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Abstract A direct consequence of quantization of gravity
would be the existence of gravitons. Therefore, spontaneous
transition of an atom from an excited state to a lower-lying
energy state accompanied with the emission of a graviton
is expected. In this paper, we take the gravitons emitted by
hydrogen and helium in the Universe after recombination
as a possible source of high frequency background gravi-
tational waves, and calculate the energy density spectrum.
Explicit calculations show that the most prominent contri-
bution comes from the 3d − 1s transition of singly ionized
helium He+, which gives a peak in frequency at ∼ 1013 Hz.
Although the corresponding energy density is too small to
be detected even with state-of-the-art technology today, we
believe that the spontaneous emission of He+ is a natural
source of high frequency gravitational waves, since it is a
direct consequence if we accept that the basic quantum prin-
ciples we are already familiar with apply as well to a quantum
theory of gravity.

1 Introduction

Gravitational waves are ripples of spacetime predicted in Ein-
stein’s general relativity and they have been directly observed
recently by LIGO [1–6]. The detected signals were generated
by binary black hole, or neutron star mergers, and the fre-
quencies of these signals are in the regime of 101−102 Hz.
Although the frequencies of gravitational waves radiated by
astrophysical sources are usually � 103 Hz [7–10], there may
exist other sources of gravitational waves whose frequencies
are expected to be higher, such as thermal gravitational radia-
tion from stars [11,12], astrophysical plasma interacting with
electromagnetic radiation [13], primordial small mass black
holes [12], cosmic strings [14,15], extra dimensions [16–
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18], string cosmology [19–21], inflation [22–24], preheating
[25–27], cosmological phase transitions [28,29], and so on.
However, many of the possible sources above are based on
hypothetical theories which are yet to be verified.

In the present paper, we are concerned with another pos-
sible source of high frequency gravitational waves, i.e. the
spontaneous emission of gravitons by hydrogen and helium
after recombination. Recombination is a stage at which
the free electrons became bound into hydrogen and helium
atoms, ending the scattering of photons. The atoms get
excited due to the background thermal radiation, and sponta-
neous emission occurs. The emitted quanta can be photons,
and can also be gravitons if gravity can be quantized. Similar
to the electromagnetic spectrum emitted by atoms, the grav-
itational emission spectrum is expected to be a unique set of
discrete spectral lines. However, due to the expansion of the
Universe, the emitted gravitons are redshifted, so the spec-
trum expected to be observed today should be continuous
instead of discrete.

In this paper, firstly, we will derive the graviton emis-
sion rate for hydrogen atoms. Let us note that this topic has
been studied by several authors [11,30–32]. In Weinberg’s
book [11], the result is obtained in a semi-classical approach
by taking the quantum-mechanical quadrupole transition
matrix elements into the classical formula for the gravita-
tional quadrupole radiation. Following the same approach,
Kiefer derived a result which is 4 orders of magnitude larger
than Weinberg’s result, and pointed out a numerical error
in Weinberg’s calculation [30]. In Ref. [31], the result is
obtained based on the standard perturbation theory with the
interaction Hamiltonian HI = − 1

2hμνTμν . For a hydrogen
atom, this Hamiltonian describes the influence of the fluctu-
ating gravitational fields on the electromagnetic interaction
between the electron and the nucleus. Note that this Hamil-
tonian is not gauge invariant. Of course, a gauge dependent
Hamiltonian does not necessarily mean that computed phys-
ical observables depend on a particular gauge, but much care
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should be taken when a gauge-dependent quantity is involved
in a calculation to ensure that the outcome is not gauge depen-
dent. In Ref. [31], it has been shown that to ensure the gauge
invariance of the result, one must consider how the elec-
tromagnetic stress-energy is changed in the presence of the
gravitational field if one chooses to work in a frame which is
not local inertial. Therefore, it is desirable to explore if we
can address this issue with a gauge invariant Hamiltonian.
This is what we are going to do in the present paper. We
assume that the hydrogen atom is subjected to a bath of fluc-
tuating quantum gravitational fields in vacuum which must
exist if we accept that the basic quantum principles we are
already familiar with apply as well to a quantum theory of
gravity since they are necessitated by the uncertainty prin-
ciple. Under the influence of quantum fluctuations of space-
time, an instantaneous quadrupole moment will be induced in
the hydrogen atom. We describe the interaction between the
instantaneous quadrupole moment of a hydrogen atom and
the fluctuating gravitational fields with the quadrupolar inter-
action Hamiltonian [33], which does not involve the electro-
magnetic degrees of freedom and is gauge invariant. So, here
not only the issue is dealt with a gauge invariant Hamiltonian,
but also the underlying physical picture is different from that
in Ref. [31]. We will work out the gravitational polarizabil-
ity of the hydrogen atom and the emission rate based on
the formalism first proposed by Dalibard, Dupont-Roc, and
Cohen-Tannoudji (DDC) [34,35], which has also recently
been applied to study the spontaneous excitation of an accel-
erated atom coupled with quantum fluctuations of spacetime
[36]. In the DDC approach, we can separately calculate the
contributions of vacuum fluctuations and radiation reaction
to the emission rate. Secondly, we will calculate the density
spectrum of gravitational waves we observe today from the
spontaneous emission of hydrogen atoms in the Universe.
We also consider the contribution to the background gravita-
tional waves from helium since it is the second most abundant
element in the Universe. Natural units h̄ = c = 16πG = 1
will be used in this paper.

