density
our Universe. Even more, this new component remains a
mystery due to the fact that its true nature is still unknown,
and that is why it has been dubbed dark energy. Moreover,
although the standard cosmology presents us with an excel-
lent model when fitting the current observational data, by
assuming the cosmological constant at the Einstein equa-
tions as the responsible for the accelerated expansion of our
Universe, this assumption faces a severe fine tuning problem
related with its energy scale, the so-called cosmological con-
stant problem [3–5]. In fact, the energy density associated
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with the cosmological constant today is to be of the order of
the critical density, ρΛ ∼ 10−47 GeV4, but if we identify it
with the energy density of the vacuum in quantum field the-
ory, it should be enormously larger, about 10121 times larger
than the observed value, that is, ρΛ ∼ 1074 GeV4, when the
cut-off scale is chosen to be the Planck scale [6]. Furthermore,
the latest observational data has pointed out some tensions or
anomalies which are of statistical importance [7–9]. Partic-
ularly, the tension between the Planck experiment and other
low-redshift probes at the measurement of the anisotropy of
the Cosmic Microwave Background (CMB), the tension of
the Hubble at the present time H0 [10–13], the tension at
the measurement of the amplitude σ8 and the growth rate of
cosmic structure f σ8 [14–18], etc. Although this could mean
systematic errors in the method to obtain the data, this also
could indicate the necessity of a new cosmological model
[19–25].

As alternative theoretical constructions to address the cos-
mological constant problem we have at hand dynamical dark
energy models with a modified matter source described by
a scalar field such as quintessence [26–29], k-essence [30–
32], Galileons [33–36], etc. The energy density of the scalar
field evolves with time and, around the beginning of the
radiation-dominated era, that value can be much larger than
the observed value today for the energy density of dark
energy, and then more compatible with energy scales of par-
ticle physics. Moreover, in theoretical physics the possibility
of a non-minimal coupling to gravity cannot be excluded.
This is motivated from quantum field theory in curved space-
times where it can arise either through quantum corrections
[37] or renormalizability requirements [38–40]. In the con-
text of scalar field cosmology, a non-minimal coupling to
curvature scalar, it has been firstly studied in Ref. [41], and
further investigated in Refs. [42–47]. For more developments
in cosmology using non-minimally coupled scalar fields see
for instance Refs. [6,48], and references therein. In scalar
field cosmology, a very interesting and widely studied class

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-021-09270-x&domain=pdf
mailto:manuel.gonzalez@pucv.cl
mailto:giovanni.otalora@pucv.cl


480 Page 2 of 17 Eur. Phys. J. C (2021) 81 :480

of cosmological solutions are the scaling solutions. For these
solutions the energy density of the field decreases in propor-
tion to the energy density of background fluid, and we can
find them in scalar fields models with coupling to matter [49–
51], but also, when the non-minimal coupling to gravity is
switched on [52,53]. More interesting still, due to this special
feature of the scaling solutions, the field energy density is not
necessarily negligible compared to the energy density of the
background fluid during early times, which allows to allevi-
ate the aforementioned energy scale problem of the ΛCDM
model [54,55]. Finally, the minimally and non-minimally
coupled scalar field models are giving good results for miti-
gating the current tensions in the concordance model [56,57].

It is well known gravity can also be described in terms of
torsion in the context of Teleparallel Gravity (TG) [58–70].
In this theory, the dynamical variables are the tetrad field,
instead of the usual metric tensor, and the Weitzenböck con-
nection replaces the usual Levi-Civita connection [66–70].
This produces a conceptual change as a result of using tor-
sion instead of curvature, even though the field equations are
equivalent, once the Lagrangian density of TG, the torsion
scalar T , differs from the curvature scalar R by a total deriva-
tive term. On the other hand, in the same way that we can
propose a f (R) gravity extension of GR [71–75], we can pro-
mote the Lagrangian density of TG for a general function of
the torsion scalar T to obtain f (T ) gravity [76,77]. This lat-
ter belongs to a different class of modify gravity theories with
distinctive features, for example, whereas f (R) gravity is a
fourth-order theory, f (T ) gravity has the advantage that its
field equations are of second order. Additionally, since f (T )

gravity can explain the current accelerated expansion of our
Universe, which has aroused great interest in these theories,
it has also led to a fair number of investigations where it has
been examined their several features, including observational
solar system constraints [78–80], cosmological constraints
[81–84], cosmological perturbations [85–89], among others
(for an extensive review see Ref. [90]). Even more, an impor-
tant extension of f (T ) gravity is obtained by a non-minimal
coupling between matter and torsion [91–94], when we con-
sider an analogy with the non-minimal curvature-matter cou-
pling in f (R) gravity [75,95–102], whose principal motiva-
tion are the counterterms that appear at the moment of quan-
tising a scalar field with self-interaction at curved spacetime
[45,103–105]. Also, we can go one step further by consider-
ing a generalised teleparallel scalar-torsion f (T, φ) gravity
[106,107], which for example encompasses f (T ) gravity
with scalar field [108–112], non-minimally coupled scalar-
torsion gravity [113–122], and its extensions by including a
non-linear scalar-torsion coupling [107]. This latter kind of
models are motivated by the already mentioned non-minimal
torsion-matter coupling extension of f (T ) gravity [91–94],
and its counterpart based on curvature, such as for exam-
ple the case of a non-linear matter-curvature coupling in

curvature-based modified gravity [75,95,96]. In the same
way, these generalised scalar-torsion f (T, φ) gravity theo-
ries can also be seen as the torsion-based analogue of the so-
called generalised f (R, φ) gravity theories [105,123,124],
which includes f (R) gravity, scalar field models and scalar-
tensor theories, as particular cases. Furthermore, in the con-
text of modified teleparallel gravity, the inclusion of non-
linear scalar-torsion coupling terms has been seen as healthy,
as it has been shown in Ref. [107], they are necessary in order
to generate primordial fluctuations during early inflation.

When we study cosmology in modified gravity theo-
ries, we usually obtain complicated systems of equations
with ambiguous initial conditions which impedes an ana-
lytic treatment, pointing out the necessity of a qualitative
analysis using dynamical system theory. This mechanism,
known as dynamical analysis, is used to acquire informa-
tion of the cosmological evolution in the studied system but
independently of the initial conditions [48]. Furthermore,
although a general cosmological system can exhibit a set
of different possible evolutions, its asymptotic behaviour at
late-times converges and it is represented by stable critical
points obtained from an autonomous system related to the
cosmological equations, and the intermediated eras of the
cosmological evolution are described by fixed points of the
same autonomous system which must be unstable nodes or
saddle points [6]. In this paper, we use a convenient set of
dimensionless variables to study the cosmological dynam-
ics in generalised teleparallel scalar-torsion f (T, φ) grav-
ity theory. We choose a class of phenomenological model of
f (T, φ) to analyse the critical points and their stability condi-
tions. Particularly, we pay attention to attractors fixed points
representing dark energy-dominated solutions, and unstable
fixed points which describe scaling matter and scaling radia-
tion eras. To obtain the physical evolution trajectories in the
phase space we use the current values of the standard cos-
mological parameters [7], along with the constraints from
CMB measurements [125] and Big Bang Nucleosynthesis
(BBN) [126,127], applied to the scaling regimes for early
dark energy [54,128].

