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Abstract Recently, Kumar and Ghosh have derived Kerr-
like rotating black hole solutions in the framework of four-
dimensional Einstein–Gauss–Bonnet theory of gravity and
investigated the black hole shadow. Using the steady-state
Novikov–Thorne model, we study thin accretion disk pro-
cesses for such rotating black holes including the energy
flux, temperature distribution, emission spectrum, energy
conversion efficiency as well as the radius of the inner-
most stable circular orbit. We also study the effects of the
Gauss–Bonnet coupling parameter α on these quantities.
The results are compared to slowly rotating relativistic Kerr
black holes which show that for a positive Gauss–Bonnet
coupling, thin accretion disks around rotating black holes
in four-dimensional Einstein–Gauss–Bonnet gravity are hot-
ter and more efficient than that for Kerr black holes with
the same rotation parameter a, while for a negative coupling
they are cooler and less efficient. Thus the accretion disk
processes may be considered as tools for testing Einstein–
Gauss–Bonnet gravity using astrophysical observations.

1 Introduction

Astrophysical objects are expected to grow in mass through
accretion. The presence of interstellar matter usually leads
to formation of accretion disks around compact objects. An
accretion disk is a flattened structure formed by rotating gas
which slowly spirals into a massive central body. The gas par-
ticles release gravitational energy in the form of heat as they
fall into the gravitational potential of the compact object. A
fraction of the heat is converted to radiation which is emitted
from the inner part of the accretion disk, causing it to cool
down. When the emitted radiation reaches radio, optical or
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X-ray telescopes, it provides the possibility of analyzing its
electromagnetic spectrum. The properties of this radiation
depend on the geodesic motion of the gas particles which
may also be associated with the structure and nature of the
central mass. Therefore important astrophysical information
can be obtained from the study of emission spectra of accre-
tion disks.

The standard model of geometrically thin accretion disks,
first proposed by Shakura and Sunyaev in 1973, is based on
Newtonian approach [1] and was extended to the case of gen-
eral relativity (GR) later on by Novikov and Thorne [2]. In
this model the mass accretion rate is assumed to be constant
and independent of the radius of the disk, that is, the disk is
in a steady state. Also, it is assumed that the accreting matter
has Keplerian motion which requires the central mass to be
devoid of a strong magnetic field. Moreover, the radiation
emitted from the disk is considered as black body radiation,
resulting from thermodynamic equilibrium of the disk. The
properties of the energy flux over the disk surface was ana-
lyzed in [3] and [4]. In this analysis the radiative efficiency,
in the sense of the capability of the central compact object
to convert rest mass into outgoing radiation via the accre-
tion process, was also computed. Thin accretion disk prop-
erties in modified theories of gravity such as f (R) gravity
[5–7], scalar-tensor-vector gravity [8], Einstein–Maxwell-
dilaton theory [9,10], Einstein-scalar–Gauss–Bonnet grav-
ity [11,12], Chern–Simons [13] and Horava–Lifshitz [14]
gravity have been studied in the past. In higher-dimensional
gravity models such as Kaluza–Klein and brane-world mod-
els, thin accretion disks have been investigated in [15–17].
Also the study of thin accretion disks based on the Novikov–
Thorne model, in the space-times of wormholes, neutron,
boson and fermion stars and naked singularities have been
carried out in [18–25], respectively. For study of thin accre-
tion disks in 4D Einstein–Gauss–Bonnet (EGB) gravity, see
[26]. In this paper we propose to extend the latter to the case
of rotating black hole (BH) solutions of 4D EGB gravity,
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since astrophysical BHs are expected to be rapidly rotating
due to the accretion effects.

In recent years, gravitational theories with higher-order
curvature corrections to the Einstein–Hilbert action of GR
have been the focus of attention since such curvature correc-
tions appear in quantum gravity and string theory. In higher-
dimensional space-times, D > 4, the low energy limit of
heterotic string theory predicts a second-order curvature cor-
rection to Einstein–Hilbert action which is the well known
GB term. This term is a specific combination of higher-
order curvature invariants which is a natural extension of
Einstein’s GR in a D-dimensional space-time with D − 4
extra dimensions. In D = 4 the GB term is a topological
invariant and does not contribute to the gravitational field
equations. This is no longer the case when a scalar field is
coupled to the GB term through a regular coupling func-
tion, a well-known example of which is the Einstein-dilaton–
Gauss–Bonnet gravity [27].