2 Graviton emission rate for multilevel atoms

We plan to study the spontaneous emission of gravitons for
a multilevel atom in interaction with a bath of fluctuating
quantum gravitational fields in vacuum, and consider it as
a source of high frequency gravitational waves. We assume
that the atoms co-move with the expansion of the Universe,
so the proper time of the atoms τ coincides with the cosmic
time. Here, for simplicity, we neglect the effect of the cosmic
expansion when calculating the spontaneous emission rate,
but take it into account later when calculating the density
spectrum of gravitational waves. Therefore, we assume that
the spacetime metric gμν can be expanded as the metric of

the Minkowski spacetime ημν and a linearized perturbation
hμν . The Hamiltonian of a multilevel atom can be written as

HA(τ ) =
∑

n

ωnσnn(τ ), (1)

where τ is the proper time, σnn(τ ) = |n〉〈n|, and |n〉 denotes
the eigenstate of the atom with energy ωn . The Hamiltonian
of the quantum gravitational field takes the form

HF (τ ) =
∑

k

ω�ka
†
�k a�k

dt

dτ
, (2)

in which �k denotes the wave vector, a†
�k and a�k are the cre-

ation and annihilation operators respectively. The quadrupo-
lar interaction between the atom and the quantum gravita-
tional fields can be expressed as

HI (τ ) = −1

2
Qi j (τ )Ei j (x(τ )), (3)

where

Qi j =
∫

d3x ρM (x)

(
xi x j − 1

3
δi j xk xk

)
(4)

is the gravitational quadrupole moment operator of the atom
with ρM (x) describing the mass distribution, and Ei j =
Ci0 j0, with Ci0 j0 being the Weyl tensor, which can be
regarded as the trace-free part of the Riemann tensor Ri0 j0. It
has been shown in Ref. [37] that the Riemann tensor is gauge
invariant in linearized theory of gravity, and so is the Weyl
tensor. Therefore, the quadrupolar interaction Hamiltonian
(3) we use here is gauge invariant, which is different from
the gauge dependent one used in Ref. [31]. The derivation of
the interaction Hamiltonian can be found, e.g., in Ref. [33].

The Heisenberg equations of motion for dynamical vari-
ables of the atom and the gravitational field can be derived
from the total Hamiltonian H = HA(τ ) + HF (τ ) + HI (τ ).
Following the DDC formalism [34,35], the equation of
motion for the atomic energy HA can be separated into two
parts, i.e. the vacuum fluctuations (VF) and the radiation reac-
tion (RR) with the symmetric ordering of variables between
the atom and field. Assume that initially the field is in the
vacuum state |0〉, and the atom is in state |b〉. The expecta-
tion of the rate of change of the atomic energy in state |b〉
can then be expressed as
〈
d

dτ
HA(τ )

〉

V F

= i

2

∫ τ

τ0

dτ ′CF
i jkl(x(τ ), x(τ ′)) d

dτ
(χ A

i jkl)b(τ, τ
′), (5)

〈
d

dτ
HA(τ )

〉

RR

= i

2

∫ τ

τ0

dτ ′χ F
i jkl(x(τ ), x(τ ′)) d

dτ
(CA

i jkl)b(τ, τ
′), (6)
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where |〉=|b, 0〉. Here, CF
i jkl and χ F

i jkl are the symmetric cor-
relation function and linear susceptibility of the gravitational
field, which are defined as

CF
i jkl(x(τ ), x(τ ′)) = 1

2

〈
0

∣∣∣
{
EF
i j (x(τ )), EF

kl(x(τ
′))

}∣∣∣ 0
〉
,

(7)

χ F
i jkl(x(τ ), x(τ ′)) = 1

2

〈
0

∣∣∣
[
EF
i j (x(τ )), EF

kl(x(τ
′))

]∣∣∣ 0
〉
.

