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Abstract We compute the two-loop β-function of scalar
and spinorial quantum electrodynamics as well as pure
Yang–Mills and quantum chromodynamics using the back-
ground field method in a fully quadridimensional setup using
implicit regularization (IREG). Moreover, a thorough com-
parison with dimensional approaches such as conventional
dimensional regularization (CDR) and dimensional reduc-
tion (DRED) is presented. Subtleties related to Lorentz
algebra contractions/symmetric integrations inside divergent
integrals as well as renormalisation schemes are carefully
discussed within IREG where the renormalisation constants
are fully defined as basic divergent integrals to arbitrary loop
order. Moreover, we confirm the hypothesis that momentum
routing invariance in the loops of Feynman diagrams imple-
mented via setting well-defined surface terms to zero deliver
non-abelian gauge invariant amplitudes within IREG just as
it has been proven for abelian theories.

1 Motivations

Unravelling physics beyond the standard model (SM) has
entreated theoretical predictions for particle physics preci-
sion observables beyond next-to-leading-order (NLO). Such
predictions rely on involved Feynman diagram calculations
to evaluate scattering amplitudes both in the SM and its exten-
sions. Theoretical models beyond the SM (BSM) can be con-
structed, for instance, as an extension in the Higgs sector
by either changing the number of scalar multiplets or con-
sidering the Higgs boson as a composite particle – the so
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called Composite Higgs Models [1,2]. Supersymmetric and
dark matter extensions have also been considered in order
to explain SM deviations from experimental results [3] in
electroweak precision observables (EWPO) which are known
with an accuracy at the per cent level or better [4–6]. On the
other hand, precise measurements and calculations of known
particles and interactions are just as important to validate,
redress, or refute new models. Also, in order to evade from
unphysical scale dependence at low order, higher order terms
are needed to smooth out such dependence in the resulting,
more accurate, predictions. For example, a full N 3LO cal-
culation for QCD corrections to gluon-fusion Higgs boson
production was performed in [7] at center-of-mass energy 13
TeV. The considerably low residual theoretical uncertainty
(≈ 5–6%) and small sensitivity to scale variation (≈ 2%
) superseded earlier results below N 3LO . Because exper-
imental uncertainties are expected to drop below the accu-
racy of theoretical data, as expected from future experimental
measurements at the future circular collider (FCC-e−e+) [8],
QCD theoretical uncertainties ought to be reduced at many
levels so physics BSM can be ultimately ascertained.

Ultraviolet (UV) and infrared (IR) divergences are ubiqui-
tous beyond leading order in S-matrix calculations and must
be judiciously removed in order to automated computation
codes for the evaluation of Feynman amplitudes. As a by-
product of such subtractions, there remain residual depen-
dencies on renormalisation (λR) and factorisation (λF ) scales
in the perturbative series that describes a physical observable.
The dependence on such scales is expected to diminish after
higher terms are taken into account and, at a given order, may
in principle be minimised to yield a result the least sensitive
to variations in the unphysical parameters [9]. However, the
problem of scale setting has been studied extensively and
there is no consensus on a procedure valid in general. For a
recent account see [10].
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For typical collider observables, due to the high mul-
tiplicity of jets, the real radiation is subjected to intri-
cate phase-space constraints and calculations are often per-
formed numerically. In such cases the cancellation of soft and
collinear IR divergences becomes more involved and precise
evaluations of parton distribution functions (PDF’s), needed
to calculate cross-sections with hadron beams, become
mandatory [11]. A general cross section in QCD usually
includes short and long-distance behaviour and thus it is not
computable directly in perturbation theory. This remarkable
problem was first addressed by Weinberg in his pioneering
work on QED and quantum gravity [12]. At a given order αn

s
and momentum transfer Q there appear large logarithms such
as renormalisation and factorisation logs α2

s lnn(Q2/λ2
R),

α2
s lnn(Q2/λ2

F ), as well as high energy logs and Sudakov logs
[13,14]. Renormalisation group (RG) logs are resummed via
RG evolution equations whereas Sudakov logs originate from
IR and collinear singularities and may be resummed through
exponentiation of IR and collinear poles. Such resummations
at and beyond next-to-leading-log (NLL) assure the validity
of the perturbative series, leading to non-perturbative con-
tributions to high energy cross sections. For those resum-
mations, it is crucial to rely on factorisation theorems [15–
17]. Factorisation properties separate the dynamics at dif-
ferent energy scales. For instance, for n external partons of
momenta pi in the high energy limit, an amplitude factorizes
as [17]

Mn

(
μ

λI R
,

pi
λUV

, αs(λUV )

)

= Z

(
μ

λI R
,

pi
λI R

, αs(λI R)

)
Hn

(
pi

λUV
,

λI R

λUV
, αs(λUV )

)
,

(1)

where Hn is the UV renormalized piece and Z contains the
IR soft and collinear divergences expressed here by μ → 0.
The factor Z itself obeys an RG-like equation which gives
rise to anomalous dimensions. The latter can be used to
resum Sudakov logs, non-abelian exponentiation of differen-
tial cross-sections [18], as well as to understand the mapping
between IR onto UV divergences of operators in effective
field theory [15].

In order to tackle the problems discussed above, the choice
of a regularisation scheme for UV or IR divergences in Feyn-
man amplitudes matters from both conceptual and practical
aspects. In theory the choice of regularisation is unphysi-
cal but in practice it is paramount to both studying anoma-
lies in perturbative quantum field theory and automatising
loop calculations. In recent years, novel schemes have been
proposed aiming at improving or even obliterating conven-
tional dimensional regularisation (CDR) [19,20]. In dimen-
sional specific models, such as chiral [21–25], topological
[26–29] or supersymmetric quantum field theories [30–32],

CDR needs caveats or even explicit modifications such as
the dimensional reduction scheme (DRED) [33,34]. On the
other hand, such modifications on CDR can lead to addi-
tional terms at the Lagrangian level, such as the ε-scalar par-
ticles [35–40], in order to satisfy Ward identities and account
for amplitude factorisation and other renormalisation group
properties of the model. The downsides are that besides the
Feynman rules become more involved, such fictitious parti-
cles are not protected by gauge invariance and require cou-
pling αε, α4ε �= αs , and thus their own β functions, in order
to preserve unitarity.

Alternatively, some schemes that operate only on the phys-
ical dimension of the underlying model aside from energy
cut-offs have been constructed. Amidst them, implicit regu-
larisation (IREG) was constructed for the purpose of shed-
ding light on theoretical aspects of regularisation dependent
quantum corrections as well as providing novel analytical
and hopefully numerical calculational methods [41]. Transi-
tion rules to other schemes is particularly perspicuous within
IREG.

In this contribution, we focus on the UV renormalisation
of scalar/spinorial QED, pure Yang-Mills and QCD to two
loop order within IREG. Working entirely in four dimen-
sions, we calculate the β-functions for the gauge coupling
constant to two-loop order in a minimal subtraction scheme
of the basic divergent integrals (BDI’s) in internal momenta.
BDI’s contain a natural renormalisation scale λR ≡ λ and are
absorbed into renormalisation constants whose counterparts
in DRED and CDR are provided. By definition, the subtrac-
tion scheme adopted by us is mass independent, implying
that the first two coefficients of the β-function of gauge
couplings are universal (renormalisation scheme indepen-
dent) [42]. Therefore, we reproduce the well-known results
obtained in the context of dimensional regularization within
the minimal subtraction scheme.

Moreover, our results show compliance with gauge sym-
metry lending support to the conjecture that momentum rout-
ing invariance (MRI) in Feynman diagrams (enforced by set-
ting well-defined surface terms to zero) delivers gauge invari-
ant amplitudes. Such a conjecture was proved to be valid in
the abelian gauge theories to all orders in perturbation theory
[43,44]. No modifications at Lagrangian level are necessary
as IREG operates in the physical dimension. For instance,
no analog of ε-scalar field needed in schemes such as DRED
and four-dimensional helicity (FDH) [17,45–48] to assure
unitarity and proper cancellation of divergences is introduced
in IREG as a matter of principle as it operates in the physi-
cal dimension. We show nevertheless, that in this particular
calculation, ε-field contributions cancel out in DRED. It is
noteworthy that ε-scalars are crucial to understand IR struc-
ture in DRED or FDH schemes.

In the next section we provide a brief panorama over reg-
ularisation schemes with focus upon IREG rules that will
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be used throughout this contribution. We also discuss some
subtleties related to Lorentz algebra contractions/symmetric
integrations inside divergent integrals, and present a ded-
icated analysis of the correspondence among IREG and
dimensional methods. In Sect. 3 we study a series of exam-
ples at two-loop order, aiming to compute the first two coef-
ficients of the gauge coupling β function in scalar/spinorial
QED, pure Yang–Mills, and QCD. A careful comparison with
CDR and DRED is performed. Finally, we conclude in Sect.
4, and present a series of appendixes containing some tech-
nical details of the calculations.

2 Survey of regularisation schemes and IREG rules

In CDR [19,20] the vector bosons are treated in d = 4 − 2ε

dimensions. This formulation cannot be consistently applied
to dimensional specific models such as chiral, topological
and supersymmetric quantum field theories as discussed in
the introduction. Some variants of CDR such as the ’t Hooft-
Veltman method (HV) [49], dimensional reduction (DRED)
[17,30–38] and four dimensional helicity (FDH) [45–48]
have been developed. Moreover some scattering amplitudes
in QCD are regularisation dependent [50] mainly due to
the interplay between IR and UV divergences to yield finite
results. In dimensional methods both UV and IR infinities
appear as poles 1/εn . An unclear distinction between the ori-
gin of such poles can lead to ambiguities such as the nature
of radiative contributions to supersymmetric Yang-Mills β-
functions [51]. We may schematise dimensional methods as
in Table 1.