However, recently a 4D EGB gravity has been proposed
by Glavan and Lin [28] where by re-scaling the GB cou-
pling constant α according to α → α

D−4 and taking the
limit D → 4, the GB term does contribute to the field equa-
tions and thus circumvents the Lovelock theorem. This the-
ory preserves the number of degrees of freedom and avoids
the Ostrogradsky instability. Also, they have constructed a
static and spherically symmetric BH solution which is free
from the singularity problem. Note that such BH solution
has been obtained earlier in a semi-classical gravity frame-
work with conformal anomaly [29], but this 4D EGB grav-
ity is a classical modified theory of gravity in equal foot-
ing with GR. However, several criticisms on the regulariza-
tion process used in [28] have come into fore [30–36]. It
is argued that taking the limit D → 4 may not be consis-
tent and the theory is not well-defined in four-dimensions.
At the same time, some prescriptions including compactifi-
cation of D-dimensional EGB gravity [37,38], introducing a
counter term into the action [39,40] and breaking the tempo-
ral diffeomorphism invariance [41] have been suggested as
remedies to address this problem and to obtain a consistent
EGB gravity. It is important to note that in these consistent
theories the spherically symmetric BH solutions obtained in
[28] are still valid and worthy of study. For instance, charged
and rotating 4D EGB BH solutions [42–44], BH solutions
in Lovelock gravity [45,46], BH solutions surrounded by
clouds of strings [47], Bardeen BHs [48], Hayward BHs
[49], spherically symmetric and thin shell wormhole solu-
tions [50,51] and relativistic stars [52] have been extensively
studied. Also, a large number of interesting aspects of the the-
ory including geodesic motion and shadow [53–56], strong
and weak gravitational lensing [57–60], quasinormal modes
of BHs [61–65], instability of (A)dS BHs [66–68], thermo-
dynamics and phase transition [69–72], Hawking radiation
[73,74] and new quark stars [75,76] have also been stud-

ied. For further references on 4D EGB gravity see [77–
91].

The structure of the paper is as follows. In Sect. 2, we
review the geodesic motion of test particles moving in a
general stationary axisymmetric space-time. In Sect. 3 we
present the Novikov–Thorne model as the standard frame-
work for studying geometrically thin accretion disks. The
novel 4D EGB gravity is introduced and the electromag-
netic properties of thin accretion disks around rotating EGB
BHs is studied in Sect. 4. Finally, we present the conclusions
in Sect. 5.

2 Generic rotating space-times and geodesic equations

The line element of a generic stationary and axisymmetric
space-time is given by

ds2 = gttdt
2 + 2gtφdtdφ + grrdr

2 + gθθdθ2 + gφφdφ2,

(1)

where we assume that the metric coefficients gtt , grr , gθθ ,
gφφ and gtφ are functions of r and θ coordinates. Since the
above metric is independent of t and φ coordinates, we have
two constants of motion, namely the energy and the angular
momentum per unit rest-mass, Ẽ and L̃ , as follows

gtt ṫ + gtφφ̇ = −Ẽ, (2)

gtφ ṫ + gφφφ̇ = L̃, (3)

where a dot denotes derivative with respect to the affine
parameter τ . Using Eqs. (2) and (3) we find t and φ com-
ponents of the 4-velocity ẋμ as

ṫ = Ẽgφφ + L̃gtφ
g2
tφ − gtt gφφ

, (4)

φ̇ = − Ẽgtφ + L̃gtt
g2
tφ − gtt gφφ

. (5)

From the normalization condition, gμν ẋμ ẋν = −1, we
obtain

grr ṙ
2 + gθθ θ̇

2 = Veff(r, θ), (6)

where the effective potential reads

Veff(r, θ) = −1 + Ẽ2gφφ + 2Ẽ L̃gtφ + L̃2gtt
g2
tφ − gtt gφφ

. (7)

For circular orbits in the equatorial plane (θ = π/2) with
ṙ = θ̇ = 0 we have Veff(r) = 0, and r̈ = θ̈ = 0 which
require Veff,r = 0 and Veff,θ = 0, respectively. Using metric
(1) and these conditions we can find the specific energy and
specific angular momentum for the test particles in circu-
lar orbits. However, a more efficient way is to use geodesic

123



Eur. Phys. J. C (2021) 81 :473 Page 3 of 11 473

equations. The radial component of the geodesic equation
with conditions ṙ = θ̇ = r̈ = 0 for equatorial circular orbits
leads to the angular velocity � = ṫ/φ̇ as follows

�± = −gtφ,r ± √
(gtφ,r )2 − gtt,r gφφ,r

gφφ,r
, (8)

where the upper sign denotes co-rotating orbits with angular
momentum parallel to the BH spin, while the lower sign refers
to counter-rotating orbits with angular momentum antiparal-
lel to the spin of the BH. Then, from gμν ẋμ ẋν = −1 with
ṙ = θ̇ = 0 and Eqs. (2) and (3), the specific angular momen-
tum L̃ and the specific energy Ẽ , for a particle on a circular
orbit in the gravitational potential of a massive object can be
written as