The first time that it was investigated a self-interacting
(canonical) scalar field minimally coupled to gravity in
the context of f (T ) gravity was in Ref. [108] where the
authors found some analytical solutions that exhibit accel-
erated expansion. Later in Ref. [109], it was introduced a
reconstruction scheme of the function f (T ) starting from
the scalar potential of a minimally coupled scalar field in an
accelerating Universe. On the other hand, in Ref. [129] the
original framework of a non-minimally coupled scalar field
model in teleparallel gravity was extended by replacing T
with an arbitrary function F(T ). In said reference the authors
studied the cosmological dynamics deduced from the associ-
ated autonomous system finding that although a rich dynam-
ical behaviour of quintessence and phantom dark energy is
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observed, no attractor fixed point exists. In this present work
we investigate a class of models belonging to a more general
scalar-torsion f (T, φ) gravity theories [106,107], where it
is allowed a non-linear gravitational coupling between the
scalar field and torsion. Then, the dark energy model con-
structed from this theory is closely related to the model in
Ref. [129], with the difference that here for simplicity we
have isolated and kept the pure gravity sector without modi-
fications. The modifications to gravity have been added to the
Lagrangian of the scalar field through the generalised non-
linear coupling to torsion. For example, this is more similar
to what happens in non-minimally coupled scalar field mod-
els. Let us emphasize that we have focused on performing
a detailed dynamical analysis for this model, studying the
attractor and scaling behaviour of its cosmological solutions.
We have introduced new ingredients, such as a generalised
non-linear coupling to torsion, and then we have obtained
a significant progress in the analysis of this kind of models
that have not been achieved in the previous studies avail-
able in the literature. As a consequence of this, we have
found new scaling solutions representing the scaling radi-
ation/matter epochs, and new attractors describing the dark
energy-dominated era.

The paper is organised as follows. In Sect. 2, we give a
brief introduction to TG. In Sect. 3, we establish the rele-
vant action, and after calculating the background equations,
we define the effective dark energy and pressure densities. In
Sect. 4, we introduce suitable cosmological variables to write
the autonomous system associated with the set of cosmolog-
ical equations. Thus, after studying in Sect. 5 the critical
points of the system, and their stability conditions in Sect. 6,
we perform a numerical treatment for the autonomous sys-
tem in Sect. 7. Finally, we summarize our findings and our
conclusions in Sect. 8.

2 Teleparallel gravity

The teleparallel equivalent of General Relativity, or also
known as teleparallel gravity (TG) provides an alternative
description of gravity in terms of torsion and not curvature
[66,67,69]. TG is a gauge theory for the translation group
[64–66,70], with the tetrad field eAμ playing the role of the
dynamical variable of the theory instead the space-time met-
ric gμν , and they are locally related by

gμν = ηABe
A
μe

B
ν, (1)

where ηAB = diag (−1, 1, 1, 1) is the Minkowski tangent
space metric. In a general Lorentz-rotated frame the tetrad
field becomes

eAμ = ∂μx
A + ωA

Bμx
B + BA

μ, (2)

where the first two terms contain the inertial effects of the
frame through the spin connection ωA

Bμ, and the third term

BA
μ is the translational gauge potential representing the grav-

itational field [66].
The spin connection is defined as

ωA
Bμ = ΛA

D(x)∂μΛ D
B (x), (3)

being ΛA
D(x) a local (point-dependent) Lorentz transforma-

tion. It is a purely inertial spin connection, or flat connection,
for which the curvature tensor vanishes identically

RA
Bμν = ∂μωA

Bν − ∂νω
A
Bμ + ωA

CμωC
Bν − ωA

Cνω
C
Bμ = 0.

(4)

On the other hand, for a tetrad field that includes the non-
trivial translational gauge potential BA

μ the torsion tensor is
non-vanishing and it is given by

T A
μν = ∂μe

A
ν − ∂νe

A
μ + ωA

Bμ eBν − ωA
Bν e

B
μ. (5)

The spacetime-indexed linear connection associated with the
inertial spin connection ωA

Bν is written as

Γ ρ
νμ = e ρ

A ∂μe
A
ν + e ρ

A ωA
Bμe

B
ν, (6)

which is the so-called Weitzenböck connection, and it is
related to the Levi-Civita connection Γ̄

ρ
νμ through

Γ ρ
νμ = Γ̄ ρ

νμ + K ρ
νμ, (7)

where

K ρ
νμ = 1

2

(
T ρ

ν μ + T ρ
μ ν − T ρ

νμ

)
. (8)

is the contorsion tensor, and

T ρ
μν = e ρ

A T A
μν = Γ ρ

νμ − Γ ρ
μν. (9)

is the purely spacetime form of the torsion tensor.
The action of TG is given by [66]

S = 1

2κ2

∫
d4xe T , (10)

where e = det (eAμ) = √−g, and T is the torsion scalar that
is defined as

T = S μν
ρ T ρ

μν, (11)

where

S μν
ρ = 1

2

(
Kμν

ρ + δμ
ρ T θν

θ − δν
ρ T θμ

θ

)
, (12)

is the so-called super-potential. The gravitational field equa-
tions can be obtained by varying with respect to the tetrad
field eAμ, or with respect to BA

μ . Moreover, using the relation
(7) one can show that the torsion scalar T and the curvature
scalar R of Levi-Civita connection satisfy

T = −R + 2e−1∂μ(eT νμ
ν), (13)
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and therefore, TG and GR are equivalent at the level of field
equations.

However, in the same way as one can modify gravity start-
ing from GR, one can also modify gravity starting from TG,
either by introducing a non-minimally coupled matter field,
as for example a scalar field [113,117–120], or adding into
the action non-linear terms in the torsion scalar T , as for
example in f (T ) gravity [76,77,88,94]. In all the cases,
because the relation (13) only guarantees the equivalence
with GR for a gravitational action linear in torsion or decou-
pled from other fields, we obtain new classes of modified
gravity theories not equivalent to their corresponding coun-
terpart based on curvature. Furthermore, it has been seen
that these gravitational modifications based on torsion have
a rich phenomenology which has resulted in a fair number of
articles in cosmology of early and late-time Universe [90].

Below we investigate the dynamics of a class of scalar-
torsion f (T, φ) gravity theories [106,107] that include fea-
tures from both non-minimally coupled scalar field models,
and modify gravity models with non-linear mater-gravity
coupling [91–94], inspired in the similar constructions based
on curvature such as in non-minimally coupled f (R) gravity
models [75,95–102], and the so-called generalised f (R, φ)

gravity theories [105,123,124].

3 Scalar-torsion f (T, φ) gravity

The relevant action is [106,107]

S =
∫

d4x e [ f (T, φ) + P(φ)X ] + Sm + Sr , (14)

where f (T, φ) is an arbitrary function of the torsion scalar
T and a scalar field φ and X = −∂μφ∂μφ/2. Also, Sm is the
action of non-relativistic matter, including baryons and dark
matter, and Sr is the action describing the radiation compo-
nent.

In choosing the cosmological background, we assume the
diagonal tetrad field

eAμ = diag(1, a, a, a), (15)

which is a proper tetrad naturally associated with the van-
ishing spin connections ωA

Bμ = 0 [130], and which leads
to the flat Friedmann–Lemaître–Robertson–Walker (FLRW)
metric

ds2 = −dt2 + a2 δi j dx
i dx j , (16)

where a is the scale factor, function of the cosmic time t .
Hence, the background equations are given by

f (T, φ) − P(φ)X − 2T f,T = ρm + ρr , (17)

f (T, φ) + P(φ)X − 2T f,T − 4Ḣ f,T − 4H ḟ,T = −pr ,

(18)

−P,φX − 3P(φ)H φ̇ − P(φ)φ̈ + f,φ = 0, (19)

where H ≡ ȧ/a is the Hubble rate, a dot represents derivative
with respect to t , and a comma denotes derivative with respect
to φ or T . Also, the functions ρi , pi , with i = m, r are
the energy and pressure densities of non-relativistic matter
(cold dark matter and baryons), and radiation, respectively,
being that we have already used in the above equations the
corresponding barotropic equations of state wm = pm/ρm =
0 and wr = pr/ρr = 1/3.