Grosso modo, a quasi-4-dimensional gauge field may
be decomposed as Aμ = Âμ + Ãμ, where Âμ is a d-
dimensional gauge field and Ãμ is a scalar of multiplicity
Nε = 2ε [52,53]. This amounts to adding up to the original
Lagrangian a term Lε that contains evanescent Yukawa cou-
plings between ε-scalars and quarks of strength λε and quar-
tic ε-scalar vertices with strength λ4ε [35–38]. The resulting
schemes such as DRED and FDH are crucial to study models
with supersymmetry. The latter is explicitly broken in CDR

Table 1 Let n be the physical dimension. In CDR and HV, gluons are
regularised in d dimensions with metric tensor ĝμν (QdS). The quasi-n-
dimensional space has metric gμν (QnS) and the original n-dimensional
space is denoted by ḡμν (nS). A complementary ε-dimensional tensor
g̃μν must be introduced such that gμν = ĝμν + g̃μν . Thus QnS =
QdS ⊕ QεS . Mathematical consistency and gauge invariance require
QnS ⊃ QdS ⊃ nS and prohibit to identify gμν with ḡμν [30–32]

CDR HV FDH DRED

Internal gluon ĝμν ĝμν gμν gμν

External gluon ĝμν ḡμν ḡμν gμν

as gauge bosons are considered as quantities with d compo-
nents whereas gauginos remain 4-dimensional which means
an unbalance between fermionic and bosonic degrees of free-
dom. Symmetry restoring conterterms may be added order
by order in perturbation theory in the renormalised theory
[54,55]. However, besides being a striking additional com-
plication, we cannot discard possible anomalous symmetry
breakings in supersymmetric gauge theories in general [30–
32]. In this sense, DRED has been shown to be an invariant
supersymmetric scheme to minimal supersymmetric gauge
models up to two loop order using the quantum action prin-
ciple [31].

For an efficient computational code to evaluate Feyn-
man amplitudes beyond leading order,1 UV and IR diver-
gences ought to be subtracted by a scheme that respects uni-
tarity, causality, and symmetries. The subtraction of nested
and overlapped divergences should respect the Bogolyubov
recursion relations, locality, and the BPHZ algorithm [57,57–
59,61,62]. The techniques can be divided into two categories
[41]:

1. “to d”: CDR (1972), HV (1977); DRED (1979), FDH
(1992), Six-dimensional formalism SDF (2009) [63],
Four dimensional Formalism FDF (2014) [64].

2. “or not to d”: Higher covariant derivative regulariza-
tion (1971) HD [65–67]; Differential regularisation/
renormalisation DIFR (1992) [68], Implicit regularisation
IREG (1998) [69,70], Loop regularisation LORE (2003)
[71], Four-Dimensional regularisation/renormalisation FDR
(2012) [72], Four-Dimensional Unsubtraction FDU (2016)
[73].

In this contribution we will be mainly focused on the latter
set, in particular the IREG framework whose rules and state
of the art we present in the next subsection.

2.1 State of the art and rules of IREG

The extraction of UV divergent basic divergent integrals
in IREG can be effected in consonance with Bogoliubov’s
recursion formula [74] complying with unitarity, Lorentz
invariance and locality; a proof-of-concept calculation has
shown how renormalisation functions of scalar theories are
obtained beyond one loop order. In [43,44] it was shown
that IREG respects abelian gauge symmetry to N -loop order
in perturbation theory, in a constrained version in which
surface terms (ST’s) are set to vanish. Such regularisation
dependent ST’s serve as a tag for momentum routing depen-
dence in the loops of Feynman diagrams and therefore an
important connection between momentum routing invariance

1 For a recent application in the framework of dimensional approaches
see, for instance, [56]
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and gauge symmetry was established. ST’s also parametrise
finite and arbitrary parameters in Feynman diagram calcula-
tions which may be fixed on symmetry basis or phenomeno-
logical grounds [75]. We list some model applications of
IREG. Chiral gauge theories were discussed within IREG
in [76–78]. The consistency conditions which led to a con-
strained and gauge invariant version of IREG in abelian the-
ories appeared firstly in [69,70] and were further discussed
in [43,44,79,80]. In specific model calculations, IREG has
been shown to respect supersymmetry in the Wess-Zumino
model in [81] as well as in supersymmetric gauge theories
[82–84] helping to shed light on the puzzle about IR contribu-
tions to the beta function of N = 1 Super Yang-Mills theory.
Because IREG parametrises regularization dependent param-
eters in perturbative calculations, it was useful to study some
effective models of low energy QCD [85,86]. For a study
on the radiative origin of some Lorentz and CPT ambiguous
terms in extended QED within IREG we refer to [87–89].
In [90] we compared for the first time IREG to the BPHZ
and dimesional methods and in [91] it was shown that the
rules of IREG and DIFR can be made equivalent, at least to
one loop order. The role played by quadratic divergences on
phenomenology could de clearly discussed in the framework
of IREG [92]. Some applications of such discussion can be
found in [93–95]. In [96] we have a field theoretical deriva-
tion of interaction corrections to the universal conductivity
of graphene using perturbative tools based on IREG showing
explicitly the origin of discrepancies in previous calculations
using different regularisations. The present contribution is a
step forward a generalisation of IREG beyond one loop order
to non-abelian gauge theories. We show in a set of exam-
ples that just as in the abelian case a constrained version of
IREG automatically deliver gauge invariant amplitudes. For
this purpose it is necessary to closely compare IREG with
fully dimensional schemes (CDR) and mixed schemes such
as DRED.

It is noteworthy that even for methods that work in the
physical dimension, the renormalisation of divergent Feyn-
man amplitudes can lead to inconsistencies in the manipula-
tion of Dirac algebra in odd dimensions and γ5 matrix alge-
bra just as in dimensional methods. The crux of the matter
is simple enough. By claiming the validity of the following
properties: (a) shift invariance (namely a property related to
translational and momentum routing invariance in Feynman
diagrams) , (b) linearity of renormalisation (subtraction of the
divergent content within a certain scheme) and (c) numer-
ator/denominator consistency (such as for k being a loop
quadri-momentum and m a mass (k2 + m2)/(k2 + m2) = 1
in the integrand of a Feynman amplitude), the contraction
of Lorentz indices does not commute with renormalisation.
This is the reason of some spurious anomalies in chiral gauge
theories [76–78]. Because such properties are fundamental
to comply with perturbative proofs of quantum action prin-

ciples, some operations in the physical dimension become
forbidden in IREG (for instance, symmetric integration in a
divergent integral). In [76] it was discussed that for the pur-
pose of a consistent treatment of the γ5-algebra in Feynman
amplitudes, forbidding such operations in non-dimensional
regularisations may not be sufficient. Consistency can be re-
established formally by avoiding some n-dimensional rela-
tions before renormalisation. To make such statement more
rigorous one can proceed analogously to some consistent
generalisations of DRED such as FDH, but in a much sim-
pler fashion. The inherent inconsistencies found in DRED by
Siegel [33] were solved by forbidding the use of certain n-
dimensional relations before renormalisation [97,98]. In this
construction the n-dimensional space to be used in DRED
is not the genuine n-dimensional space (nS), but a quasi-n-
dimensional space (QnS) as schematised in table 1. Its rela-
tion with QdS in CDR is given by the direct-sum structure
QnS = QdS ⊕ QεS. In a similar fashion, one could define
IREG in a QnS space with the difference that one needs not
embed a QdS space as in DRED or FDH. Formally we would
have

QnS|I REG = nS ⊕ X,

where nS is the genuine n-dimensional space which allows
for using standard identities valid in nS spaces at some steps
of the calculations. Another advantage is that contrarily to the
QεS space, the X -space is only formally defined and does not
require further explicit integration rules. In this way, the γ5

will pertain to nS, and genuine dimensional identities cannot
be applied, in general. This formal extension has however a
few drawbacks [76] (which are also present in dimensional
methods) and need further study: the generalisation of stan-
dard Dirac algebra to odd dimensions cannot be preserved
and there is no finite complete set in Dirac space and hence
the standard Fierz identities do not hold.

We emphasise that, in the present contribution, chiral the-
ories will not be considered. Thus, we will not need to con-
sider this space structure any further since, from a practical
point of view, no distinction among them can be drawn in
the examples to be studied. This fact allows us to work in a
strictly four-dimensional framework whose rules we present
in the next section. Nonetheless it is worth mentioning that
the rules of IReg to handle chiral theories, so far in selected
examples, do not require to abandon the physical dimension
and are corroborated by an analysis in the space structure
mentioned.

2.1.1 The rules of IREG

We start by introducing some terminology. We denote a gen-
eral n-loop Feynman amplitude as An with L external legs,
kl being the internal (loop) momenta (l = 1 · · · n) and pi the
external momenta. The divergent content of the amplitude
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will be separated in a set of basic divergent integrals (BDI) in
such a way that: (i) each overall-divergent amplitude is sepa-
rated into a unique finite expression plus a divergent part, (ii)
power-counting finite expressions are not modified, and (iii)
linearity under the regularisation operation R is preserved
namely, [aF +bG]R = a[F]R +b[G]R , where F and G are
Feynman integrals, a, b are constants (dependent on external
momenta and/or masses). Moreover, invariance under shifts
of the integration momenta and numerator-denominator con-
sistency will be required. These two conditions are necessary
in perturbative proofs of the quantum action principle [99].
In order to fulfill all these properties, a definition of normal
form2 in the context IREG is required, which renders con-
sistency to the method. In this contribution we extend the
analysis presented in [76], by proposing a definition of nor-
mal form to multi-loop integrals in a way consistent with
gauge invariance as our results show.