(8)

Similarly, (CA
i jkl)b and (χ A

i jkl)b are the symmetric correlation
function and the linear susceptibility of the atom,

(CA
i jkl)b(τ, τ

′) = 1

2

〈
b

∣∣∣
{
QF

i j (τ ), QF
kl(τ

′)
}∣∣∣ b

〉
, (9)

(χ A
i jkl)b(τ, τ

′) = 1

2

〈
b

∣∣∣
[
QF

i j (τ ), QF
kl(τ

′)
]∣∣∣ b

〉
. (10)

We assume that the atom is static and located at the origin,
so its trajectory can be written as

t (τ ) = τ, x(τ ) = y(τ ) = z(τ ) = 0, (11)

where τ is the proper time. In the following, we work in
the transverse-traceless (TT) gauge, so there are only spa-
tial components hi j in the gravitational perturbations. In the
quantum linearized theory of gravity, the quantized space-
time perturbation hi j can be written as [38]

hi j=
∫

d3k
∑

λ

1

2ω(2π)3 [ak,λei j (k, λ)ei(k·x−ωt) + H.c.],

(12)

where H.c. represents the Hermitian conjugate, λ labels the
polarization states, eμν(k, λ) is the polarization tensor, and

ω = |k| = (k2
x + k2

y + k2
z )

1
2 . Direct calculations show that

Ei j = 1

2
ḧi j , (13)

where a dot denotes derivative with respect to t . The two-
point function of Ei j in the vacuum state can then be obtained
as

〈0|Ei j (x)Ekl(x
′)|0〉

= 1

8(2π)3

∫
d3k

∑

λ

ei j (k, λ)ekl(k, λ)

×ω3eik·(x−x′)e−iω(t−t ′). (14)

The summation of the polarization tensors in the transverse
traceless gauge takes the following form [38],
∑

λ

ei j (k, λ)ekl(k, λ)

= δikδ jl + δilδ jk − δi jδkl + k̂i k̂ j k̂k k̂l + k̂i k̂ jδkl + k̂k k̂lδi j

−k̂i k̂lδ jk − k̂i k̂kδ jl − k̂ j k̂lδik − k̂ j k̂kδil , (15)

where k̂i = ki/k. According to Eqs. (7) and (8), the field
statistical functions CF

i jkl and χ F
i jkl can be calculated as

CF
1111(x(τ ), x(τ ′)) = − 2

π2 �+,

χ F
1111(x(τ ), x(τ ′)) = − 2

π2 �−,

CF
1122(x(τ ), x(τ ′)) = 1

π2 �+,

χ F
1122(x(τ ), x(τ ′)) = 1

π2 �−,

CF
1212(x(τ ), x(τ ′)) = − 3

2π2 �+,

χ F
1212(x(τ ), x(τ ′)) = − 3

2π2 �−, (16)

where

�+ = 1

(τ − τ ′ − iε)6 + 1

(τ − τ ′ + iε)6 ,

�− = 1

(τ − τ ′ − iε)6 − 1

(τ − τ ′ + iε)6 . (17)

The nonzero components of CF
i jkl satisfy the following rela-

tions,

CF
1111 = CF

2222 = CF
3333,

CF
1122 = CF

2211 = CF
1133 = CF

3311 = CF
2233 = CF

3322,

CF
1212 = CF

1221 = CF
2112 = CF

2121 = CF
1313 = CF

1331

= CF
3113 = CF

3131 = CF
2323 = CF

2332 = CF
3223 = CF

3232,

(18)

which are the same for χ F
i jkl . Inserting a complete set of states

into Eqs. (9) and (10), it can be shown that the explicit forms
of the statistical functions of the atom (CA

i jkl)b(τ, τ
′) and

(χ A
i jkl)b(τ, τ

′) are

(CA
i jkl)b(τ, τ

′) = 1

2

∑

ωbd

[
〈b|QF

i j (0)|d〉〈d|QF
kl(0)|b〉eiωbd (τ−τ ′)