In order to proceed forward we are going to consider the
class of models with [107]

f (T, φ) = − 1

2κ2 T − F(φ)G(T ) − V (φ), (20)

where V (φ) is the scalar potential, F(φ) the non-minimal
coupling function of φ, and G(T ) an arbitrary function of T .
Then, we obtain

3

κ2 H
2 = G(T )F(φ) − 2TG,T F(φ) + V + P(φ)X

+ρm + ρr , (21)

− 2

κ2 Ḣ = 2P(φ)X + 4ḢG,T F(φ) + 4HG,T T Ṫ F(φ)

+4HG,T Ḟ + ρm + 4

3
ρr , (22)

while the motion equation of φ is written as

P(φ)φ̈ + 3P(φ)H φ̇ + P,φX + G(T )F,φ + V,φ = 0. (23)

Following Ref. [6], the Friedmann equations (21) and (22)
can also be rewritten as

3

κ2 H
2 = ρde + ρm + ρr , (24)

− 2

κ2 Ḣ = ρde + pde + ρm + 4

3
ρr , (25)

where we have defined the energy and pressure densities of
dark energy in the way

ρde = P(φ)X + V + (G − 2TG,T )F(φ), (26)

pde = P(φ)X − V − (G − 2TG,T )F(φ)

+4(2TG,T T + G,T )F(φ)Ḣ + 4HG,T F,φφ̇. (27)

Furthermore, we can define the effective dark energy equation-
of-state parameter as

wde = pde
ρde

. (28)

One can easily see that ρde and pde obey the standard evo-
lution equation

ρ̇de + 3H(ρde + pde) = 0. (29)

which is consistent with energy conservation law and the
fluid evolution equations

ρ̇m + 3Hρm = 0, (30)
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ρ̇r + 4Hρr = 0. (31)

Lastly, concerning with the cosmological investigations, it
proves convenient to introduce the total equation-of-state
parameter as

wtot = pde + pr
ρde + ρm + ρr

, (32)

which is immediately related to the deceleration parameter
q through

q = 1

2
(1 + 3wtot ) , (33)

and hence acceleration occurs when q < 0, as well as the
standard density parameters

Ωm ≡ κ2ρm

3H2 , Ωde ≡ κ2ρde

3H2 , Ωr ≡ κ2ρr

3H2 , (34)

such that

Ωde + Ωm + Ωr = 1. (35)

In order to find cosmological solutions and to study the
complete dynamics in the phase space for this class of dark
energy models we are going to assume the ansatz

G(T ) =
(
T

6

)1+s

, (36)

and P = 1. This expression is inspired by modify gravity
models with non-linear matter-gravity coupling [75,95,96],
but neglecting the kinetic term of the scalar field. Includ-
ing the kinetic term could deviate the squared tensor propa-
gation speed from 1 [122], which is something undesirable
[35,36]. This non-linear scalar-torsion coupling is also moti-
vated from the physics of the very early universe, where it
is associated with the generation of primordial fluctuations
during inflation, in the context of f (T, φ) gravity [107].

In this case, the energy and pressure densities of dark
energy can be written as

ρde = φ̇2

2
+ V − (1 + 2s)H2(1+s)F(φ), (37)

pde = φ̇2

2
− V + (1 + 2s)H2(1+s)F(φ)

+2

3
(1 + s)(1 + 2s)H2s F(φ)Ḣ

+2

3
(1 + s)H1+2s F,φφ̇, (38)

and the motion equation of φ becomes

φ̈ + 3H φ̇ + H2(1+s)F,φ + V,φ = 0. (39)

Thus, Eqs. (24) and (25), along with equations (37) and
(38), and Eqs. (30), (31), and (39), compose the set of cos-
mological equations for the model.

4 Dynamical system

To obtain the corresponding autonomous system associated
with the above set of cosmological equations, we introduce
the following useful dimensionless variables [6,131]

x = κφ̇√
6H

, y = κ
√
V√

3H
,

u = −1

3
κ2(2s + 1)F(φ)H2s, � = κ

√
ρr√

3H
, (40)

and

λ = −V ′(φ)

V (φ)
, σ = − F ′(φ)

F(φ)
, (41)

Γ = V (φ)V ′′(φ)

V ′(φ)2 , Θ = F(φ)F ′′(φ)

F ′(φ)2 , (42)

that satisfy the constraint equation

x2 + y2 + u + Ωm + �2 = 1. (43)

Therefore, we obtain the dynamical system

dx

dN
= − f1(x, y, u, �)

2(1 + 2s) [(s + 1)u − 1]
, (44)

dy

dN
= −y f2(x, y, u, �)

2(1 + 2s) [(s + 1)u − 1]
, (45)

du

dN
= u f3(x, y, u, �)

(1 + 2s) [(s + 1)u − 1]
, (46)

d�

dN
= −� f4(x, y, u, �)

2(1 + 2s) [(s + 1)u − 1]
, (47)

dλ

dN
= −√

6(Γ − 1)λ2x, (48)

dσ

dN
= −√

6(Θ − 1)σ 2x, (49)

where we have defined

f1(x, y, u, �) = (6s + 3)x3 + 2
√

6(s + 1)σ x2u

+(2s + 1)x
[
3(2s + 1)u − 3y2 + �2 − 3

]

+√
6 [(s + 1)u − 1]

[
σu − λy2(1 + 2s)

]
, (50)

f2(x, y, u, �) = √
6x [(s + 1)u [λ (1 + 2s) + 2σ ] − λ(2s + 1)]

−(2s + 1)
[
3

(
y2 + u − 1

) − �2]

+(6s + 3)x2, (51)
f3(x, y, u, �) = 3s(2s + 1)x2 − √

6σ x [(s + 1)u − 2s − 1]

+s(2s + 1)
[
�2 − 3

(
y2 + u − 1

)]
, (52)

f4(x, y, u, �) = 3(2s + 1)x2 + 2
√

6(s + 1)σ xu

+(2s + 1)
(
4su − 3y2 + u + �2 − 1

)
. (53)

Using the above set of phase space variables we can also
write

Ωde = x2 + y2 + u, Ωm = 1 − x2 − y2 − u − �2,

Ωr = �2. (54)
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Similarly, the equation of state of dark energy wde =
pde/ρde can be rewritten as

wde =
2
√

2
3σ xu

(u − 2) [u (s + 1) − 1]
(
x2 + y2 + u

)

−
2
√

6σ xu

(2s + 1)(u − 2)
+ �2 + 3

3
(
x2 + y2 + u

)

− 3x2 − 3
(
y2 + u − 1

) + �2

3 [u(s + 1) − 1]
(
x2 + y2 + u

) , (55)

whereas the total equation of state becomes

wT = −1 + 1

s + 1
+ (s + 1)

(
y2 − x2

) − s

(s + 1) [u(s + 1) − 1]
(56)

+
4
√

2
3σ x

(2s + 1)(u − 2)
− (2s + 1)�2 + 2

√
6σ x

3(2s + 1) [(s + 1)u − 1]

−
2
√

2
3σ xu

(2s + 1)(u − 2)
. (57)

The dynamical system (44)–(49) is not an autonomous sys-
tem unless the parameters Γ and Θ are known [6,131]. From
now we concentrate in the exponential potential V (φ) =
V0e−λκφ , with λ a dimensionless constant, that is, Γ = 1. Let
us remember that this scalar potential can give rise to an accel-
erated expansion, and at the same time, it allows to obtain
scaling solutions [6,48]. On the other hand, for the non-
minimal coupling function of φ we take F(φ) = F0e−σκφ ,
such that Θ = 1. This is the most natural and simple choice
compatible with the exponential scalar potential [53].