Ẽ = − gtt + gtφ�
√−gtt − 2gtφ� − gφφ�2

, (9)

L̃ = gtφ + gφφ�
√−gtt − 2gtφ� − gφφ�2

. (10)

For test particles in the gravitational potential of a central
body, the innermost stable circular orbit known as the ISCO
radius is defined as

Veff,rr |r=risco = 1

g2
tφ − gtt gtφ

[
Ẽ2gφφ,rr + 2Ẽ L̃gtφ,rr

+L̃2gtt,rr −
(
g2
tφ − gtt gφφ

)

,rr

]
|r=risco= 0.(11)

Since the equatorial circular orbits are unstable for r < risco,
risco determines the inner edge of thin accretion disks in the
Novikov–Thorne model.

3 Thin accretion disks around compact objects

Let us now review the physical properties of thin accre-
tion disks that we will need in our calculations, such as
energy flux emitted by the disk, F(r), temperature distri-
bution, T (r), Luminosity spectra, L(ν) and efficiency ε. The
standard framework in the explanation of thin accretion disk
processes is the Novikov–Thorne [2] model which is a gen-
eralization of that of the Shakura–Sunyaev [1]. There are
various versions of the model, but we start by stating some
typical assumptions as follows:

1. The space-time describing the central massive object is
stationary, axisymmetric and asymptotically flat.

2. The self-gravity of the disk is negligible so that disk’s
mass has no effect on the background metric.

3. The accretion disk is geometrically thin, namely its ver-
tical size h, is negligible compared to its horizontal size,
h � r .

4. The ISCO radius determines the inner edge of the disk
and orbiting particles around the compact central object
move between risco and the outer edge rout.

5. The disk surface is perpendicular to the BH spin, namely
the accretion disk lies in the equatorial plane of the accret-
ing compact object.

6. The emitted electromagnetic radiation from the disk sur-
face is assumed to have a black body spectrum resulting
from hydrodynamic and thermodynamic equilibrium of
the disk.

7. The disk is in a steady-state, namely the mass accretion
rate, Ṁ0, does not change with time.

The radiant energy flux over the disk surface can be obtained
from the conservation equations of rest mass, energy, and the
angular momentum of the disk particles according to [2,3]

F(r) = − Ṁ0�,r

4π
√−g

(
Ẽ − �L̃

)2

∫ r

risco

(
Ẽ − �L̃

)
L̃ ,r dr,(12)

where Ṁ0 is the mass accretion rate. Due to the thermal
equilibrium of the disk, as was mentioned above, we can use
the Stefan-Boltzmann law to find the disk temperature

F(r) = σSBT (r)4, (13)

where σSB = 5.67 × 10−5erg s−1cm−2K−4 is the Stefan-
Boltzmann constant. Also, the observed luminosity L(ν) of
a thin accretion disk has a red-shifted black body spectrum
given by [92]

L(ν) = 4πd2 I (ν) = 8πh cos γ

c2

∫ rout

rin

∫ 2π

0

ν3
e rdrdφ

exp
[
hνe
kBT

]
− 1

,

(14)

where d is the distance to the disk center, γ is the disk inclina-
tion angle (which we will set to be zero), and rin and rout are
inner and outer radii of the edge of the disk, respectively. The
Planck and Boltzmann constants are respectively presented
by h and kB, and νe = ν(1 + z) is the emitted frequency
where the redshift factor z can be written as

1 + z = 1 + �r sin φ sin γ
√−gtt − 2gtφ� − gφφ�2

. (15)

Another important quantity is the radiative efficiency which
indicates the capability of the BH to convert rest mass into
radiation. When absorption by the BH is negligible, the
Novikov–Thorne efficiency is given by [4]

ε = 1 − Ẽisco, (16)

where Ẽisco is the specific energy of test particles measured
at the ISCO radius.
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4 Accretion disk processes in 4D EGB gravity

4.1 Rotating 4D EGB BHs

The action of EGB gravity in D-dimension is defined as
follows

SEGB =
∫

dDx
√−g(LEH + αLGB), (17)

with

LEH = R, LGB = Rμνρσ Rμνρσ − 4RμνRμν + R2,

where g, and α are the determinant of gμν and the GB cou-
pling constant, respectively with R, Rμν and Rμνρσ being the
Ricci scalar, Ricci tensor and Riemann tensor of the space-
time. As we mentioned before, in D = 4 the GB term is
a total derivative and so does not contribute to the Einstein
field equations. However, recently Glavan and Lin proposed
a novel 4D EGB gravity by rescaling the GB coupling α

as α
D−4 and taking the limit D → 4 and derived the static

spherically symmetric BH solutions of the theory [28]. Vary-
ing the action (17) with respect to the metric tensor gμν gives
the gravitational field equations