Given the general integral An , we propose that a normal
form is achieved after the two steps:

(A) Perform the internal symmetry group and the usual Dirac
algebra. As extensively discussed in [76], identities only
valid in nS such as {γ5, γμ} = 0 must not be used inside
divergent amplitudes [76–78].

(B) The requirement of numerator/denominator consistency
implies that terms with internal momenta squared in the
numerator must be canceled against denominator. For
instance,

∫
k,q

k2

k2q2(k − q)2

∣∣∣∣
IREG

=
∫
k,q

1

q2(k − q)2

∣∣∣∣
IREG

, (2)

where
∫
k ≡ ∫

d4k/(2π)4. In the same vein, symmetric
integration in divergent amplitudes cannot be enforced.
That is,

[ ∫
k
kμ1 · · · kμ2m f (k2)

]IREG

�= g{μ1μ2 · · · gμ2m−1μ2m }

(2m)!
[ ∫

k
k2m f (k2)

]IREG

, (3)

where the curly brackets here indicate symmetrisation
over Lorentz indices.

After these steps, the resulting multi-loop integrand can be
manipulated consistently in the framework of IREG, mean-
ing that (i) each overall-divergent integral is separated into
a unique finite expression plus a divergent part. Moreover,
the UV content of An can be cast in terms of well-defined

2 By normal form it is meant that by following the rules of the method,
one arrives at unequivocal expressions.

basic divergent integrals, which need not to be evaluated.
We assume without loss of generality that all the masses of
the underlying model are zero in order to define a massless
minimal subtraction scheme.

Given the normal form defined by the steps A and B above,
in the following we present the rules of IREG for UV diver-
gent amplitudes necessary to evaluate β-functions of gauge
couplings in abelian and non-abelian theories. For the treat-
ment of both UV and IR divergences in IREG including fac-
torisation properties of Feynman amplitudes, a more profic-
uous arena is S-matrix calculations involving cross-sections
and decay rates to be discussed elsewhere.

1. Starting at one loop, assume an implicit regulator, say a
momentum cut-off, in order to remove external momenta
dependence from the divergent part of the amplitude by
judiciously applying the identity

1

(kl − pi )2 − μ2 =
n

(kl )
i −1∑
j=0

(−1) j (p2
i − 2pi · kl) j

(k2
l − μ2) j+1

+ (−1)n
(kl )
i (p2

i − 2pi · kl)n
(kl )
i

(k2
l − μ2)n

(kl )
i

[
(kl − pi )2 − μ2

] ,

(4)

in the propagators. Hereμ ↓ 0 is a fictitious mass (infrared
regulator) and at one loop order kl is simply k. It should be
emphasized that, since the starting integrals are IR-safe,
the infrared regulator will only be needed in intermediate
steps of the calculation, canceling in the end result. There-
fore, gauge invariance will not be spoiled. Basic divergent
integrals (BDI’s) appear as

Ilog(μ
2) ≡

∫
k

1

(k2 − μ2)2 ,

I ν1···ν2r
log (μ2) ≡

∫
k

kν1 · · · kν2r

(k2 − μ2)r+2 ,

Iquad(μ
2) ≡

∫
k

1

(k2 − μ2)
,

I ν1···ν2r
quad (μ2) ≡

∫
k

kν1 · · · kν2r

(k2 − μ2)r+1 . (5)

The UV finite part in the limit where μ ↓ 0 has loga-
rithmical dependence in the physical momenta which is
the characteristic behaviour of the finite part of massless
amplitudes [100].

2. BDI’s with Lorentz indices ν1 · · · ν2r are systematically
reduced to linear combinations of BDI’s without Lorentz
indices (with the same superficial degree of divergence)
since we comply with invariance under shifts of the
integration momenta and numerator-denominator consis-
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tency [76]. Therefore, total derivatives with respect to the
internal momenta must vanish, e.g.

∫
k

∂

∂kμ

kν

(k2 − μ2)2 = 4

[
gμν

4
Ilog(μ

2) − Iμν
log(μ

2)

]
= 0, (6)

∫
k

∂

∂kμ

kν

(k2 − μ2)
= 2

[
gμν

2
Iquad (μ

2) − Iμν
quad (μ

2)

]
= 0. (7)

3. An arbitrary positive (renormalisation group) mass scale
λ appears via regularisation independent identities, for
instance

Ilog(μ
2) = Ilog(λ

2) + i

(4π)2 ln
λ2

μ2 , (8)

which enables us to write a BDI as a function of λ2 plus
logarithmic functions of μ2/λ2, μ being a fictitious mass
which is added to massless propagators. Iquad(μ2) can
be chosen to vanish as μ goes to zero as we will show
through a general parametrisation of BDI’s. The limit
μ → 0 is well defined for the whole amplitude since it
is power counting infrared convergent ab initio. The BDI
can be absorbed in the renormalisation constants (with-
out explicit evaluation) [101] and renormalisation func-
tions can be computed using the regularisation indepen-
dent identity:

λ2 ∂ Ilog(λ2)

∂λ2 = − i

(4π)2 . (9)

4. At higher loop order the divergent content can be
expressed in terms of BDI in one loop momentum after
performing n − 1 integrations. The order of such integra-
tions is chosen systematically to display the counterterms
to be subtracted in compliance with the Bogoliubov’s
recursion formula [57–62,74]. The general form of the
terms of a Feynman amplitude after l integrations is

I ν1...νm =
∫
kl

Aν1...νm (kl , qi )∏
i [(kl − qi )2 − μ2] lnl−1

(
−k2

l − μ2

λ2

)
,

(10)

where l = 1, . . . , n and qi is an element (or combina-
tion of elements) of the set {p1, . . . , pL , kl+1, . . . , kn}.
Aν1...νm (kl , qi ) represents all possible combinations of kl
and qi compatible with the Lorentz structure.

5. Apply relation (4) in (10) by choosing n(kl )
i such that all

divergent integrals are free of qi . Therefore the divergent

integrals are cast as a combination of

I (l)
log(μ

2) ≡
∫
kl

1

(k2
l − μ2)2

lnl−1

(
−k2

l − μ2

λ2

)
,

(11)

I (l)ν1···ν2r
log (μ2) ≡

∫
kl

kν1
l · · · kν2r

l

(k2
l − μ2)r+1

lnl−1

(
−k2

l − μ2

λ2

)
,

(12)

I (l)
quad(μ

2) ≡
∫
kl

1

(k2
l − μ2)

lnl−1

(
−k2

l − μ2

λ2

)
,

(13)

I (l)ν1···νr+2
quad (μ2) ≡

∫
kl

kν1
l · · · kν2r

l

(k2
l − μ2)r+1

lnl−1

(
−k2

l − μ2

λ2

)
.

(14)

As before, higher loop BDI’s are reduced to scalar ones
by considering vanishing total derivatives

∫
k

∂

∂kν1

kν2 · · · kν2 j

(k2 − μ2)1+ j−i
lnl−1

[
− (k2 − μ2)

λ2

]
= 0.

(15)

For instance,

I (l) μν
log (μ2) =

l∑
j=1

(
1

2

) j
(l − 1)!
(l − j)!

{
gμν

2
I (l− j+1)
log (μ2)

}
.

(16)

6. A renormalisation group scale is encoded in BDI’s. At
nth-loop order a relation analogous to (8) is obtained via
the regularisation independent identity

I (l)
log(μ

2) = I (l)
log(λ

2)

− b

l
lnl

(
μ2

λ2

)
− b

l−1∑
j=1

(l − 1)!
(l − j)! lnl− j

(
μ2

λ2

)
,

(17)

where λ2 �= 0, b ≡ i

(4π)2 . (18)

7. BDI’s can be absorbed in renormalisation constants. A
minimal, mass-independent scheme amounts to absorb
only I (l)

log(λ
2). To evaluate RG constants, BDI’s need not

be explicitly evaluated as their derivatives with respect to
the renormalisation scale λ2 are also BDI’s. For example
[43],

λ
∂ Ilog(λ2)

∂λ2 = −b, λ2 ∂ Iquad(λ2)

∂λ2 = λ2 Ilog(λ
2),
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Fig. 1 Two-loop diagram which contains a gluon loop as sub-diagram

λ2
∂ I (n)

log (λ2)

∂λ2 = −(n − 1) I (n−1)
log (λ2) − b α(n) ,

λ2
∂ I (n) μν

log (λ2)

∂λ2 = −(n − 1)I (n−1) μν
log (λ2) − gμν

2
bϒ(n).

(19)

where n ≥ 2, α(n) = (n − 1)! and ϒ(n) may be obtained
from α(n) via relation (16).