+〈b|QF
kl(0)|d〉〈d|QF

i j (0)|b〉e−iωbd (τ−τ ′)
]
, (19)

(χ A
i jkl)b(τ, τ

′) = 1

2

∑

ωbd

[
〈b|QF

i j (0)|d〉〈d|QF
kl(0)|b〉eiωbd (τ−τ ′)

−〈b|QF
kl(0)|d〉〈d|QF

i j (0)|b〉e−iωbd (τ−τ ′)
]
, (20)

respectively, where ωbd = ωb − ωd . With a substitution
u = τ − τ ′, and an extension of the range of integration to
infinity1, the contributions of vacuum fluctuations and radi-
ation reaction to the average rate of change of the atomic

1 Here it is assumed that the time τ is much larger than the correlation
time of the bath of fluctuating gravitational fields τc, so the contribution
to the integration comes mainly from the interval [0, τc], and it is safe
to extend the integration to infinity [34,35].
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energy can be calculated from Eqs. (5) and (6) as,

〈
d

dτ
HA(τ )

〉

V F
= −1

4

∑

ωbd

ωbd

[
|〈b|QF

11(0)|d〉|2

+|〈b|QF
22(0)|d〉|2 + |〈b|QF

33(0)|d〉|2
]
GF

1111

−1

4

∑

ωbd

ωbd

[
〈b|QF

11(0)|d〉〈d|QF
22(0)|b〉

+〈b|QF
22(0)|d〉〈d|QF

11(0)|b〉
+〈b|QF

11(0)|d〉〈d|QF
33(0)|b〉

+〈b|QF
33(0)|d〉〈d|QF

11(0)|b〉
+〈b|QF

22(0)|d〉〈d|QF
33(0)|b〉

+〈b|QF
33(0)|d〉〈d|QF

22(0)|b〉
]
GF

1122

−
∑

ωbd

ωbd

[
|〈b|QF

12(0)|d〉|2 + |〈b|QF
13(0)|d〉|2

+|〈b|QF
23(0)|d〉|2

]
GF

1212 (21)

and
〈
d

dτ
HA(τ )

〉

RR
= −1

4

∑

ωbd

ωbd

[
|〈b|QF

11(0)|d〉|2

+|〈b|QF
22(0)|d〉|2 + |〈b|QF

33(0)|d〉|2
]
KF

1111

−1

4

∑

ωbd

ωbd

[
〈b|QF

11(0)|d〉〈d|QF
22(0)|b〉

+〈b|QF
22(0)|d〉〈d|QF

11(0)|b〉
+〈b|QF

11(0)|d〉〈d|QF
33(0)|b〉

+〈b|QF
33(0)|d〉〈d|QF

11(0)|b〉
+〈b|QF

22(0)|d〉〈d|QF
33(0)|b〉

+〈b|QF
33(0)|d〉〈d|QF

22(0)|b〉
]
KF

1122

−
∑

ωbd

ωbd

[
|〈b|QF

12(0)|d〉|2 + |〈b|QF
13(0)|d〉|2

+|〈b|QF
23(0)|d〉|2

]
KF

1212, (22)

where

GF
i jkl =

∫ ∞

−∞
du eiωbduCF

i jkl(u),

KF
i jkl =

∫ ∞

−∞
du eiωbduχ F

i jkl(u) (23)

are the Fourier transforms of CF
i jkl and χ F

i jkl . Note that the
quadrupole-dependent terms in Eqs. (21) and (22) are equal.
This leads to the cancellation of the contributions from vac-
uum fluctuations and radiation reaction for an inertial atom
when ωbd < 0, i.e. transitions to higher-lying levels are not
allowed for inertial atoms in vacuum, as expected. When
ωbd > 0, the total average rate of change of the atomic energy

is
〈
d

dτ
HA(τ )

〉
= −2h̄G

15c5

∑

ωbd>0

ω7
bd

(
2α1111 + 2α2222

+2α3333 − α1122 − α2211 − α1133 − α3311

−α2233 − α3322 + 6α1212 + 6α1313 + 6α2323
)
. (24)

Here we have returned to the SI units, and have defined the
gravitational polarizability asαi jkl = 〈b|QF

i j (0)|d〉〈d|QF
kl(0)

|b〉/h̄ωbd .