Gμν + αHμν = 0, (18)

where Gμν is the Einstein tensor and Hμν is given by

Hμν = 2
(
RRμν − 2Rμσ R

σ
ν − 2RμσνρR

σρ

−RμσρδR
σρδ

ν

) − 1

2
LGBgμν, (19)

Here, it is worth mentioning that the construction of rotat-
ing 4D EGB BH solutions by solving the vacuum field equa-
tions is a formidable task. There exists no exact solution of
any equation for EGB rotating BHs. All that has been done
is some insightful guesswork to write the metric which has
all the desired properties of a rotating BH. Indeed, recently
Kumar and Ghosh, applying the Newman-Janis algorithm to
a non-rotating BH in 4D EGB gravity, have constructed the
metric for a stationary and axially symmetric rotating BH
[43], which in the Boyer–Lindqist coordinates is given by

ds2 = −
(

� − a2 sin2 θ

�

)
dt2 + �

�
dr2 − 2a sin2 θ

×
(

1 − � − a2 sin2 θ

�

)
dtdφ + �dθ2

+ sin2 θ

[
� + a2 sin2 θ

(
2 − � − a2 sin2 θ

�

)]
dφ2,

(20)

with

� = r2 + a2 + r4

2α

[

1 −
√

1 + 8αM

r3

]

, �

= r2 + a2 cos2 θ, (21)

where M is the BH mass and a is the rotation parameter.
The above metric, in the limit α → 0 or large r , becomes
the rotating solution of GR which is described by the Kerr
metric. In the limit a = 0 it reduces to the static spherically
symmetric solution of 4D EGB gravity and also for both
α → 0 and a = 0 it is exactly the Schwarzschild metric.

Using the existence condition of the horizon, one can
obtain a bound on the GB coupling α for a specific value
of the rotation parameter a. In Fig. 1, we have plotted �(r)
as a function of the radial coordinate r for different values
of a with positive α. As is clear, in each panel, for some val-
ues of the GB coupling α, there are two distinct horizons,
i.e. the inner Cauchy horizon, r−, and the outer event hori-
zon, r+, so that r− < r+. For a critical value of α = αc the
two horizons coincide r− = r+, and we get an extremal BH
1. Also, for α > αc there are no BH space-time. The figure
shows the effect of the GB coupling parameter α on the event
horizon. For a fixed value of a, decreasing the GB coupling
α causes the event horizon radius to increase so that for the
Kerr BH (α → 0) in GR it is larger than that of rotating
EGB BHs. Note that although the GB coupling is identified
as the inverse string tension and should be positive, it was
found that [53] for −8 ≤ α < 0 there always exist a BH
solution and the singular behavior of the solution is hidden
inside the horizon. Moreover, in contrast to the case of pos-
itive α, equation �(r) = 0 has only one positive real root
and thus there only exists one BH horizon for negative GB
coupling. In the following, we will consider the BH solutions
with −8 ≤ α < 1.

4.2 Thin accretion disk properties around rotating EGB
BHs

Now, we aim to investigate thin accretion disk properties
around rotating EGB BHs. Using Eqs. (8)–(10) we obtain
the specific energy, specific angular momentum and angular
velocity as follows

Ẽ = 1 + h1
r2 − 2ah1

r2 �
√

1 + h1
r2 − 4ah1

r2 � − �2
[
r2 + a2

(
1 − h1

r2

)] , (22)

L̃ =
2ah1
r2 +

[
r2 + a2

(
1 − h1

r2

)]
�

√
1 + h1

r2 − 4ah1
r2 � − �2

[
r2 + a2

(
1 − h1

r2

)] , (23)

1 Note that we have set 16πG = 1, so the critical values of αc for the
extremal BHs are different from those in [43].
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Fig. 1 The behavior of horizons as a function of the radial coordinate
r for different values of the GB coupling parameter α with a = 0.1
(top-left panel), a = 0.2 (top-right panel), a = 0.3 (bottom-left panel)

and a = 0.5 (bottom-right panel), respectively. In each panel the solid
curve corresponds to the extremal BH

where

� =
−a

(
h2 + 4h1

r3

)
+

√

a2
(
h2 + 4h1

r3

)2 − h2h3
(12Mα)2

(
24Mαr − a2h2h3

)

2r − a2

2

(
h2 + 4h1

r3

) ,

(24)

with

h1 = r4

2α

[

1 −
√

1 + 8αM

r3

]

,

h2 = 12M

r2
√

1 + 8Mα
r3

,

h3 = 2Mα + 2α

r
h1.