5 Critical points

We obtain the critical points or fixed points (xc, yc, uc, �c) of
the corresponding autonomous system by imposing the con-
ditions dx/dN = dy/dN = du/dN = d�/dN = 0. From
the definition (40), the values xc, yc, uc and �c must be reals
with yc ≥ 0 and �c ≥ 0. The critical points are presented
in the Table 1, while the expressions for the cosmological
parameters for each critical point are shown in Table 2.

The point aR is a radiation-dominated solution Ωr = 1
with a total equation of state wtot = 1/3. The equation of
state of dark energy takes the value wde = (4s + 1)/3,
which depends on the parameter s. It exists for all the val-
ues of parameters s, σ and λ. Point bR is a scaling solution
with Ω

(r)
de = 4/λ2, and Ωm = 0. For this point we found

wde = wtot = 1/3. The physical condition 0 < Ω
(r)
de < 1

imposes the constraint |λ| > 2. Point cR is also a scal-
ing solution which is a new solution that exist only for
s �= 0. The fractional energy density parameter of dark

energy is Ω
(r)
de = 4s(4s + 1)/(3σ 2), and Ωm = 0. The

constraints for the parameters due to the physical condition
0 < Ω

(r)
de < 1 have been put in Table 3 . This point also satis-

fies wde = wtot = 1/3. So, points bR and cR describe a non-
standard radiation-dominated era in which there is a small
contribution coming from dark energy. Thus, if bR and cR
are both responsible for the scaling radiation era, we also need
to consider the earliest constraint coming from physics of big
bang nucleosynthesis (BBN) which requires Ω

(r)
de < 0.045

[126,127]. So, in the case of point bR we find |λ| > 9.94,
while for cR we obtain −0.25 < s ≤ 0 for σ �= 0, or,
s ≤ −0.25 (or s > 0) and |σ | > 5.44

√
s (4s + 1).

PointdM represents a standard cold dark matter-dominated
era with Ωm = 1, wde = s and wtot = 0. This point
exists for all the values of parameters. Points e and f sat-
isfy Ωde = 1, but they cannot explain the current accel-
erated expansion because them behave as stiff matter with
wde = wtot = 1. On the other hand, point gM describes a
non-standard cold dark matter-dominated era with a small
contribution of the fractional dark energy density parameter
given by Ω

(m)
de = 3/λ2, Ωr = 0, and wde = wtot = 0. The

point iM is a new fixed point which is present only for s �= 0
and it is a scaling solution representing a non-standard cold
dark matter-dominated era with Ω

(m)
de = 3s(3s + 1)/(2σ 2),

Ωr = 0, and wde = wtot = 0. The constraints for the param-
eters obtained from the physical condition 0 < Ω

(m)
de < 1 are

shown in Table 3. If points gM and iM represent both the scal-
ing matter era they are constrained to satisfy Ω

(m)
de < 0.02

(95% CL), at redshift z ≈ 50, according to CMB measure-
ments [125]. Thus, for gM we find |λ| > 12.25, while for iM
we get −0.3̄ < s ≤ 0 for σ �= 0, or s ≤ −0.3̄ (or s > 0) and
|σ | >

√
s(225s + 75).

Point h is identified as dark energy-dominated era with
Ωde = 1, and wde = wtot = (λ2 − 3)/3. It exists for
|λ| <

√
6 and it can explain the current cosmic accelera-

tion for |λ| <
√

2 [6]. Points j and k provide dark energy-
dominated eras which can explain the cosmic accelerated
expansion. These are also new solutions of dark energy which
are present only for s �= 0. The expressions for wde and wtot

are shown in Table 2, whereas the existence and accelerated
expansion conditions are detailed in Table 3. Finally, point l
is a de Sitter solution with Ωde = 1, and wde = wtot = −1,
which provides accelerated expansion for the all values of
the parameters. Although this points exist for s = 0, the new
expression for the phase space coordinate yc associated with
it and reported in Table 1 is a generalisation of the case s = 0,
which now also includes values for s �= 0. The conditions of
existence for this point have also been detailed in Table 3.
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Table 1 Critical points for the autonomous system (44)–(49) for V (φ) = V0e−λκφ and F(φ) = F0e−σκφ . We define A = 9s2(2s+1)2−6s(s+1)σ 2

Name xc yc uc �c

aR 0 0 0 1

bR
2
√

2
3

λ
2√
3λ

0
√

1 − 4
λ2

cR − 2
√

2
3 s

σ
0 4s(2s+1)

3σ 2

√
1 − 4s(4s+1)

3σ 2

dM 0 0 0 0

e −1 0 0 0

f 1 0 0 0

gM

√
3
2

λ

√
3
2

√
1
λ2 0 0

h λ√
6

√
1 − λ2

6 0 0

iM −
√

3
2 s

σ
0 3s(2s+1)

2σ 2 0

j − 3s(2s+1)+√
A√

6(s+1)σ
0

(2s+1)
(

3s
(
x2
c +1

)+√
6σ xc

)

√
6(s+1)σ xc+3s(2s+1)

0

k −3s(2s+1)+√
A√

6(s+1)σ
0

(2s+1)
(

3s
(
x2
c +1

)+√
6σ xc

)

√
6(s+1)σ xc+3s(2s+1)

0

l 0
√

σ

(2s+1)
(
λ+ σ

2s+1

) λ(2s+1)
λ+2λs+σ

0

Table 2 Cosmological parameters for the critical points in Table 1. We define A = 9s2(2s + 1)2 − 6s(s + 1)σ 2. The fractional energy density of
the radiation fluid is calculated through Ωr = �2 = 1 − Ωm − Ωde

Name Ωde Ωm wde wtot

aR 0 0 1
3 (4s + 1) 1

3

bR
4
λ2 0 1

3
1
3

cR
4s(4s+1)

3σ 2 0 1
3

1
3

dM 0 1 s 0

e 1 0 1 1

f 1 0 1 1

gM
3
λ2 1 − 3

λ2 0 0

h 1 0 1
3

(
λ2 − 3

) 1
3

(
λ2 − 3

)

iM
3s(3s+1)

2σ 2 1 − 3s(3s+1)

2σ 2 0 0

j 1 0
√
A+3s2

3s(s+1)

√
A+3s2

3s(s+1)

k 1 0 3s2−√
A

3s(s+1)
3s2−√

A
3s(s+1)

l 1 0 −1 −1

6 Stability of critical points

In order to study the stability of the critical points we consider
time dependent liner perturbations δx , δy, δu and δ� around
each critical point in the form x = xc + δx , y = yc + δy,
u = uc + δu, and � = �c + δ�. By substituting these expres-
sions into the autonomous system (44)–(48) and linearising
them we obtain the linear perturbation matrix M [6]. The
eigenvalues of M, namely, μ1, μ2, μ3 and μ4 evaluated at
each fixed point determines the stability conditions for each

one of them. The classification of the stability properties is
established usually in the following way: (i) Stable node: all
the eigenvalues are negative; (ii) Unstable node: all the eigen-
values are positive; (iii) Saddle point: one, two, or three of the
four eigenvalues are positive and the others are negative; (iv)
Stable spiral: The determinant of M is negative, and the real
part of all the eigenvalues are negative. Points which are sta-
ble node or stable spiral are called attractor points, and these
fixed points are reached through the cosmological evolution
of the Universe, independently of the initial conditions. The
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Table 3 Properties of the critical points

Name Existence Stability Acceleration

aR ∀ s, λ, σ Unstable ∀ s, λ, σ Never

bR |λ| > 2 Unstable ∀ s, λ, σ Never

cR σ �= 0 Unstable ∀ s, λ, σ Never

∧(− 1
8

√
12σ 2 + 1 − 1

8 < s < − 1
4 ) Unstable ∀ s, λ, σ Never

∨(0 < s < 1
8

√
12σ 2 + 1 − 1

8 ) Unstable ∀ s, λ, σ Never

dM ∀ s, λ, σ Unstable ∀ s, λ, σ Never

e ∀ s, λ, σ Unstable ∀ s, λ, σ Never

f ∀ s, λ, σ Unstable ∀ s, λ, σ Never

gM |λ| >
√

3 Unstable for s ∈ R Never

∧
(
λ < −√

3 ∧ σ > −λs
)