Finally, some comments are in order. For simplicity,
we will discard terms quadratically divergent encoded as
I (l)
quad(μ

2) since they must cancel in theories that are mul-
tiplicative renormalizable, which are the ones we consider
here. Moreover, in the framework of IREG, one is not
allowed, in general, to evaluate a sub-diagram and join the
obtained result in the full diagram. The reason can be traced
back to equations similar to (3). This fact does not amount in a
violation of unitarity since, according to the BPHZ theorem,
only the divergent content of the integrals in (3) must coin-
cide, and they do. However, local terms may be generated
which could (possibly) violate gauge invariance. Therefore,
we argue that the normal form obtained by the steps (A)–(B)
is the one that respects both unitarity and gauge invariance.

In order to clarify the discussion we present below an
example. Consider the diagram of Fig. 1, whose amplitude
(in the Feynman gauge) is schematically given by

A ∝
∫
k
�μναβ(k, p)

∫
l

Fαβ(l, k, p)

l2(l − k)2 , (20)

where l is the internal momentum of the sub diagram (gluon
loop), k the internal momentum of the complete diagram,
and p the external momentum. From the many possibili-
ties encoded in Fαβ , one is simply lαlβ which, after con-
traction with gαβkμkν , one of the many terms presented in
�μναβ(k, p), generates a contribution as

B ∝
∫
k

kμkν

k4(k − p)2

∫
l

l2

l2(l − k)2 (21)

∝
∫
k

kμkν

k4(k − p)2

∫
l

1

(l − k)2 (22)

Notice that Eq. (21) was obtained by applying the step (A)
of our procedure, while Eq. (22) is due to step (B). Next

one should evaluate the integrals in IREG according to the
algorithm presented in [74], and the rules sketched before. It
is not difficult to perceive that a null result will be obtained,
since we are allowed to perform shifts and the integral in l
will be identified with Iquad(μ2) which we drop as already
explained. On the other hand, if one opts to evaluate the sub-
diagram independently, one obtains

∫
l

lαlβ

l2(l − k)2

∣∣∣∣
IREG

= kαkβT1 + gαβk2T2, (23)

where T1 and T2 are scalar functions defined in Eq. B3. By
contracting the previous equation with gαβkμkν one now gets

B̃ ∝
∫
k

[
kμkνk2

k4(k − p)2 (T1 + 4T2)

]
=

∫
k

[
kμkνk2

k4(k − p)2

(
−b

6

)]

(24)

which is (clearly) different from zero.

2.2 Correspondence among IREG and dimensional
methods

In this section we analyse to which extent it is possible
to recover results for amplitudes evaluated by dimensional
methods once the result in IREG is known. In IREG, the UV
log-divergent content of a Feynman amplitude is expressed
by the BDI’s I (n)

log (λ2), while in dimensional methods they
appear as poles in ε → 0. Therefore, given a n-loop ampli-
tude, one may wonder if extracting the residues of ε−n by
evaluating I (n)

log (λ2) in 4 − 2ε dimensions is sufficient to map
the IREG result on the one obtained in CDR or DRED, for
instance. Starting at n = 1, consider the log-divergent inte-
gral composed by the product of two massless propagators
(scalar self-energy amplitude):

I =
∫
k

1

k2(k − p)2
IREG= Ilog(λ

2) − b ln

[
− p2

λ2

]
+ 2b. (25)

By evaluating Ilog(λ2) in d = 4−2ε dimensions and expand-
ing around ε = 0 [41]

I dlog(λ
2) = (μDR)4−d

∫
ddk

(2π)d

1

(k2 − λ2)2

= b

[
1

ε
− γE + ln(4π) + ln

(
μ2
DR

λ2

)]
, (26)

one obtains

IIREG
∣∣∣
d

= b

[
1

ε
− γE + ln(4π) − ln

[
− p2

μ2
DR

]
+ 2

]
.

(27)
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Notice that the λ2 dependence is automatically traded by
μ2
DR . This result coincides with CDR and DRED, since con-

tractions of the metric are absent, namely

Id = b

[
1

(4π)−ε

(
−μ2

DR

p2

)ε
(ε)2(1 − ε)

(2 − 2ε)

]
= IIREG

∣∣∣
d
.

(28)

Therefore, for this one-loop example, evaluating BDI’s in
4 − 2ε dimensions is equivalent to dimensional methods. It
should be pointed out that at one-loop order, when DRED
and CDR yield different finite parts, we expect to recover the
results of the former. The reason is simply IREG does not
recourse to dimensional continuation and thus contractions
such as gabgab give 4 rather than d = 4 − 2ε. Moreover,
at least at one-loop order, by identifying the renormalisa-
tion scales of IREG and dimensional methods in Eq. 26, one
notices that the subtraction of BDI’s is equivalent to the MS
scheme. Interestingly, in FDR scheme [41,72], μ2 is replaced
by μ2

DR in the final result (after taking the limit μ ↓ 0), in
order to reproduce the MS scheme. As for quadratic diver-
gences a similar approach yields

Iquad(μ
2) = (μDR)4−d

∫
ddk

(2π)d

1

(k2 − μ2)

= bμ2

[
1 + 1

ε
+ ln

(
μ2
DR

μ2

)]
, (29)

which clearly vanishes in the limit μ ↓ 0. From the point
of view of IREG, one could still keep quadratic divergences
as a BDI, which cancel out in multiplicatively renormalis-
able theories [92,102,103] and thus they can be dismissed in
massless models.

We proceed to study the correspondence between dimen-
sional methods and IREG to higher loop order where some
subtleties appear. In analogy to the self-energy amplitude we
studied at one-loop, consider the n-loop product of massless
bubble diagrams proportional to the integrals:

J =
∫
k1

1

k2
1(k1 − p)2

· · ·
∫
kn

1

k2
n(kn − p)2 . (30)

Using the rules of IREG, each integral in ki can be indepen-
dently performed to give

J IREG =
[
Ilog(λ

2) − b ln

[
− p2

λ2

]
+ 2b

]n
. (31)

In order to establish a correspondence with dimensional
methods at n-loop order, the use of Eq. 27 is inappropriate,
since terms O(ε) are needed. Therefore, one should consider

Ilog(λ2) before expanding around ε = 0,

I dlog(λ
2) = (μDR)4−d

∫
ddk

(2π)d

1

(k2 − λ2)2

= b

(4π)−ε

(
μ2
DR

λ2

)ε

(ε), (32)

and let us rewrite ln
(−p2/λ2

)
so that the scale μ2

DR emerges:

ln

(
− p2

λ2

)
= lim

ε↓0

(ε)

(4π)−ε

[(
μ2
DR

λ2

)ε

−
(

−μ2
DR

p2

)ε]
,

(33)

where we have used that ln(x) = limε↓0 [(xε −1)/ε+α(ε)],
α(ε ↓ 0) = 0, and to write in terms of the gamma func-
tion we have chosen α(ε) = (ln 4π − γE )[(μ2

DR/λ2)ε −
(−μ2

DR/p2)ε]. Thus,

J IREG
∣∣∣
d

= bn
[

1

(4π)−ε

(
−μ2

DR

p2

)ε

(ε) + 2

]n

, (34)

which, by construction, is independent of λ. On the other
hand, by performing the computation in DRED from the start
one obtains

Jd = bn
[

1

(4π)−ε

(
−μ2

DR

p2

)ε
(ε)2(1 − ε)

(2 − 2ε)

]n

. (35)

Now it can be seen that Eqs. 34 and 35 only agree in the
ε−n and ε−n+1 coefficients. This implies that, in a two-loop
computation, the pole structure of an integral of the type of
Eq. 30 can be fully recovered from the IREG result. Notice
that this may not be the case for a CDR computation if, as
already pointed out, contractions of the metric are present.
For instance, consider the two-loop integral

J =
∫
k1,k2

(k1.k2)
2

k2
1(k1 − p)2k2

2(k2 − p)2

=
∫
k1

(k1)
α(k1)

β

k2
1(k1 − p)2

∫
k2

(k2)α(k2)β

k2
2(k2 − p)2

=
[
gαβ p2A + pα pβB

] [
gαβ p

2A + pα pβB
]

= [4A2 + 2AB + B2]p4 (36)

where, due to a contraction of the type gabgab = 4 we can
only recover the divergent results of DRED, not CDR. There-
fore, by considering a multi-loop amplitude containing only
disjoint one-loop integrals as Eq. 30, we can already draw
some conclusions: in general, given the IREG result of a
multi-loop amplitude, it is not possible to recover the result
from DRED by just evaluating BDI’s in 4 − 2ε dimensions.
For specific cases, like Eq. 30 at two-loop order, one can
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recover all divergent terms ( O(ε−2) and O(ε−1)), but not
the finite part of the amplitude. The mismatch in the finite
part results from the inclusion of O(ε) terms in the starting
expression for the comparison of IREG and DRED in Eq.
33. These terms are irrelevant at 1-loop order but generate
in the sub-leading orders of higher loops finite terms from
cross products of 1/ε powers and O(ε) terms. One should
emphasize that therefore this mismatch is neither a short-
coming of dimensional methods nor of IREG, but a simple
artifact resulting from the bridging of two approaches at one-
loop order. Nevertheless, for this kind of amplitude, one can
always retrieve the ε−n and ε−n+1 terms. This finding may
be useful to check intermediate steps in a computation done
with IREG by comparing with its counterpart in DRED, for
instance. Another conclusion to be drawn is that possibly the
subtraction scheme in IREG given by the removal of BDI’s
such as I (n)

ln (λ2) may not correspond to the MS scheme or
even the DS scheme. However, since this conclusion can only
be ascertained by the computation of renormalization con-
stants rather than amplitudes, more investigations are neces-
sary which we will perform elsewhere.