The ISCO equation (11) is also given by

r2 − 6Mr + 8aM1/2r1/2 − 3a2 + 16Mαr−1

+96αaM3/2r−5/2 + 72αaM5/2r−7/2 = 0, (25)

where we have only kept linear terms in GB coupling. How-
ever, even if we were only to keep the term 16Mαr−1 con-

taining the lowest-order of M and α and ignore the last two
terms, the resulting equation would have no analytic solution
and had to be solved numerically to obtain the ISCO radius.
It is also seen that in the case of a = α = 0 it reduces to
the Schwarzschild BH with risco = 6M and in the case of
α = 0, it reduces to equation (2.20) of [93] for the Kerr BHs
that has a solution of the form

risco = M
[
3 + Z2 ∓ √

(3 − Z1)(3 + Z1 + 2Z2)
]
, (26)

with

Z1 ≡ 1 +
(

1 − a2

M2

)1/3 [(
1 + a

M

)1/3

+
(

1 − a

M

)1/3
]

,

Z2 ≡
√

3
a2

M2 + Z2
1,

which, again, the upper and lower sign refer to co-rotating and
counter-rotating orbits, respectively. Moreover, the results for
static 4D EGB BHs can be recovered in the case of a = 0.
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Fig. 2 The angular velocity �(r) (top-left panel), specific energy Ẽ(r)
(top-right panel) and specific angular momentum L̃(r) (bottom panel)
of a rotating 4D EGB BH with total mass M = 2.5 × 106M� shown
as a function of the radial coordinate r for different values of α and

compared to a slowly rotating Kerr BH. The rotation parameter is set to
a = 0.3. The vertical lines represent the location of the ISCO in each
case

Figure 2 shows the specific energy, specific angular
momentum and angular velocity for rotating EGB BHs for
a = 0.3 and different values of α. It also shows a compari-
son with the corresponding results for a slowly rotating Kerr
BH in GR. We see that a positive GB coupling causes the
above quantities to decreases in comparison to Kerr BHs and
as the value of α increases, deviation from GR increases too,
while a negative α causes them to increase compared to those
of a Kerr BH. Also, the behavior of Veff,rr for a = 0.3 and
different values of α is plotted in Fig. 3 to present the depen-
dence of risco on the GB coupling. As is clear, for positive α

its zero shifts to smaller radii with increasing GB coupling
parameter and thus the ISCO is smaller than the Kerr BH,
while for α < 0 the ISCO radius of rotating EGB BHs is
larger than that for the Kerr BH. The figure shows that for
α = 0.2 Eq. (11) has no solution and Veff,rr is negative for
any r , resulting in particles moving around the BH having
stable circular orbits for r > r+.

We have also numerically obtained the ISCO radius from
Eq. (11) for different values of rotation parameter a. Cal-

ef
f

Fig. 3 The second derivative of the effective potential of rotating 4D
EGB BHs fora = 0.3 and different values of the GB coupling parameter
α. The vertical lines represent the location of the ISCO in each case

culations show that for a ≥ 0.4 the ISCO equation has no
solution for any values of α < αc (there is no BH solutions
for α > αc). Thus in Table 1 we have presented results for
a = 0.1, 0.2, 0.3, corresponding to the slow rotation limit

123



Eur. Phys. J. C (2021) 81 :473 Page 7 of 11 473

Table 1 risco of the accretion disk and the efficiency for rotating BHs
in 4D EGB gravity

a α r+/M risco/M ε

0.1 – 1.9949 5.6693 0.0606

0.01 1.9899 5.2946 0.0650

0.05 1.9694 5.2617 0.0653

0.07 1.9589 5.2450 0.0655

0.1 1.9431 5.2196 0.0657

0.2 – 1.9798 5.3294 0.0646

0.01 1.9746 4.4583 0.0775

0.05 1.9534 4.4084 0.0782

0.07 1.9426 4.3826 0.0785

0.1 1.9262 4.3431 0.0791

0.3 – 1.9539 4.9786 0.0694

0.01 1.9484 3.2559 0.1062

0.05 1.9261 3.1323 0.1095

0.07 1.9146 3.0624 0.1115

0.1 1.8972 2.9434 0.1149

with different values of α to compare the results with a slowly
rotating Kerr BH. Note that the slow rotation approximation
means that the BH spin is much smaller than the BH mass
a/M � 1. For the Kerr space-time the slow rotation limit
requires the event horizon of the Kerr BH coincides with the
location of the horizon of a Schwarzschild BH, rH = 2M .
Similarly, it is easy to show that the event horizon of rotating
4D EGB BHs in the slow rotation limit matches that of the
horizon of static EGB BHs.