∨
(
λ >

√
3 ∧ σ < −λs

)

h |λ| <
√

6 s ∈ R |λ| <
√

2

∧
(
−√

2 < λ < 0 ∧ σ < −λs
)

∨
(

0 < λ <
√

2 ∧ σ > −λs
)

iM s > 0 ∧ |σ | >

√
3s(3s+1)

2 Unstable for Never

s < − 1
3 ∧ |σ | >

√
3s(3s+1)

2 s > 0 ∧ |σ | >

√
3s(s+1)(2s+1)

2

− 1
6

√
8σ 2 + 1 − 1

6 < s < − 1
3

∧(σ > 0 ∧ λ < − σ
s )

∨(σ < 0 ∧ λ > − σ
s )

j s > 0 ∧ |σ | ≤
√

3s(2s+1)2

2(s+1)
−1 < s < 0 σ ∈ R ∧ −1 < s < 0

s < −1 ∧ |σ | ≤
√

3s(2s+1)2

2(s+1)
∧(λ ≤ 0 ∧ (σ < −λs ∨ σ > 0))

−1 ≤ s < 0 and σ ∈ R ∨(λ > 0 ∧ (σ < 0 ∨ σ > −λs))

k s > 0 ∧ |σ | ≤
√

3s(2s+1)2

2(s+1)
s >

√
3σ 2

10 + 1
25 − 1

5 |σ | <

√
2s(5s+2)

3

s < −1 ∧ |σ | ≤
√

3s(2s+1)2

2(s+1)
∧(σ < 0 ∧ λ > − σ

s ) ∧ s > 0

−1 ≤ s < 0 and σ ∈ R ∨(σ > 0 ∧ λ < − σ
s ) ∨ (−1 < s < − 2

5 ∨ s < −1
)

s < −
√

3σ 2

10 + 1
25 − 1

5

∧(σ ≤ −√
2 ∧ λ < − σ

s )

∨(σ >
√

2 ∧ λ > − σ
s )

s < −1

∧(−√
2 < σ < 0 ∧ λ < − σ

s )

∨(0 < σ ≤ √
2 ∧ λ > − σ

s )

−1 < s < −
√

3σ 2

10 + 1
25 − 1

5

∧(−√
2 < σ < 0 ∧ λ < − σ

s )

∨(0 < σ <
√

2 ∧ λ > − σ
s )

l σ < 0 ∧ s > 0 ∧ λ < − σ
2s+1 λ > 0 ∧ s > 0 ∧ Always

σ > 0 ∧ s > 0 ∧ λ > − σ
2s+1 0 < σ ≤ −4λ2s+λ

√
9
λ2 +8s(2(λ2+6)s+9)−3

8λ

σ < 0 ∧ s < − 1
2 ∧ λ > − σ

2s+1

σ > 0 ∧ s < − 1
2 ∧ λ < − σ

2s+1

σ < 0 ∧ − 1
2 < s < 0 ∧ λ < − σ

2s+1

σ > 0 ∧ − 1
2 < s < 0 ∧ λ > − σ

2s+1

123



Eur. Phys. J. C (2021) 81 :480 Page 9 of 17 480

conditions of existence, stability and acceleration of critical
points for system (44)–(48) are shown in Table 3.

• Point aR has the eigenvalues

μ1 = −1, μ2 = 1, μ3 = 2, μ4 = −4s, (58)

then this point is always a saddle point.
• For point bR we obtain

μ1 = 1, μ2,3 = 1

2

(

−1 ∓
√

64

λ2 − 15

)

,

μ4 = −4(λs + σ)

λ
, (59)

which implies that it is a saddle point for all the values
of parameters.

• Similarly, point cR has the eigenvalues

μ1 = 1, μ2 = 2λs

σ
+ 2,

μ3,4 = −1

2
∓

√
4s

[
4s(4s + 1) − 3σ 2

]

4s(s + 1)(2s + 1) − 3σ 2 + 1

4
, (60)

and it is also always a saddle point.
• Point dM leads us to

μ1 = −1

2
, μ2 = −3

2
, μ3 = 3

2
, μ4 = −3s. (61)

which tells us that it is always a saddle point.
• For points e and f we find

μ1 =3, μ2 = 1, μ3 =3 ±
√

3

2
λ,

μ4 =−6s ± √
6σ,

(62)

where (+) corresponds to e and (−) to f . Point e is an
unstable node for s < σ√

6
and λ > −√

6 with σ ∈ R.
In any other case it is a saddle point. Also, point f is an
unstable node for λ <

√
6 and s < − σ√

6
, with σ ∈ R. If

one of these conditions is not satisfied then it is a saddle
point.

• Point gM has associated the eigenvalues

μ1 = −1

2
, μ2,3 = 3

4

(

−1 ∓
√

24

λ2 − 7

)

,

μ4 = −3(λs + σ)

λ
, (63)

which means that it is a saddle point for −2
√

6
7 ≤ λ <

−√
3 and σ > −λs, or

√
3 < λ ≤ 2

√
6
7 and σ < −λs,

with s ∈ R. On the other hand, it is a stable node for

s ∈ R, and, −2
√

6
7 < λ < −√

3 ∧ σ < −λs, or
√

3 <

λ < 2
√

6
7 ∧σ > −λs. However, this point cannot provide

the current accelerated expansion of the Universe.
• For point h we get

μ1 = 1

2
(λ2 − 6), μ2 = 1

2
(λ2 − 4),

μ3 = λ2 − 3, μ4 = −λ(λs + σ). (64)

This critical point has a range in the parameters space
with accelerated expansion, and we are interested in its
stability conditions within this range. One finds that when
point h has accelerated expansion it is a stable node for
−√

2 < λ < 0 ∧ σ < −λs, or 0 < λ <
√

2 ∧ σ > −λs,
with s ∈ R, and in other cases it is a saddle point.

• In the case of point iM one finds

μ1 = −1

2
, μ2 = 3(λs + σ)

2σ
,

μ3,4 = −3

4
∓ 3

√
3s4

2σ 2 − 3s(s + 1)(2s + 1)
+ s

2
+ 1

16
.

(65)

Since it is a matter solution we are interested in unstable
regions of the parameters space. We obtain a saddle point,
which is always unstable, with the corresponding region
of parameters in Table 3. Oppositely, this scaling solution
can also be a stable node, as for example for s > 0 ∧
−√

3
√

s(s(26s+11)+1)
16s+2 < σ < −

√
3
2

√
s(3s + 1) ∧ λ >

−σ
s . Nonetheless, it is not viable to explain a late-time

acceleration.
• Also, for points j and k we obtain

μ1 =
[
3s(2s + 1) ± √

A
]
(λs + σ)

2s(s + 1)σ
, μ2 = −3s ± √

A

2s(s + 1)
,

μ3 = s(2s − 1) ± √
A

2s(s + 1)
, μ4 = 3s2 ± √

A

s(s + 1)
, (66)

where A = 9s2(2s + 1)2 − 6s(s + 1)σ 2, and sign (+) is
for j , and (−) for k. Both points are dark energy solutions
and they can explain the current accelerated expansion of
the Universe. Therefore we are interested in finding the
stability conditions for these points when them provide
accelerated expansion. From the above eigenvalues we
find that exists a region of the space of parameters in
which these points are stable nodes and thus attractors.
These constraints for the parameters are shown in Table 3.
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• Finally, for point l we find the eigenvalues

μ1 = −2, μ2 = −3,

μ3,4 = −3

2
∓

√
9

4
− 3λσ(λs + σ)

λs(2s + 1) − σ
. (67)

This is a de Sitter solution which therefore provides accel-
erated expansion for all the values of the parameters. We
find that it is a stable node for λ > 0 ∧ s > 0 ∧

0 < σ ≤
[
−4λ2s + λ

√
9
λ2 + 8s

(
2

(
λ2 + 6

)
s + 9

) − 3
]

8λ
.