3 The density spectrum of gravitational waves

First, we investigate the density spectrum of background
gravitational waves emitted by hydrogen atoms. We assume
that the hydrogen atoms are in thermal equilibrium with the
background radiation and satisfy the Boltzmann distribu-
tion, so the population decreases significantly as the principal
quantum numbern increases. On the other hand, gravitons are
expected to be spin-2 particles, so the change of the orbital
angular momentum quantum number �l should be 2 after
transition. Therefore, the most prominent process would be
the transition from 3d to 1s.

The wavefunctions of hydrogen atoms in 3d and 1s states
are

�1s = 1√
πa3/2

e−r/a,

�3d = 1

162
√

πa3/2

(
r2

a2

)
e−r/3a sin2 θ e2iφ, (25)

respectively. Direct calculations show that

α1111 = α2222 = α1122 = α2211 = 243

8192

mea2

ω2
31

, (26)

α3333 = 243

2048

mea2

ω2
31

, (27)

α1133 = α3311 = α2233 = α3322 = − 243

4096

mea2

ω2
31

, (28)

α1212 = α1313 = α2323 = 0, (29)

where me is the mass of an electron, and a is the Bohr radius.
Therefore,
〈
d

dτ
HA(τ )

〉
= −38Gm2

ea
4ω6

bd

5 × 213c5
, (30)

which agrees with the previous results derived from a semi-
classical approach [30], and the standard perturbation theory
[31]. At first glance, it may seem puzzling that the rate of
change of the atomic energy

〈 d
dτ

HA(τ )
〉

is proportional a4

while the polarizability αi jkl is proportional to a2. Recall

that the Bohr radius a = 4πε0h̄2

mee2 , and the transition frequency
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ωmn = − mee4

2(4πε0)2h̄3

(
1
m2 − 1

n2

)
, so the Bohr radius a, the

transition frequency ωbd , and the mass of electronsme are not
independent physical quantities. We write the rate of change
of the atomic energy and the polarizability in the way above,
since we are trying to avoid the Coulomb constant 1

4πε0
and

the charge of electron e in an issue with gravitation as the
main concern.

At a redshift z ∼ 1100, free electrons and protons became
bound to form hydrogen atoms, and the Universe became
transparent, which is known as recombination [39]. In this
paper, we consider gravitational waves produced by the spon-
taneous emission of gravitons of hydrogen atoms in the
Universe after recombination. Due to the expansion of the
Universe, the gravitons emitted by hydrogen atoms are red-
shifted, and the redshifts are different for gravitons emit-
ted at different time. Therefore, the spectrum expected to be
observed today should be continuous instead of a series of
discrete frequencies.

In the following, we calculate the current energy density
ρ normalized with respect to the critical energy density ρc =
3H2

0
8πG , i.e.

� = 1

ρc

dρ

d ln ω
. (31)

The gravitational energy density emitted by hydrogen atoms
from the time τ to τ + dτ can be expressed as

dρ = − 1

(1 + z)4 N (z)

〈
dHA

dτ

〉
dτ, (32)

where N (z) is the number density of hydrogen atoms in the
3d state. Here ρ represents the energy density at the current
epoch z = 0, which scales as 1

(1+z)4 due to the volume dilu-
tion as well as the redshift caused by the cosmic expansion.
The minus sign indicates that a decrease in the atomic energy
means an increase in the gravitational wave energy. For sim-
plicity, we assume that all atoms (ordinary matter) today are
hydrogen atoms, and the number is conserved during the
expansion of the Universe. Therefore, the number density of
hydrogen atoms in the 3d state at redshift z can be estimated
as

N (z) ≈ ρc PB P3d(z)

mHc2 (1 + z)3 , (33)

where mH is the mass of a hydrogen atom, PB ≈ 5% is
the current percentage of the baryonic matter, and P3d(z)
is the percentage of hydrogen atoms in the 3d state. Here,
we neglect the atoms with principal quantum number n ≥ 5
since the percentage is extremely small. The percentage of
atoms in the 3d state can then be expressed as

P3d(z) ≈ n3d(z)∑4
n=1

∑n−1
l=0 nns(z)

. (34)