Table 1 shows that for a fixed value of the rotation param-
eter the effect of the GB coupling is to decrease the ISCO
radius of rotating EGB BHs compared to the Kerr BH, so
that with increasing α the ISCO radius decreases. This is due
to the fact that the GB term is a candidate for dark energy
and effectively counteracts gravity and thus causes the ISCO
radius to lie at a smaller distance from the BH. We also see
that in a Kerr space-time, by increasing a for a co-rotating
disk, the radiative efficiency increases from 6% to about 7%.
Similar to a Kerr BH in the case of rotating EGB BHs, at a
given value of α, increasing a causes the radiative efficiency
to increase for co-rotating disks. For instance, in the case of
α = 0.07, increasing the spin parameter results in the effi-
ciency to increase from 6.5% for a = 0.1 to 11% for a = 0.3.
However, the radiative efficiency is a decreasing function of
the spin for a counter-rotating disk.

Now, in order to display the flux distribution for rotat-
ing EGB BHs, we consider a BH with a total mass of
M = 2.5 × 106M� and a mass accretion rate of Ṁ =
2×10−6M�yr−1. In units of the Eddington accretion rate we
have Ṁ = 3.36×10−4ṀEdd which is in the range for super-
massive BHs. The Eddington luminosity is defined as the

maximum luminosity of an object and can be obtained when
there is the equality between the outward radiation pressure
and the gravitational force acting inward. For an object with
mass M , the Eddington luminosity is given by

LEdd = 1.26 × 1038
(

M

M�

)
erg

s
, (27)

and for an accreting BH, the Eddington mass accretion rate is
defined as ṀEddc2 ≡ LEdd [94]. It is found that for geomet-
rically thin accretion disks with the inner edge located at the
ISCO radius, the accretion luminosity should be between 5%
to 30% of the Eddington limit [95–98]. So, here we have cho-
sen the values of M and Ṁ that are below the Eddington limit
and represent a supermassive BH. For instance, a well known
astronomical source is SgrA∗, a supermassive BH at the cen-
ter of the Milky Way with a mass of order M = 4.1×106M�
and with an estimated rate Ṁ ∼ 10−9−10−7M�yr−1 [99].

The energy flux over the surface of the disk for a = 0.1
and a = 0.3 and different values of α is plotted in Fig. 4.
As can be seen, for positive α the energy emanating from the
disk in 4D EGB BHs is larger than that for the Kerr BH, while
for negative α the energy flux is smaller than that for the Kerr
BH. For a fixed value of the rotation parameter, increasing
the GB parameter causes the energy flux to also increase.
The effect of the GB coupling becomes more prominent as
the BHs are rotating faster so that for larger values of the
rotation parameter, the same increase in the GB coupling
leads to higher values for the energy flux and shifts the ISCO
radius to lower and lower radii. Moreover, we see that for
larger values of α, the radial position of the maximal flux
shifts to lower radii, approaching the ISCO location. This
shift of the maximal locations to lower radii clearly shows
that most of the radiation is emitted from the inner part of
the accretion disk.

The behavior of disk temperature is shown in Fig. 5 where
the same features can be seen. With increasing α, the disk
temperature increases and the maximum values shift closer
to the inner edge of the disk. Moreover, for positive values
of the GB coupling, disks rotating around a 4D EGB BHs
are much hotter than the disks around Kerr BHs, while for
negative values they are cooler and less efficient.

In Fig. 6, for a fixed value of α, we have presented the
effect of the rotation parameter on the energy flux and disk
temperature. As was mentioned before, in a similar fashion
to Kerr BH, increasing a for a co-rotating (counter-rotating)
disk causes the efficiency of a rotating EGB BH to increase
(decreases), so that for α = 0.07 the efficiency increases
from 6.5% for a = 0.1 to 11% for a = 0.3. We have also
displayed in Fig. 7 the emitted flux as a function of the energy
for rotating EGB BHs for different values of the BH spin. We
see that the maximum flux of the disk increases as the value
of the spin parameter increases and the corresponding energy
is shifted to lower energies.
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Fig. 4 The energy flux F(r) from a disk around a rotating BH in EGB
gravity with the mass accretion rate Ṁ = 2 × 10−6M�yr−1, for dif-
ferent values of the GB coupling constant α. The rotation parameter is

set to a = 0.1 (left panel) and a = 0.3 (right panel), respectively. In
each panel the solid curve corresponds to a slowly rotating Kerr BH.
The vertical lines represent the location of the ISCO in each case

Fig. 5 The disk temperature T (r) for a rotating BH in EGB gravity
with mass accretion rate Ṁ = 2 × 10−6M�yr−1, for different values
of α. The rotation parameter is set to a = 0.1 (left panel) and a = 0.3

(right panel), respectively. In each panel the solid curve corresponds to
a slowly rotating Kerr BH. The vertical lines represent the location of
the ISCO in each case

Fig. 6 The energy flux F(r) (left panel) and disk temperature T (r)
(right panel) for a rotating BH in 4D EGB gravity with mass accretion
rate Ṁ = 2 × 10−6M�yr−1, for different values of rotation parameter

a. The GB coupling parameter is set to α = 0.07. The vertical lines
represent the location of the ISCO in each case