Also, for s < 0 this point can be a stable node under
some constraints of the parameters s, λ and σ , but the
expressions for these constraints are extremely large and
then we do not put them explicitly here. Finally, this point
is never a stable spiral.

7 Numerical results

We have found four final attractors which represent the dark
energy-dominated epoch with cosmic acceleration, the points
h, k, j and l. The attractor h is already present in the ordinary
minimally coupled exponential quintessence model [48], but,
k, j , and l are new solutions which only arise in the non-
minimal case and for s �= 0. Furthermore, it is found the
scaling solutions bR and cR which are saddle points and rep-
resent the so-called scaling radiation era. The point cR is a
new scaling solution which only exists in the non-minimal
case and for s �= 0. Also, we have found the scaling solu-
tions gM and iM which are saddle points and they describe
the so-called scaling dark matter era. Point iM only exists in
the non-minimal case and s �= 0.

In Figs. 1, 2, and 3, we show the phase space trajectories
aR → dM → k, aR → gM → k and bR → gM → k. In
Fig. 1 we depict the behaviour of the energy densities of dark
energy, dark matter and radiation, while in Fig. 2 we show the
total equation of state and the equation of state of dark energy.
The time of radiation-matter equality is around z ≈ 3387, and
the transition to the accelerated phase happens at z ≈ 0.65,
as it can be observed from the evolution curve of the decel-
eration parameter in Fig. 4. This is very close to the ΛCDM
value. Also, it is obtained the current values of the fractional
energy density parameters of dark energy Ω

(0)
de ≈ 0.68 and

dark matter Ω
(0)
m ≈ 0.32, with the equation of state of dark

energy given by wde(z = 0) ≈ −1.048 (dashed and dot-
dashed blue lines), and wde(z = 0) ≈ −1.047 (solid blue
line), which is consistent with the observational constraint
w

(0)
de = −1.028 ± 0.032, and with the other constraints for

the cosmological parameters from Planck [7]. Additionally,

Fig. 1 We depict the evolution of the energy density of dark energy
ρde (blue), dark matter (including baryons) ρm (orange) and radiation
ρr (green) as functions of the redshift z, for s = −1.20, σ = 0.3
and λ = 150. The solid blue line corresponds to the initial conditions
xi = 0.0108, yi = 0.00765, ui = 9.3 × 10−30, �i = 0.999788, dashed
blue line to xi = 1 × 10−9, yi = 4 × 10−7, ui = 9.1 × 10−30, �i =
0.999877, and dot-dashed blue line to xi = 1×10−33, yi = 1×10−41,
ui = 1.05 × 10−29, �i = 0.999877. It is observed the two new scaling
regimes during the radiation and dark matter era. To obtain this plot
we have found the current values for the fractional energy densities
of dark energy Ω

(0)
de = 0.68 and dark matter Ω

(0)
m = 0.32, at redshift

z = 0, according to Planck results [7]. Also, during the scaling radiation
epoch we have imposed the BBN constraint Ω(r)

de < 0.045 [127], and the
constraint for the field energy density during the scaling matter epoch
Ω

(m)
de < 0.02 (95% CL), at redshift z ≈ 50, from CMB measurements

[125]

during the scaling radiation/matter regimes, for the evolution
curvesaR → gM → k, and bR → gM → k, we have applied
the constraints on the fractional energy density parameters
of dark energy, Ω

(r)
de , Ω

(m)
de , coming from the Physics of

Big Bang Nucleosynthesis (BBN), Ω
(r)
de < 0.045 [127], and

CMB measurements from Planck, Ω
(m)
de < 0.02 (95% CL),

at redshift z ≈ 50 [125]. For example, in Fig. 1, during the
scaling radiation era bR , we obtain Ω

(r)
de ≈ 1.78 × 10−4

(solid blue line), and during the scaling matter era gM , we
find Ω

(m)
de ≈ 1.35 × 10−4 (solid blue line), and Ω

(m)
de ≈

1.37 × 10−4 (dashed blue line), at redshift z = 50. Finally,
in Fig. 5 we have depicted the evolution of the Hubble rate
H(z) for the present model using the above values of param-
eters and initial conditions, along with the evolution of Hub-
ble rate HΛCDM (z) of the ΛCDM model and the Hubble
data from Refs. [132,133]. It can be observed that the results
obtained stayed very close to the ΛCDM results, and the
present model passes the preliminary requirements to be con-
sidered as viable [7].

Similarly, in Figs. 6, 7, and 8, we show the evolution curves
in the phase space for the transitions aR → dM → h, aR →
iM → h and cR → iM → h. In Figs. 6, and 7, we plot the
evolution of the energy densities of the matter components
and the total equation of state and the equation of state of
dark energy, respectively. As before, the redshift of radiation-
matter equality is around z ≈ 3387, and the transition to the
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Fig. 2 It is shown the behaviour of the total equation of state wtot
(orange line), the equation of state of dark energy wde (blue line), and
the total equation of state of ΛCDM model (green line) as functions of
the redshift z, for the values of parameters s = −1.20, σ = 0.3 and
λ = 150. Also, for solid, dashed, and dot-dashed blue lines we have
the same initial conditions of Fig. 1. It is observed the phantom value
wde ≈ −1.05 at the current time z = 0, which is consistent with the
observational constraint w

(0)
de = −1.028 ± 0.032, from Planck data [7]

Fig. 3 We plot the physical evolution curves in the phase space for the
values of parameter s = −1.20, σ = 0.3 and λ = 150, and for the
three different set of initial conditions xi = 1 × 10−9, yi = 4 × 10−7,
ui = 9.1 × 10−30, �i = 0.999877 (red dashed), xi = 1 × 10−33,
yi = 1 × 10−41, ui = 1.05 × 10−29, �i = 0.999877 (brown), and
xi = 0.0108, yi = 0.00765, ui = 9.3 × 10−30, �i = 0.999788 (black)

accelerated phase at z ≈ 0.62 (see Fig. 9), very close to the
ΛCDM value. Also, these evolution trajectories can adjust
the current values of the fractional energy density parameters
of dark energy Ω

(0)
de ≈ 0.68 and dark matter Ω

(0)
m ≈ 0.32,

and the equation of state of dark energy now takes the value
wde(z = 0) ≈ −0.9968 (solid and dot-dashed blue lines),
and wde(z = 0) ≈ −1 (dashed blue line), which is again

Fig. 4 We depict the evolution of the deceleration parameter q(z) as
a function of the redshift z for the values of parameters s = −1.20,
σ = 0.3 and λ = 150, and the same initial conditions used in Fig. 1.
We have also depicted the corresponding curve for the deceleration
parameter qΛCDM (z) of the ΛCDM model. It is observed that in all
the cases the cosmological deceleration-acceleration transition redshift
happens at z ≈ 0.65, very close to ΛCDM value and consistent with
current observational data [7]

Fig. 5 We show the evolution of the Hubble rate H(z) as a function
of the redshift z, for the values of parameters s = −1.20, σ = 0.3 and
λ = 150, and the same initial conditions used in Fig. 1, along with the
evolution of the Hubble rate HΛCDM (z) in the ΛCDM model and the
Hubble data from Refs. [132,133]. We have used the current value of
the Hubble rate H0 = 67.4 km/(Mpc s) from Planck 2018 [7]

consistent with the observational constraints from Planck [7].
Likewise, during the scaling radiation era represented by the
critical point cR , we have Ω