To conclude this section, we show that, in general, one can
only expect to reproduce the O(ε−n) term of a n-loop ampli-
tude obtained within CDR or DRED by evaluating BDI’s in
4−2ε dimensions. This happens because in general one also
has denominators of the form (ki − k j )2. To illustrate this
point, we consider a two-loop integral as below

T =
∫
k,l

1

k2(k − p)2

1

l2(l − k)2 , (37)

where, given the rules of IREG, one must first evaluate the
integral in l

T IREG =
∫
k

1

k2(k − p)2

[
Ilog(λ

2) − b ln

[
− k2

λ2

]
+ 2b

]
.

(38)

As can be seen, due to the appearance of the denominator
(l − k)2, we have a non-local term on the internal momenta
k, which will generate I (2)

log(λ
2). The UV divergent part of T

is given by

T IREG
div = I 2

log(λ
2) − bI (2)

log(λ
2)

− bIlog(λ
2) ln

[
− p2

λ2

]
+ 4bIlog(λ

2). (39)

To obtain a correspondence with DRED, one could con-
sider to replace powers of Ilog(λ2) by Eq. 32, as well as

ln
[
− p2

λ2

]
by Eq. 33. Regarding I (2)

log(λ
2), one obtains

I (2)
log(λ

2) =
∫

d4k

(2π)4

1

(k2 − λ2)2 ln

[
− k2

λ2

]
,

I (2)
log(λ

2)

∣∣∣
d

= (μ2
DR)ε

∫
ddk

(2π)d

1

(k2 − λ2)2

1

(4π)−ε

×
[(

μ2
DR

λ2

)ε

−
(

−μ2
DR

k2

)ε]
(ε)

= b

(4π)−2ε

(
μ2
DR

λ2

)2ε

(ε)

×
[
(ε) − (2 − 4ε)(2ε)

(2 − 3ε)

]
, (40)

where we have used Eq. 33 on the second line. Considering
only terms up to O(ε−1) one thus obtains

T IREG
div

∣∣∣
d

= b2

2ε2 + b2

ε

[
7

2
− γE + ln(4π) − ln

(
− p2

μ2
DR

)]
.

(41)

If the calculation is done in DRED from the start, one gets

T
∣∣∣
d

=
b2(4π)2ε(1 − 2ε)(1 − ε)3(ε)(2ε)

(
− p2

μ2

)−2ε

(2 − 3ε)(2 − 2ε)(ε + 1)

= b2

2ε2 + b2

ε

[
5

2
− γE + ln(4π) − ln

(
− p2

μ2
DR

)]
,

(42)

which differs from Eq. 41 in local terms ofO(ε−1). Neverthe-
less, the terms in ε−2 as well as non-local divergent terms can
be reproduced. This observation allows us to check diagram-
by-diagram the results we obtain in further sections.

3 IREG to two loop order: gauge theories

In this section we apply the procedure discussed in the last
section to a variety of examples. First, we discuss abelian
theories such as scalar QED (which possesses derivative ver-
tices) and spinorial QED (which requires a proper treatment
of Dirac algebra [76]). Next, we turn to non-abelian gauge
theories such as Yang–Mills, and finally QCD. We will be
mainly interested in the computation of the two-loop coef-
ficient of the gauge couplings β function in all these theo-
ries. As is well-known, in the QED case one may only resort
to the calculation of the two-point photon correction since
Zg = Z−1/2

A due to the Ward identity. As usual, Zg/A relates
to the coupling/photon renormalisation function. In the case
of non-abelian theories, the situation is more involved. In
order to mimic the behavior of the QED case, one can resort
to the background field method [104], which guarantees the
relation Zg = Z−1/2

Â
where Â is now the gluon background

field. This fact simplifies considerably the computation, since
only two-point functions will be needed.
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Fig. 2 Two-loop topologies for two-point functions

Therefore, in this contribution we will only deal with two-
point functions with the photon (scalar/spinorial QED) or the
gluon background field (Yang–Mills and QCD) as external
legs. This implies that only the topologies depicted in Fig. 2
can appear.

Notice that we are already omitting tapdole-like diagrams.
The reason is twofold. Firstly, since we are only interested
in the gauge coupling β function, we can consider massless
scalars/fermions. Secondly, given the minimal set of rules
presented in the last section, we drop quadratically scaleless
integrals, encoded as I (l)

quad(μ
2). Given the general topolo-

gies, one has now to fill them with the field content of the
theory at hand. For instance, in spinorial QED, only topolo-
gies T2 and T3 appear. In order to perform this task automat-
ically, we have made use of FeynArts [105] which already
has the spinorial QED model implemented. For the back-
ground field method, only the Electroweak Theory is already
implemented, so we have adapted it to consider a background
version of QCD as well. For scalar QED, we have opted to
use the Feynman rules of [106], building the amplitudes our-
selves.

Once the amplitudes in all theories have been built, we
adapted them to be recognized by FormCalc [107], allowing
only Dirac and Lorentz algebra to be performed with the end
result for each topology given schematically by:

AT1 ∝
∫
k,l

Fαβ
T 1(l, k, p)

k2(k − p)2l2(l − k)2 ,

AT2 ∝
∫
k,l

Fαβ
T2(l, k, p)

k2(k − p)2(k − l)2l2(l − p)2 ,

AT3 ∝
∫
k,l

Fαβ
T 3(l, k, p)

k4(k − p)2l2(l − k)2 ,

AT4 ∝
∫
k,l

Fαβ
T 4(l, k, p)

k2(k − p)2l2(l − p)2 ,

AT5 ∝
∫
k,l

Fαβ

T 5(l, k, p)

k2l2(l − k + p)2 . (43)

Notice that we are adopting Feynman gauge as well as
considering massless scalars/fermions. The equations above
are already in normal form, meaning one can now apply the
rules of IREG sketched in the last section. Another simplifica-
tion of our case is that only the divergent part of the integrals
above is needed for obtaining the gauge coupling β function.
In the next subsections we present the results of IREG for
each diagram and for each of the theories we considered.

In order to allow a comparison with dimensional regulari-
sation methods, we perform Dirac and Lorentz algebra in d-
dimensions and evaluate the integrals also in d-dimensions.
We will keep track of terms coming from contractions of
the metric gμνgμν = d, for instance, refraining to write
d = 4−2ε until the end of the calculation. This will allow us
to recover the results diagram-by-diagram obtained not only
in CDR, but also in naive DRED (devoid of ε-scalars) which
we will, hereafter, denote by DRED. A similar approach was
performed in [39,40]. In this way, we can define not only
the minimal subtraction scheme in CDR (MS) but also its
analogue in DRED (DR’).3 Since both schemes are mass
independent, the first two coefficients of the strong coupling
β function will be identical [42], a result we will recover.
In Sect. 3.4 we will include the ε-scalars to define DRED
properly. However, since we did not refrain to identify the
multiplicity of these (fictitious) particles with Nε = 2ε, and
only divergent terms are kept, we will recover the result of the
DR scheme [39,40], which agrees with our previous results in
DR’, MS. On the other hand, if we had performed a subtrac-
tion scheme removing terms (Nε/ε)

n as was done in [52,53],
the coefficients of the β function would depend on Nε . Nev-
ertheless, after identifying Nε = 2ε, the same result will be
recovered in the limit ε → 0.

Before proceeding to our explicit results, it is necessary to
discuss briefly the renormalisation program in the case of the
background field method. For definiteness, we will consider
the Yang–Mills theory which has all the necessary ingredi-
ents. As discussed in [104], in principle, one would need
to renormalize the fields (gluon, background gluon, ghost),
coupling, and, potentially, the gauge-fixing parameter. How-
ever, since only the background gluon field occurs in external
legs, the renormalisation constants related to the gluon and
ghost fields will always cancel. Therefore, one should only
consider the multiplicative renormalisation constants defined
below

Âo = Z1/2

Â
Âr ; go = Zggr ; αo = Zααr , (44)

where Â, g, α stand for the background gluon field, strong
coupling, and gauge-fixing parameter respectively. The latter
could be left unrenormalized as well if we had considered a
general gauge to perform the calculation. However, since we

3 We will reserve the symbol DR to the minimal subtaction scheme in
the consistent version of DRED, with the inclusion of ε-scalars.
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have adopted Feynman gauge throughout our work, it will
be necessary to include counterterms related to gauge-fixing
renormalisation.

As standard, one can write

αo = Zααr = (1 + δα)αr , (45)

which implies

LGF = − 1

2αo

[
∂μA

μ
a + go f

abc( Âo)
b
μA

c
μ

]2

= − 1

2αr

[
∂μA

μ
a + gr f

abc( Âr )
b
μA

c
μ

]2

+ δα

2αr

[
∂μA

μ
a + gr f

abc( Âr )
b
μA

c
μ

]2
(46)

where the second term gives the counterterms related to the
gauge-fixing renormalisation. Notice that we have used the
important relation Zg = Z−1/2

Â
as well. Therefore, to obtain

an explicit formula to δα it suffices to compute the one-loop
correction to the gluon propagator

�ab
μν |div = −i5g2CA Ilog(λ

2)(gμν p
2 − pμ pν)δ

ab

−−−→
DRED

5

3ε

g2CA

(4π)2 (gμν p
2 − pμ pν)δ

ab, (47)

since, given we are in Feynman gauge, we should attain the
relation

�ab
μν |div + δα pμ pνδ

ab ∝ gμνδ
ab. (48)

The final result is

δα = −i5g2CA Ilog(λ
2) −−−→

DRED

5

3ε

g2CA

(4π)2 (49)

which agrees with [104].