123



Eur. Phys. J. C (2021) 81 :473 Page 9 of 11 473

Fig. 7 The emitted flux as a function of the energy for a rotating BH
in 4D EGB gravity. The GB coupling parameter is set to α = 0.07

Finally, to compare our results with an actual BH-
accretion disk system such as Cygnus X-1, we consider a
stellar sized BH with mass M = 14.8M� and an accretion
rate Ṁ ∼ 1018g s−1. It is known that the X-ray binary Cygnus
X-1 contains a near-extreme Kerr BH with 0.93 ≤ a ≤ 0.96
[100,101]. So, in what follows we set the spin parameter to
a = 0.93 and a = 0.95. We shall also consider the case
where a = 0.75 for a maximally rotating polytropic star
[102].

The maximum values of the energy flux Fmax(r), disk tem-
perature Tmax(r) and νL(ν)max for rotating 4D EGB BHs are
presented in Table 2 and compared to that of the Kerr BH.
The cut-off frequency, νcrit , for which the maximum lumi-
nosity is obtained is also given. We see that for a given value
of the spin parameter, with increasing the GB coupling these
maximum values also increase and the critical frequencies
shift to higher values. Moreover, it is clear that by increasing
the rotation parameter a, the differences in the maxima of the

flux of rotating EGB BHs and Kerr BHs is also increasing,
while for α = 10−5 the rotating 4D EGB BHs are indistin-
guishable from Kerr BHs.

In Fig. 8, the effect of the GB coupling on the disk spectra
for rotating EGB BHs is shown. Similar to the case of the
energy flux and disk temperature, we see that for positive α,
the disks around rotating BHs in 4D EGB gravity are more
luminous than the Kerr BH in GR, while for negative ones
they are less luminous.

5 Conclusions

In this paper we have studied electromagnetic properties of
thin accretion disks around rotating 4D EGB BHs using
Novikov–Thorne model. We have numerically solved the
ISCO equation and found that by increasing the GB coupling
the ISCO radius for rotating EGB BHs decreases. We then
investigated the effect of the GB coupling parameter α for a
fixed value of the rotation parameter a, on the energy flux,
temperature distribution, luminosity spectra and energy con-
version efficiency of thin disks and showed that with increas-
ing α, all quantities also increase. We have also compared thin
accretion disk properties with rotating Kerr BH in GR. We
found that for the same value of the rotation parameter and
for positive α, the ISCO radius of rotating 4D EGB BHs is
smaller than that of the Kerr BH. This result is to be expected
because the GB term, as a candidate for dark energy, weakens
the strength of gravity and thus the ISCO radius takes smaller
values. However, for negative values of the GB coupling con-
stant α the ISCO radius of rotating 4D EGB BHs is larger
than that of the Kerr BH. Also, similar to the slowly rotating
Kerr BH, by increasing the rotational velocity, the energy
flux, temperature distribution, luminosity spectra and energy

Table 2 The maximum values of the radiant energy flux F(r), temperature distribution T (r) and the emission spectra. The cut-off frequency is
also shown in last column

a α Fmax (erg s−1 cm−2) ×1013 Tmax (K) ×104 νL(ν)max (erg s−1) ×1031 νcrit (Hz) × 1015

0.75 – 5.1338 3.0847 3.0247 1.8302

0.0001 5.1355 3.0849 3.0261 1.8389

0.001 5.1510 3.0873 3.0340 1.8391

0.01 5.3121 3.1112 3.0829 1.8418

0.93 – 3.4122×10 4.9529 9.0928 2.4125

0.0001 3.4180×10 4.9551 9.1276 2.4172

0.001 3.4716×10 4.9743 9.1933 2.4312

0.01 4.1273×10 5.1942 9.9877 2.5053

0.95 – 5.1280×10 5.4839 1.1267×10 2.5307

0.0001 5.1409×10 5.4874 1.1281×10 2.5610

0.001 5.2589×10 5.5186 1.1385×10 2.5630

0.01 6.8805×10 5.9021 1.2898×10 2.6289
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Fig. 8 The emission spectrum νL(ν) of the accretion disk around a
rotating 4D EGB BH with mass accretion rate Ṁ ∼ 1018g s−1 for
different values of α, as a function of frequency ν. The solid curve
represents the disk spectrum for a Kerr BH

conversion efficiency increase for a fixed value of α. How-
ever, the rate of this increase becomes larger for EGB rotating
BHs. Finally, by considering a stellar sized mass BH and cal-
culating the observable characteristics of thin disks including
the maximum values of Fmax(r), Tmax(r) and νL(ν)max, we
showed that thin accretion disks around rotating 4D EGB
BHs are hotter and more luminous than in GR for positive
α, while they are cooler and less luminous for negative α. It
was also found that for α = 10−5 the rotating EGB BHs are
indistinguishable from Kerr BHs.