(r)
de ≈ 8.1 × 10−3 (dot-dashed

blue line), which is consistent with the BBN constraint [127],
and for the scaling matter era represented by point iM we
get Ω

(m)
de ≈ 5.89 × 10−3 (solid blue line), and Ω

(m)
de ≈

5.85 × 10−3 (dot-dashed blue line), at z = 50, which is also
consistent with CMB measurements [125]. Furthermore, in
Fig. 9 we also show the evolution of the Hubble rate H(z),
along with the evolution of Hubble rate HΛCDM (z) of the
ΛCDM model and the Hubble data from Refs. [132,133].
Then, the results that we have found here are very close to
the ΛCDM results, and so, the model satisfies the preliminary
requirements to be considered as viable [7].
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Fig. 6 We depict the evolution of the energy density of dark energy
ρde (blue), dark matter (including baryons) ρm (orange) and radiation
ρr (green) as functions of the redshift z, for s = −0.8, σ = 17 and
λ = 0.01. The dashed line corresponds to the initial conditions xi =
1 × 10−11, yi = 7.3 × 10−13, ui = 1 × 10−8, �i = 0.999875, solid
blue line to xi = 1 × 10−8, yi = 7.3 × 10−13, ui = 1 × 10−23,
�i = 0.999875, and dot-dashed blue line to xi = 0.0768467, yi =
7.3 × 10−13, ui = 0.002, �i = 0.995916. It is observed the two new
scaling regimes during the radiation and dark matter era. To obtain this
plot we have found the current values for the fractional energy densities
of dark energy Ω

(0)
de = 0.68 and dark matter Ω

(0)
m = 0.32, at redshift

z = 0, according to Planck results [7]. Also, during the scaling radiation
epoch we have imposed the BBN constraint Ω(r)

de < 0.045 [127], and the
constraint for the field energy density during the scaling matter epoch
Ω

(m)
de < 0.02 (95% CL), at redshift z ≈ 50, from CMB measurements

[125]

Fig. 7 It is shown the behaviour of the total equation of state wtot
(orange line), the equation of state of dark energy wde (blue line), and the
total equation of state of ΛCDM model (green line) as functions of the
redshift z for s = −0.8, σ = 17 and λ = 0.01. Also, for solid, dashed,
and dot-dashed blue lines we have the same initial conditions of Fig. 6.
It is obtained the value wde ≈ −0.997 at the current time z = 0, which
is consistent with the observational constraint w

(0)
de = −1.028 ± 0.032,

from Planck data [7]

8 Concluding remarks

In the present work we have investigated the cosmologi-
cal dynamics of dark energy in the context of scalar-torsion
f (T, φ) gravity, where f (T, φ) is a function of the torsion
scalar T , associated with the Weitzenböck connection in the

Fig. 8 We plot the physical evolution curves in the phase space for the
values of parameter s = −0.8, σ = 17 and λ = 0.01, and for the three
different set of initial conditions xi = 1 × 10−11, yi = 7.3 × 10−13,
ui = 1 × 10−8, �i = 0.999875 (brown), xi = 1 × 10−8, yi = 7.3 ×
10−13, ui = 1 × 10−23, �i = 0.999875 (black), and xi = 0.0768467,
yi = 7.3 × 10−13, ui = 0.002, �i = 0.995916 (red dashed)

Fig. 9 We depict the evolution of the deceleration parameter q(z) as
a function of the redshift z for the values of parameters s = −0.8,
σ = 17 and λ = 0.01, and the same initial conditions used in Fig. 6.
It is also shown the corresponding curve for the deceleration parameter
qΛCDM (z) of the ΛCDM model. It is observed that in all the cases
the cosmological deceleration-acceleration transition redshift happens
at z ≈ 0.62, very close to the ΛCDM value and then it is consistent
with current observational data [7]
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Fig. 10 We show the evolution of the Hubble rate H(z) as a function
of the redshift z, for the values of parameters s = −0.8, σ = 17 and
λ = 0.01, and the same initial conditions used in Fig. 1, along with the
evolution of the Hubble rate HΛCDM (z) of the ΛCDM model and the
Hubble data from Refs. [132,133]. We have used the current value of
the Hubble rate H0 = 67.4 km/(Mpc s) from Planck 2018 [7]

context of modified teleparallel gravity, and the scalar field
φ. Particularly, we have studied the class of theories with
Lagrangian density f (T, φ) = −T/2κ2 − F(φ)G(T ) −
V (φ), with F(φ) ∼ e−σκφ , V (φ) ∼ e−λκφ and G(T ) ∼
T 1+s , plus the canonical kinetic term for the scalar field.
The exponential scalar potential is the usual one studied in
the context of dark energy which admits scaling solutions,
while the exponential coupling function of the scalar field is
the simplest natural choice to be assumed with this potential
[53]. Furthermore, the function G(T ) generalises the typical
choice of a linear function of T for the non-minimal coupling
to gravity [113,117] to a non-linear case. It has been shown
in Ref. [107] that in order to generate primordial fluctua-
tions during inflation from f (T, φ) gravity, non-linear terms
in torsion scalar need to be considered to construct the cou-
pling function, when the non-minimal coupling to gravity
is switch on. These non-linear scalar-torsion coupling terms
can also be seen as a torsion-based analogue of non-linear
matter-gravity couplings in extended f (R) gravity theories
[75,95,96], but neglecting the coupling to the kinetic term of
the scalar field. Including the kinetic term in the non-minimal
coupling function could deviate the squared tensor propa-
gation speed from 1 [122], which is something undesirable
[35,36].

For the FLRW background, and in the presence of radi-
ation and cold dark matter, we have defined the effec-
tive energy and pressure densities of dark energy. We have
obtained the autonomous system associated with the set of
cosmological equations and then we have performed the
dynamical analysis in the phase space by getting the critical
points, their cosmological properties and stability conditions.
The critical points are presented in the Table 1, while the
expressions for the cosmological parameters for each critical
point are shown in Table 2. Finally, the conditions of exis-

tence, stability and acceleration are shown in Table 3. From
these results we have shown that the dark energy model at
hand is cosmologically viable since the thermal history of the
Universe is successfully reproduced. For instance, the corre-
sponding physical evolution curves in the phase space are
depicted in Figs. 3 and 8. Let us remember that for any dark
energy model to be viable it is required that the dark energy
remains subdominant during the radiation and matter domi-
nating eras, emerging only at late-times to produce the current
accelerated expansion of the Universe [48]. From the point of
view of the dynamical systems theory, it is required the exis-
tence of unstable critical points with decelerated expansion
representing the radiation and matter dominated periods, and
stable critical points (attractors) with accelerated expansion
to describe the dark energy phase [6,48].

The modified gravity extension of the teleparallel equiv-
alent of general relativity, or teleparallel gravity [58–70] for
short, namely, f (T ) gravity [76,77] has been proposed as
a good alternative to the curvature-based modified gravity
theories like f (R) gravity [71–75], to explain the current
accelerated expansion of the Universe, and its cosmologi-
cal dynamics has been studied in detail in Refs. [134–137].
However, as it has been shown in Refs. [90,107,134], only a
marginally stable de Sitter solution, and not a de Sitter attrac-
tor, is found when analysing the dynamics of f (T ) gravity.
Let us remember that an attractor condition of a fixed point
of any autonomous system is a special feature of such solu-
tion which allows that sooner or later the system reaches this
critical point for generic initial conditions [6,131]. This is a
highly desired property of any dark energy solution, either
a de Sitter, or scaling solution, in order to explain why dark
energy has to come to dominate just at late-times without a
fine-tuning of the initial conditions [6,48].