3.1 Scalar QED

In scalar QED, the part of the Lagrangian containing the
couplings is of the form

Lscalar QED ⊃ −ige Aμ

[
φ∗(∂μφ) − (∂μφ∗)φ

] + g2
e AμA

μ|φ|2.
(50)

This implies that only topology T4 cannot be realised
(remember the photon is in both external legs). Regarding
counterterms, we only need to consider (possible) correc-
tions due to renormalisation of the gauge fixing parameter.
In the present case (abelian theory), none of the couplings
will depend on this parameter, meaning we do not need to
consider counterterms related to them. Moreover, since the
triple coupling contains only one photon field, it is not pos-
sible to have a photon self-energy sub-diagram (see topol-
ogy T1). Therefore, for our calculation of the β function of

scalar QED, no counterterm is needed. For completeness, we
have indeed computed the counterterms related to the triple
and quartic coupling (obtained from shrinking sub-diagrams
in topologies T2 and T1 to a point), and the counterterm
related to the scalar self-energy (obtained by shrinking the
sub-diagram in topology T3 to a point). As expected, the
counterterms cancel among themselves.

In order to present our results, we will define the two-loop
correction to the photon field to be of the form

Aμν = ig4
e

(4π)4

[
Agμν p

2 − Bpμ pν

]
. (51)

where p is the momentum carried by the external photon.
With this definition at hand, the explicit results for each topol-
ogy can be read from Table 2 in the case of IREG and Table
3 for CDR. In the case of scalar QED, there are no contrac-
tions of the type gabgab = d, which implies that results in
CDR are identical to DRED, as can also be seen from Table
3. We should also comment that in the case of scalar QED,
there is only one type of diagram related to each contributing
topology, although topologies T1, T3 have multiplicity 4, 2
respectively. The results for the counterterms can be found
in Tables 4 and 5, which cancel among themselves as already
pointed out.

As one can easily notice, the end result is gauge invariant
in all of the methods considered here. Also, as is well-known
[106], although we are considering a two-loop correction,
only terms proportional to ε−1 will survive in the end result.
In the framework of IREG we also have a similar pattern,
since only Ilog(λ2) terms appear in the final result. This sim-
ilarity between methods, however, will not be valid in gen-
eral, as we are going to see when studying the Yang-Mills
theory. The reason can be traced back to the appearance of
diagrams of topology T4, as we will explain later.

3.2 Spinorial QED

We move to spinorial QED, where, although only one type
of vertex occurs −eψ̄γ μψ Aμ, one needs to deal with Dirac
algebra. Given the more restrictive coupling, when compared
with scalar QED, one expects that even less diagrams will
contribute. Explicitly, only topologies T2 and T3 can be
realized, each one with one diagram, and multiplicity 1,2
respectively. As before, no counterterms will be necessary.
For completeness, we compute them and check that they can-
cel.

Regarding the computation itself, the only point that one
should be careful about is in how the Dirac algebra is per-
formed. Now, spurious termsO(ε) will appear, implying that
the results in CDR and DRED are not identical diagram by
diagram, although the final result should be. We checked that
this is indeed the case. In the framework of IREG, some care
should also be exercised, in order to perform tensor iden-
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Table 2 Results for scalar QED
using IREG where

ρI REG = Ilog(λ2) ln
[
− p2

λ2

] Topology A B

I (2)
log (λ

2) I 2
log(λ

2) ρI REG Ilog(λ2) I (2)
log (λ

2) I 2
log(λ

2) ρI REG Ilog(λ2)

T1 − 2
b

2
b2 − 2

b
87
9b − 2

b
2
b2 − 2

b
51
9b

T2 2
3b − 2

3b2
2

3b − 47
9b

2
3b − 2

3b2
2

3b − 35
9b

T3 4
3b − 4

3b2
4

3b − 58
9b

4
3b − 4

3b2
4

3b − 52
9b

T5 0 0 0 − 2
b 0 0 0 0

Sum 0 0 0 − 4
b 0 0 0 − 4

b

Table 3 Results for scalar QED
using CDR and DRED, where
ρ = γE − ln 4π + ln(p2/μ2

DR)

Diagram ACDR ADRED − ACDR BCDR BDRED − BCDR

T1 1
ε2 + 13−4ρ

2ε
0 1

ε2 + 9−4ρ
2ε

0

T2 − 1
3ε2 − 19−4ρ

6ε
0 − 1

3ε2 − 15−4ρ
6ε

0

T3 − 2
3ε2 − 13−4ρ

3ε
0 − 2

3ε2 − 12−4ρ
3ε

0

T5 − 1
ε

0 0 0

Sum − 2
ε

0 − 2
ε

0

Table 4 Counterterm results for
scalar QED using IREG where

ρI REG = Ilog(λ2) ln
[
− p2

λ2

] Counterterm A B

I (2)
log (λ

2) I 2
log(λ

2) ρI REG Ilog(λ2) I (2)
log (λ

2) I 2
log(λ

2) ρI REG Ilog(λ2)

Coupling 0 4
3b2 − 4

3b
32
9b 0 4

3b2 − 4
3b

32
9b

Scalar self-energy 0 − 4
3b2

4
3b − 32

9b 0 − 4
3b2

4
3b − 32

9b

Sum 0 0 0 0 0 0 0 0

tification consistently. As we argued in Sect. 2.1, a normal
form is obtained after performing Dirac and Lorentz algebra
to the whole diagram. After the normal is attained, manip-
ulations in the numerator that may generate spurious terms
with k2, for instance, cannot be performed. An example of
such forbidden manipulation is

∫
k,q

k.q

k2(k − p)2q2(q − p)2(k − q)2

∣∣∣∣
IREG

�=
∫
k,q

k2 + q2 − (k − q)2

2k2(k − p)2q2(q − p)2(k − q)2

∣∣∣∣
IREG

. (52)

The left-hand side of the equation above appears in the dia-
gram of topology T2, for instance. The consistent approach
to treat this integral is given by the procedure defined in [74],
whose result we collect in the appendix B.

To conclude this subsection we collect our results in Tables
6, 7, 8, 9, adopting the same convention of Eq. 51. As in the
case of scalar QED, the end result is transverse in all meth-
ods and depends only in ε−1 or Ilog(λ2) terms. Moreover,
the counterterms cancel among themselves, and we notice
that the two-loop correction to the photon is the same in both
scalar and spinorial QED. This implies the same gauge cou-
pling β function.

3.3 Pure Yang–Mills

We turn to non-abelian theories. At first, we do not include
scalar/fermionic interactions, considering pure Yang-Mills
theory, see Appendix A for notations and conventions of
the Feynman rules used in the background field method to
Yang-Mills [104], employed in the present calculation. The
calculation proves to be involved enough since not only all

Table 5 Counterterm results for
scalar QED using CDR and
DRED, where
ρ = γE − ln 4π + ln(p2/μ2

DR)

Counterterm ACDR ADRED − ACDR BCDR BDRED − BCDR

Coupling 4
3ε2 + 32−12ρ

9ε
0 4

3ε2 + 32−12ρ
9ε

0

Scalar self-energy − 4
3ε2 − 32−12ρ

9ε
0 − 4

3ε2 − 32−12ρ
9ε

0

Sum 0 0 0 0
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Table 6 Results for spinorial
QED using IREG where

ρI REG = Ilog(λ2) ln
[
− p2

λ2

] Topology A B

I (2)
log (λ

2) I 2
log(λ

2) ρI REG Ilog(λ2) I (2)
log (λ

2) I 2
log(λ

2) ρI REG Ilog(λ2)

T2 8
3b − 8

3b2
8

3b
92
9b

8
3b − 8

3b2
8

3b
104
9b

T3 − 8
3b

8
3b2 − 8

3b − 128
9b − 8

3b
8

3b2 − 8
3b − 140

9b

Sum 0 0 0 − 4
b 0 0 0 − 4

b

Table 7 Results for spinorial
QED using CDR and DRED,
where
ρ = γE − ln 4π + ln(p2/μ2

DR)

Diagram ACDR ADRED − ACDR BCDR BDRED − BCDR

T2 4
3ε2 + 8(2−ρ)

3ε
4
3ε

4
3ε2 + 2(7−4ρ)

3ε
4
3ε

T3 − 4
3ε2 − 2(11−4ρ)

3ε
− 4

3ε
− 4

3ε2 − 4(5−2ρ)
3ε

− 4
3ε

Sum − 2
ε

0 − 2
ε

0

Table 8 Counterterm results for spinorial QED using IREG where ρI REG = Ilog(λ2) ln
[
− p2

λ2

]

Counterterm A B

I (2)
log (λ

2) I 2
log(λ

2) ρI REG Ilog(λ2) I (2)
log (λ

2) I 2
log(λ

2) ρI REG Ilog(λ2)

Coupling 0 8
3b2 − 8

3b
40
9b 0 8

3b2 − 8
3b

40
9b

Fermion self-energy 0 − 8
3b2

8
3b − 40

9b 0 − 8
3b2

8
3b − 40

9b

Sum 0 0 0 0 0 0 0 0

topologies are realized, but also there are diagrams with dif-
ferent field content for some of the topologies, as can be seen
in Fig. 3.