Acknowledgements We would like to thank the anonymous referee
for valuable comments.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: Our work is purely
theoretical and there is no data available.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. N.I. Shakura, R.A. Sunyaev, Astron. Astrophys 24, 33 (1973)
2. I.D. Novikov, K.S. Thorne, Astrophysics and black holes, inBlack

Holes, ed. by C. De Witt, B. De Witt (Gordon and Breach, New
York, 1973)

3. D.N. Page, K.S. Thorne, Astrophys. J 191, 499 (1974)
4. K.S. Thorne, Astrophys. J 191, 507 (1974)

5. C.S.J. Pun, Z. Kovács, T. Harko, Phys. Rev. D 78, 024043 (2008)
6. D. Perez, G.E. Romero, S.E. Perez Bergliaffa, Astron. Astrophys.

551, A4 (2013)
7. K.V. Staykov, D.D. Doneva, S.S. Yazadjiev, JCAP 2016, 061

(2016)
8. D. Perez, F.G.L. Armengol, G.E. Romero, Phys. Rev. D 95,

104047 (2017)
9. RKh Karimov, R.N. Izmailov, A. Bhattacharya, K.K. Nandi, Eur.

Phys. J. C 78, 788 (2018)
10. M. Heydari-Fard, M. Heydari-Fard, H.R. Sepangi, Eur. Phys. J.

C 80, 351 (2020)
11. H. Zhang, M. Zhou, C. Bambi, B. Kleihaus, J. Kunz, E. Radu,

Phys. Rev. D 95, 104043 (2017)
12. M. Heydari-Fard, H.R. Sepangi, Phys. Lett. B 816, 136276 (2021)
13. T. Harko, Z. Kovács, F.S.N. Lobo, Class. Quantum Gravity 27,

105010 (2010)
14. T. Harko, Z. Kovács, F.S.N. Lobo, Phys. Rev. D 80, 044021 (2009)
15. S. Chen, J. Jing, Phys. Lett. B 704, 641 (2011)
16. C.S.J. Pun, Z. Kovacs, T. Harko, Phys. Rev. D 78, 084015 (2008)
17. M. Heydari-Fard, Class. Quantum Gravity 27, 235004 (2010)
18. T. Harko, Z. Kovács, F.S.N. Lobo, Phys. Rev. D 79, 064001 (2009)
19. RKh Karimov, R.N. Izmailov, K.K. Nandi, Eur. Phys. J. C 79, 952

(2019)
20. Z. Kovács, K.S. Cheng, T. Harko, Astron. Astrophys. 500, 621

(2009)
21. F.S. Guzman, Phys. Rev. D 73, 021501 (2006)
22. Y.F. Yuan, R. Narayan, M.J. Rees, Astrophys. J. 606, 1112 (2004)
23. Z. Kovács, T. Harko, Phys. Rev. D 82, 124047 (2010)
24. P.S. Joshi, D. Malafarina, R. Narayan, Class. Quantum Gravity

31, 015002 (2014)
25. S. Shahidi, T. Harko, Z. Kovács, Eur. Phys. J. C 80, 162 (2020)
26. C. Liu, T. Zhu, Q. Wu, Chin. Phys. C 45, 015105 (2021)
27. P. Kanti, N.E. Mavromatos, J. Rizos, K. Tamvakis, E. Winstanley,

Phys. Rev. D 54, 5049 (1996)
28. D. Glavan, C. Lin, Phys. Rev. Lett 124, 081301 (2020)
29. R.G. Cai, L.M. Cao, N. Ohta, JHEP 1004, 082 (2010)
30. W.Y. Ai, Commun. Theor. Phys. 72, 095402 (2020)
31. M. Gurses, T.C. Sisman, B. Tekin, Eur. Phys. J. C 80, 647 (2020)
32. S. Mahapatra, Eur. Phys. J. C 80, 992 (2020)
33. F.W. Shu, Phys. Lett. B 811, 135907 (2020)
34. S.X. Tian, Z.H. Zhu, arXiv:2004.09954 [gr-qc]
35. J. Bonifacio, K. Hinterbichler, L.A. Johnson, Phys. Rev. D 102,

024029 (2020)
36. J. Arrechea, A. Delhom, A. Jiménez-Cano, Chin. Phys. C 45,

013107 (2021)
37. H. Lü, Y. Pang, Phys. Lett. B 809, 135717 (2020)
38. T. Kobayashi, JCAP 07, 013 (2020)
39. P.G.S. Fernandes, P. Carrilho, T. Clifton, D.J. Mulryne, Phys. Rev.

D 102, 024025 (2020)
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