Here

nnl(z) = (2l + 1)n1s(z)e
− B1−Bn

kB T (z) , (35)

where Bn = 13.6/n2 eV is the binding energy, kB is the
Boltzmann constant, n1s is the population in the 1s state, and

T (z) = (1 + z)T0 , (36)

is the temperature of the Universe when gravitons are emitted
at redshift z, with T0 = 2.73 K the temperature of the Uni-
verse today. On the other hand, according to the definition of
the Hubble constant H , it can be derived that

Hdτ = dω

ω
= d ln ω. (37)

Taking Eqs. (32)-(37) into Eq. (31), we have

� = 38 Gm2
ea

4ω5
31PB P3d ω

5 × 213 mHc7H
, (38)

Following the same procedures, we have considered all
possible transitions for hydrogen atoms with the principal
quantum number up to n = 4. The results are shown in Fig.
1. As expected, the dominant contribution comes from the
3d − 1s transition at the redshift z ∼ 1100, which corre-
sponds to the peak in frequency at ω = 1.67 × 1013 Hz
in Fig. 1 (left), and the relative energy density is ∼ 10−54.
As ω increases, the energy density drops significantly. Physi-
cally, this means that the population of hydrogen atoms in the
3d state significantly decreases as the Universe cools down.
There is also a small peak in frequency at ω = 1.76 × 1013

Hz in Fig. 1 (left), due to the 4d − 1s transition, and the
energy density is one order of magnitude smaller than the
3d − 1s one, since the population of hydrogen atoms in the
4d state is smaller than that in the 3d state. In Fig. 1 (right),
we show that in the 1012 Hz regime, there are two peaks
corresponding to the 3d − 2s and 4d − 2s transitions, and
the relative energy density is ∼ 10−56. Since the transition
frequencies are smaller, the energy density is two orders of
magnitude smaller than the 3d−1s one. Other possible tran-
sitions include 4d − 3s, 4 f − 2p and 4 f − 3p. Since the
corresponding energy density are much smaller, we do not
show here explicitly.

Apart from hydrogen, helium is the second most abun-
dant element in the Universe, constituting ∼ 24% of the
baryonic matter. The binding energy of helium is larger than
that of hydrogen, so the recombination comes earlier. The
recombination takes place in two steps. The recombination
of singly ionized helium He+ takes place around redshift
z ≈ 6000, and the recombination of neutral helium takes
place around redshift z ≈ 2000 [40]. Here, we consider only
the contribution from He+ ions, since they recombine earlier
and therefore the population of higher-lying excited states is
larger, and they have a longer time to emit. Since singly ion-
ized helium He+ is a hydrogen-like atom, following the same
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Fig. 1 The energy density spectrum of gravitational waves from spontaneous emission of hydrogen atoms

calculations which have been done in the case of hydrogen
atoms, we find a spectrum whose shape is similar to that of
the hydrogen atoms but the signal is much stronger. Here,
the dominant contribution comes from the 3d − 1s transi-
tion of He+ at the redshift z ∼ 6000, which gives a peak in
frequency at ω = 1.22 × 1013 Hz, and the relative energy
density is ∼ 10−48, which is 6 orders of magnitude larger
than that from hydrogen atoms. This significant difference
mainly comes from a much larger population of higher-lying
excited states since the recombination of He+ is much earlier
and therefore the Universe is much hotter.

4 Summary

In summary, we take the gravitons emitted by hydrogen and
helium in the Universe after recombination as a possible
source of high frequency gravitational waves. In order to cal-
culate the energy density spectrum, we first obtain the tran-
sition rate for multilevel atoms in interaction with a bath of
fluctuating quantum gravitational fields using the DDC for-
malism in the framework of the quantum linearized theory of
gravity. Then we derive the energy density spectrum expected
to be observed today. Explicit calculations show that the most
prominent contribution comes from the 3d − 1s transition
singly ionized helium He+, which gives a peak frequency at
ω ∼ 1013 Hz. Since the population in excited states decreases
significantly as the temperature of the Universe cools down,
the energy density quickly decreases as the frequency we
observe today increases. Although far from the precision of
measurement today, we believe that the spontaneous emis-
sion of He+ is a natural source of high frequency gravitational
waves, since it is a direct consequence if we accept that the
basic quantum principles we are already familiar with apply
as well to a quantum theory of gravity and no hypothetical
theories are involved.
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