Apart from the large number of diagrams, there are two
main differences regarding the computation in QED we
would like to emphasize. First, we have the appearance of
topology T4 which, as we are going to see, implies in the
presence of not only terms with Ilog(λ2) in the end result,

but also I (2)
log(λ

2), and I 2
log(λ

2). Second, not only the triple
coupling depends on the gauge fixing parameter, but also the
1-loop correction to the gluon self-energy appears as sub-
diagram in diagram (h). and (i). Therefore, we will need to
consider counterterms related to the gauge fixing renormali-
sation.

In a similar manner to Eq. 51, we can define

ig4
s C

2
Aδab

(4π)4

[
Agμν p

2 − Bpμ pν

]
, (53)

where p is the external momenta carried by the background
field. Regarding the diagrams of Fig. 3, our results, for IREG,

are presented in Table 10 while for CDR/DRED they can be
seen in Table 11.

Some comments are in order. First notice in the IREG
results that, apart from minus signs and/or global factors
encoded in the parameter b, diagrams (a) to (i) have the
same coefficients for I (2)

log(λ
2), I 2

log(λ
2), and ρI REG =

Ilog(λ2) ln(−p2/λ2). This fact can be schematically under-
stood as described below. Consider that the amplitude of one
of those diagrams is given by

A =
∫
k,l

F(l, k, p). (54)

Guided by the procedure presented in [74], it is possible to
separate the F(l, k, p) function in different pieces, organiz-
ing the order of the integration in l, k for each of them. Sup-
pose that one of these terms is given as below, where one
must first perform the integration in l, then in k

A ⊃
∫
k
G(k, p, μ2)

∫
l
F(l, k, p, μ2). (55)

Table 9 Counterterm results for
spinorial QED using CDR and
DRED, where
ρ = γE − ln 4π + ln(p2/μ2

DR)

Counterterm ACDR ADRED − ACDR BCDR BDRED − BCDR

Coupling 8
3ε2 + 8(7−3ρ)

9ε
0 8

3ε2 + 8(7−3ρ)
9ε

0

Fermion self-energy − 8
3ε2 − 8(7−3ρ)

9ε
0 − 8

3ε2 − 8(7−3ρ)
9ε

0

Sum 0 0 0 0
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Fig. 3 Two-loop correction to the two-point function of the background field A

Table 10 Results for pure
Yang–Mills using IREG where

ρI REG = Ilog(λ2) ln
[
− p2

λ2

] Diagram A B

I (2)
log (λ

2) I 2
log(λ

2) ρI REG Ilog(λ2) I (2)
log (λ

2) I 2
log(λ

2) ρI REG Ilog(λ2)

a 1
3b − 1

3b2
1

3b − 29
18b

1
3b − 1

3b2
1

3b − 17
18b

b 5
12b − 5

12b2
5

12b − 97
72b

5
12b − 5

12b2
5

12b − 109
72b

c 9
4b − 9

4b2
9

4b − 39
8b

9
4b − 9

4b2
9

4b − 75
8b

d − 1
12b

1
12b2 − 1

12b
47

72b − 1
12b

1
12b2 − 1

12b
35

72b

e 1
2b − 1

2b2
1

2b − 7
4b

1
2b − 1

2b2
1

2b − 7
4b

f − 27
4b

27
4b2 − 27

4b
195
8b − 27

4b
27
4b2 − 27

4b
207
8b

g − 1
3b

1
3b2 − 1

3b
29

18b − 1
3b

1
3b2 − 1

3b
13
9b

h + i − 25
3b

25
3b2 − 25

3b
521
18b − 25

3b
25
3b2 − 25

3b
268
9b

j 0 0 0 1
4b 0 0 0 0

k 0 0 0 − 9
4b 0 0 0 0

l 0 − 6
b2

12
b − 24

b 0 − 6
b2

12
b − 24

b

Sum − 12
b

6
b2 0 20

b − 12
b

6
b2 0 20

b

We have also included the μ2 parameter in denominators as
explained in Sect. 2.1. At this point, one should identify the
BDI presented in the l integral, encoded as Ilog(μ2), and
apply the scale relation to trade μ2 by λ2

A ⊃
∫
k
G(k, p, μ2)

[
a1 Ilog(μ

2) + a2

]
,

=
∫
k
G(k, p, μ2)

[
a1 Ilog(λ

2) − a1b ln

[
− k2

λ2

]
+ ā2

]
,

(56)

where the actual form of a2, ā2 are not relevant here. At
this point one has to proceed to the integral in k. Adopting a

similar treatment as done in the l integral one obtains

A ⊃ a1 Ilog(λ
2)

∫
k
G(k, p, μ2) − a1b

∫
k
G(k, p, μ2) ln

[
− k2

λ2

]

= a1 Ilog(λ
2)

[
A1 Ilog(μ

2) + · · ·
]

− a1b
[
A1 I

(2)
log(μ2) + · · ·

]

= a1A1

[
I 2
log(λ

2) − bIlog(λ
2) ln

[
− p2

λ2

]
− bI (2)

log(λ2) + · · ·
]

(57)

where we made use of the relation

∫
k
G(k, p, μ2) lnn

[
− k2

λ2

]
= A1 I

(n+1)
log (μ2) + · · · (58)
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Table 11 Results for pure
Yang–Mills using CDR and
DRED, where
ρ = γE − ln 4π + ln(p2/μ2

DR)

Diagram ACDR ADRED − ACDR BCDR BDRED − BCDR

a − 1
6ε2 + −13+4ρ

12ε
0 − 1

6ε2 + −9+4ρ
12ε

0

b − 5
24ε2 + −41+20ρ

48ε
0 − 5

24ε2 + 5(−9+4ρ)
48ε

0

c − 9
8ε2 + −57+36ρ

16ε
3
4ε

− 9
8ε2 + −93+36ρ

16ε
3
4ε

d 1
24ε2 + 19−4ρ

48ε
0 1

24ε2 + 15−4ρ
48ε

0

e − 1
4ε2 + −9+4ρ

8ε
0 − 1

4ε2 + −9+4ρ
8ε

0

f 27
8ε2 + 233−108ρ

16ε
3
4ε

27
8ε2 + 245−108ρ

16ε
3
4ε

g 1
6ε2 + 13−4ρ

12ε
0 1

6ε2 + 3−ρ
3ε

0

h + i 25
6ε2 + 215−100ρ

12ε
− 3

2ε
25
6ε2 + 110−50ρ

6ε
− 3

2ε

j 1
8ε

0 0 0

k − 9
8ε

0 0 0

l − 6
ε2 + 12(−2+ρ)

ε
0 − 6

ε2 + 12(−2+ρ)
ε

0

Sum 7
3ε

0 7
3ε

0

whose proof we perform in Appendix C.
The important lesson to be taken from Eq. 57 is that the

coefficients of I (2)
log(λ

2), I 2
log(λ

2), and ρI REG are correlated.
Explicitly, there is a minus sign and b factor difference among
I (2)
log(λ

2), ρI REG , and I 2
log(λ

2), which reproduces the pattern
we found for diagrams a to i, see Table 10. Notice that there
is no such correlation for the Ilog(λ2) terms.

The above reasoning cannot be applied when dealing with
diagrams of topology T4, since, in this case, the integrals in
l, k are independent. Schematically,

B =
∫
k
G(k, p)

∫
l
F(l, p)

=
[
B1 Ilog(μ

2) + · · ·
] [

C1 Ilog(μ
2) + · · ·

]

=
[
B1 Ilog(λ

2) − B1b ln

[
− p2

λ2

]
+ · · ·

]

×
[
C1 Ilog(λ

2) − C1b ln

[
− p2

λ2

]
+ · · ·

]

= B1C1

[
I 2
log(λ

2) − 2bρI REG

]
+ · · · (59)

a pattern which can once again be read from the diagram
l of Table 10. Therefore, it is clear that the appearance of
topology T5 will (potentially) break the pattern found before
among I (2)

log(λ
2), I 2

log(λ
2), and ρI REG in the end result. Actu-

ally, this can be seen also in Table 10, where the sum of the
results is void of ρI REG , while both I (2)

log(λ
2), I 2

log(λ
2) are

still present. This fact also explains why in the QED case
only terms proportional to Ilog(λ2) survive, since it is not
possible to realize topology T4 there.

Regarding dimensional methods, this distinction is not
present. In other words, there is a correlation among ε−2

and the ρ coefficient for all topologies. Therefore, since the
end result is local (void of ρ terms as in the IREG case), no

term proportional to ε−2 can survive, as can be seen in Table
11. It can also be noticed that there are some differences
among CDR and DRED in diagrams (c), (f), (h), although
their sum vanishes. The reason can be traced back to con-
tractions of the form gabgab = d, which may generate terms
of order ε−1 when present in two-loop diagrams. This feature
was already observed in spinorial QED. As explained in Sect.
2.1, a consistent treatment of DRED requires the introduction
of contributions with ε-scalars, which, in view of the above
results, must conspire to cancel among themselves. We will
show this explicitly in the next subsection.

Finally, we notice that our end result is already gauge
invariant4 and local (non-local terms are encoded in ρ or
ρI REG , which vanish as already pointed out), although we
didn’t include any counterterms yet. This implies that any
gauge breaking or non-local terms appearing in the countert-
erms must cancel among themselves. Also, with a similar
reasoning regarding Eq. 59, it is not hard to convince oneself
that, apart from ρI REG , only terms with I 2

log(λ
2) or Ilog(λ2)

can appear in the counterterms and the end result must be
independent of I 2

log(λ
2). This is indeed the case as shown

in Table 12 for IREG and Table 13 for dimensional meth-
ods. We should emphasize that our results for CDR exactly
reproduce the ones found in previous works [104].