On the other hand, it is well known that scalar fields are
commonly present in particle physics, string theory, and cos-
mology, [105,138]. Furthermore, the non-minimal coupling
terms between the scalar field and curvature can arise from a
variety of model-building efforts in theoretical physics (see
also Refs. [105,138]), and they are required as countert-
erms in the process of quantisation of the scalar field in a
curved space-time [40]. In the context of cosmology, it is
well known that the introduction of a non-minimally cou-
pled scalar field is very healthy and it can give place to the
existence of new dark energy attractors, and scaling solutions
that play an important role in alleviating the coincidence and
energy scale problems of dark energy [54,55]. So, although
from a general theoretical point of view the increase in the
number of degrees of freedom of the system to explain the
corresponding phenomenon could lead to a weaker motiva-
tion for that model, in the present case, the addition of one
more degree of freedom in scalar-torsion f (T, φ) gravity is
very well motivated, and it is very closely related to simi-
lar constructions based on curvature like scalar-tensor grav-
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ity [105,138], and generalised scalar-tensor f (R, φ) gravity
theories [105,123,124].

Some interesting features have been found that make the
model appealing as a viable dark energy candidate. For the
non-linear coupling function G(T ) ∼ T 1+s , with s �= 0, we
have obtained new attractors solutions describing the dark
energy-dominated era and new scaling solutions represent-
ing the scaling radiation/matter eras. Since we have found
that the latter are saddle points, we got scaling regimes dur-
ing the radiation and cold dark matter epochs followed by the
dark energy attractor with accelerated expansion. In Figs. 1
and 6, as well as in Figs. 3, and 8, we have numerically
confirmed that the dynamics of the model can allow the
two scaling regimes previous to the dark energy-dominated
epoch, satisfying the cosmological constraints for the early-
time dark energy density from BBN [127] and CMB bounds
[7]. Therefore, the final attractor can be either a de Sitter
solution (wde = −1), or a dark energy-dominated solution
with Ωde = 1, and equation of state with quintessence-like,
phantom-like behaviour or experiencing the phantom-divide
crossing as illustrated in Figs. 2 and 7. We have also deter-
mined some ranges for the parameters of the scaling solu-
tions where there is also stability of them, but in this case,
these solutions cannot explain the current accelerated expan-
sion. On other hand, the phantom-divide crossing during the
cosmological evolution indicates a distinctive feature of our
model as compared with the minimally coupled scalar field in
GR, and it has been inherited from the linear case G(T ) ∼ T
for s = 0 [113].

These consequences, namely, the existence of new dark
energy attractors and new scaling solutions, are originated
by the addition of the scalar field φ non-minimally coupled
to the non-linear function G(T ) ∼ T 1+s . Furthermore, these
solutions are not present neither in pure f (T ) gravity [134–
137] nor in non-minimally coupled scalar field models with
a linear coupling to torsion (s = 0), the so-called teleparal-
lel dark energy model [113,115,116]. In fact, the new dark
energy attractors are the fixed points j and k, that are field
dominated solutions, and the fixed point l which is a de Sitter
solution. The new scaling solutions are the fixed points cR and
iM . All these critical points along with the remaining points
have been summarised in Table 1. We have parametrised the
non-linearity of the coupling between the scalar field and
torsion through the parameter s, being that the linear case
(teleparallel dark energy) is recovered for G(T ) ∼ T , that
is to say s = 0. For s = 0, it is seen that cR becomes equal
to the standard radiation era represented by fixed point aR ,
while iM converts to the standard matter era dM . So, the scal-
ing solutions cR and iM only exist in the case of a non-linear
coupling to torsion such that G(T ) ∼ T 1+s , with s �= 0.
Similarly, points j , k, and l only exist for the non-linear case
G(T ) ∼ T 1+s , with s �= 0, once that for s = 0 these points
are lost. In particular, for points j and k, with s = 0, we fall

into another different coupling-dominated solution. Also, for
s = 0, point l yields another de Sitter solution which exists
only for G(T ) ∼ T .

In Figs. 5, and 10, we have also depicted the evolution of
the Hubble rate H(z), along with the Hubble data from Refs.
[132,133], corroborating that the results obtained here are
very close to the ΛCDM results for H(z), and so the present
model satisfies the preliminary requirements to be consid-
ered as viable [7]. Even more, it is important to highlight
that due to the existence of new scaling solutions that natu-
rally incorporate the early dark energy, there is an additional
phenomenological interest in the present model that does not
happen in the case of theΛCDM model. The scaling solutions
provide a mechanism to alleviate the energy scale problem
of the ΛCDM model related to the large energy gap between
the critical energy density of the Universe today and the typ-
ical energy scales of particle physics [54,55]. This is due to
that during a scaling radiation/matter regime the field energy
density is not necessarily negligible compared to the energy
density of the background fluid at early times (see Figs. 1
and 6). Also, a model that predicts a dark energy component
during the early universe is strongly constrained, and it also
may lead to new imprints in the early-time physics that can
allow to distinguish it from the other alternatives to explain
dark energy [128,139].

The principal aim of our work has been to model dark
energy from the point of view of dynamical systems in the
context of scalar-torsion f (T, φ) gravity where T is the tor-
sion scalar of teleparallel gravity and φ is a canonical scalar
field. Thus, after calculating the modified Friedmann equa-
tions for the model at hand, we have written these equations
in the standard form by identifying the effective energy and
pressure densities of dark energy, Eqs. (26) and (27), respec-
tively. So, from these expressions it is recognized that dark
energy could be originated from both contributions, namely,
the energy density of the scalar field and the generalised non-
minimal coupling to torsion. In fact, by analysing the critical
points of the associated autonomous system we have found
new dark energy solutions that only exist for the case of the
non-linear coupling to torsion, G(T ) ∼ T 1+s with s �= 0.
Since we have verified that these new dark energy solutions
are attractors points the universe will definitely reach these
fixed points for a wide range of initial conditions. Further-
more, for any dark energy model to be viable it is neces-
sary the existence of the matter-dominated and radiation-
dominated eras before the dark energy era. In the framework
of dynamical systems these matter/radiation solutions are
described in terms of critical points of the autonomous sys-
tem that are required to be unstable points in order to allow the
transition to the dark energy era. For the dark energy model
studied in this paper, we have found both the critical points
describing the standard radiation/matter eras, as well as new
scaling solutions representing the scaling radiation/matter
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epochs. Then, from the stability analysis we have obtained
that all them are unstable points (saddle points). Furthermore,
since the scaling radiation/matter era is characterised by the
presence of a small portion of dark energy during the radia-
tion/matter era, there could be induced effects on the CMB
power spectrum, and also on the matter power spectrum at
present through the reduction of the matter fluctuation vari-
ance σ8 because the suppressed growth rate of matter pertur-
bations [20,49,140]. Therefore, these special features of the
present model lead to detectable observational signatures at
early and late times that may allow to distinguish it from the
ΛCDM model [54,141]. To further investigate these specific
observational signatures using the current CMB and LSS full
data set, and to constrain more tightly the free parameters of
the model, it is required a detailed analysis of the perturba-
tions around the cosmological background [20,49,56].

We would also like to note that for the present model to
be a good candidate for description of our Universe, it must
be verified that it is free from any theoretical pathologies,
such as ghost, gradient and tachyonic instabilities, through
a rigorous stability analysis in the presence of matter fields
[142], as well as, it is necessary to perform a detailed compar-
ison with all the cosmological observational data, e.g. SNIa,
BAO, CMB, LSS, etc [20,56], and Solar System data, after
extracting spherically symmetric solutions [78]. These nec-
essary studies lie beyond the scope of the present work and
thus are left for separated projects [143].
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