3.4 ε-scalars for the YM theory

In the previous subsection we showed that some of the dia-
grams have different divergent parts when comparing a naive
DRED scheme (without ε-scalars) and CDR. However, the
sum of the contributions is the same, regardless of the scheme

4 Actually, the terms proportional to ρI REG ; ρ (which are correlated
to I 2

log(λ
2),I (2)

log (λ
2); ε−2) are gauge invariant diagram by diagram, in

accordance to the findings of [104].
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Table 12 Counterterms results
for pure Yang–Mills using IREG
where
ρI REG = Ilog(λ2) ln

[
− p2

λ2

]
Counterterm A B

I (2)
log (λ

2) I 2
log(λ

2) ρI REG Ilog(λ2) I (2)
log (λ

2) I 2
log(λ

2) ρI REG Ilog(λ2)

AAÂ coupling 0 − 25
9b

25
9b − 140

27b 0 − 25
9b

25
9b − 140

27b

Gluon self-energy 0 25
9b − 25

9b
230
27b 0 25

9b − 25
9b

230
27b

Sum 0 0 0 10
3b 0 0 0 10

3b

Table 13 Counterterms results for pure Yang–Mills using CDR and DRED, where ρ = γE − ln 4π + ln(p2/μ2
DR)

Counterterm ACDR ADRED − ACDR BCDR BDRED − BCDR

AAÂ Coupling − 25
9ε2 + 5(−28+15ρ)

27ε
0 − 25

9ε2 + 5(−28+15ρ)
27ε

0

Gluon self-energy 25
9ε2 + 5(46−15ρ)

27ε
0 25

9ε2 + 5(46−15ρ)
27ε

0

Sum 10
3ε

0 10
3ε

0

Table 14 Results for pure
Yang–Mills regarding ε-scalar
contributions

Diagram Aεscalar Bεscalar

c1 + c2 − 3
4ε

− 3
4ε

f1 + f2 − 3
4ε

− 3
4ε

h1 + h2
3
2ε

3
2ε

Sum 0 0

chosen as expected (the two-loop coefficient of the beta
function is the same in mass-independent renormalisation
schemes). This observation implicitly shows that the contri-
butions of ε-scalars must conspire to render the same diver-
gent part in the end in both schemes. In this subsection we
explicitly show that this is the case.

As is well-known, ε-scalars must be included in DRED
for consistency [35–38]. They occur as a split of the gauge
field as

Aμ|4 = Aμ|4−2ε + Aμ|2ε (60)

where the last term is the ε-scalar. Therefore, they will cer-
tainly occur in diagrams that contain only gluons, namely
(c), (f), (h), (k), (l) from Fig. 3. The diagrams containing ε-
scalars are depicted in Fig. 4. The contributions related to
diagram (l) vanish while the one related to diagram (k) will
be of order O(ε0), not relevant for our purposes. Therefore,
one only needs the contribution from the other three types of
diagrams.

Adopting the same notation of Eq. 53, the results are col-
lected in Table 14. They are all gauge invariant, and cancel
as they should. More interestingly, adding the results of the
ε-scalar contributions to the DRED correspondent diagrams,
one recovers the results from CDR diagram by diagram.

3.5 QCD

As our last example, we consider QCD. Since it is just a SU(3)
Yang–Mills theory appended with n f flavors of fermions, we
can reassess the results we obtained for the general Yang-
Mills, specialize to SU(3) and include the corrections due to
fermions, which are depicted in Fig. 5

Adopting a similar convention of Eq. 51,

ig4
s n f

(4π)4

[
Agμν p

2 − Bpμ pν

]
, (61)

where n f is the number of fermions, we can express our
results in Tables 15 and 16. The same patterns presented
in the pure Yang–Mills theory appear here also, namely,
the correlations among the coefficients of ρI REG ; ρ and
I 2
log(λ

2),I (2)
log(λ

2); ε−2. Also, as there is no realisation of

topology T4 in this case, only terms proportional to Ilog(λ2)

survive in the end result, as we already noticed in the QED
case.

One may notice that, in all diagrams, there is a mismatch
between CDR and DRED, although the sum is the same in
both methods, as in all other examples we considered here.
Finally, as in the case of YM, the result is gauge invariant and
local, although we still need to add counterterms. The results
of the counterterms follow a similar pattern of the one seen in
the Yang-Mills theory, and they can be read from Tables 17,
and 18. Finally, as in the pure Yang-Mills case, we reproduce
previous results in the literature [108].

3.6 Summary of the results

In this subsection we collect the results we found, aiming
to compute ZA, the renormalisation function of the external
gauge boson (the photon for QED, the background gluon
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Fig. 4 Two-loop corrections with ε-scalar

Fig. 5 Two-loop correction to the two-point function of the background field – fermionic contribution of QCD

Table 15 Results for fermionic
part of QCD using IREG where

ρI REG = Ilog(λ2) ln
[
− p2

λ2

] Diagram A B

I (2)
log (λ

2) I 2
log(λ

2) ρI REG Ilog(λ2) I (2)
log (λ

2) I 2
log(λ

2) ρI REG Ilog(λ2)

a − 2
9b

2
9b2 − 2

9b
35

27b − 2
9b

2
9b2 − 2

9b
32

27b

b − 8
b

8
b2 − 8

b
44
3b − 8

b
8
b2 − 8

b
50
3b

c − 16
9b

16
9b2 − 16

9b
208
27b − 16

9b
16
9b2 − 16

9b
184
27b

d 10
b − 10

b2
10
b − 97

3b
10
b − 10

b2
10
b − 100

3b

Sum 0 0 0 − 26
3b 0 0 0 − 26

3b

Table 16 Results for fermionic
part of QCD using CDR and
DRED

Diagram ACDR ADRED − ACDR BCDR BDRED − BCDR

a 1
9ε2 + 11−4ρ

18ε
1
9ε

1
9ε2 + 5−2ρ

9ε
1
9ε

b 4
ε2 + 13−8ρ

ε
− 2

ε
4
ε2 + 2(7−4ρ)

ε
− 2

ε

c 8
9ε2 + 16(2−ρ)

9ε
8
9ε

8
9ε2 + 4(7−4ρ)

9ε
8
9ε

d − 5
ε2 − 39−20ρ

2ε
1
ε

− 5
ε2 − 10(2−ρ)

ε
1
ε

Sum − 7
3ε

0 − 7
3ε

0

Table 17 Results for fermionic
part of QCD using IREG where

ρI REG = Ilog(λ2) ln
[
− p2

λ2

] Counterterm A B

I (2)
log (λ

2) I 2
log(λ

2) ρI REG Ilog(λ2) I (2)
log (λ

2) I 2
log(λ

2) ρI REG Ilog(λ2)

AAÂ Coupling 0 10
3b2 − 10

3b
56
9b 0 10

3b2 − 10
3b

56
9b

Gluon self-energy 0 − 10
3b2

10
3b − 92

9b 0 − 10
3b2

10
3b − 92

9b

Sum 0 0 0 − 4
b 0 0 0 − 4

b
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Table 18 Results for fermionic
part of QCD using CDR and
DRED

Counterterm ACDR ADRED − ACDR BCDR BDRED − BCDR

AAÂ Coupling 10
3ε2 + 2(28−15)ρ

9ε
0 10

3ε2 + 2(28−15ρ)
9ε

0

Gluon self-energy − 10
3ε2 − 2(46−15ρ)

9ε
0 − 10

3ε2 − 2(46−15ρ)
9ε

0

Sum − 4
ε

0 − 4
ε

0

field for Yang–Mills and QCD). Defining

ZA = 1 + g2

(4π)2 Z
(1)
A + g4

(4π)4 Z
(2)
A , (62)

one obtains for (scalar and spinorial) QED

Z (1)
A |IREG = − 4

3b
Ilog(λ

2), Z (1)
A |CDR = − 4

3ε
, (63)

Z (2)
A |IREG = −4

b
Ilog(λ

2), Z (2)
A |CDR = −2

ε
, (64)

for SU(N) Yang–Mills

Z (1)
A |IREG = 11

3b
CA Ilog(λ

2), Z (1)
A |CDR = 11

3ε
CA, (65)

Z (2)
A |IREG = 6

b2C
2
A

[
I 2
log(λ

2) − 2bI (2)
log(λ

2)
]

70

3b
C2

A Ilog(λ
2) (66)

Z (2)
A |CDR = 17

3ε
C2

A, (67)

and for QCD

Z (1)
A |IREG =

(
11

b
− 2

3b
n f

)
Ilog(λ

2),

Z (1)
A |CDR = 11

ε
− 2

3ε
n f , (68)

Z (2)
A |IREG = 54

b2

[
I 2
log(λ

2) − 2bI (2)
log(λ

2)
]

+
(

210

b
− 38

3b
n f

)
Ilog(λ

2), (69)

Z (2)
A |CDR = 51

ε
− 19

3ε
n f . (70)

For completeness we have also computed and included the
one-loop corrections, and we are already specializing to
SU(3) when writing the QCD results. Notice that in the one-
loop contribution, Ilog(λ2)/b and ε−1 share the same coeffi-
cient, as discussed in Sect. 2.2.

3.7 The β function

The β function is obtained by adopting standard procedures
exemplified in textbooks. However, in order to make the con-
nection between the different regularisation methods clearer,

we provide some details of the calculation. As usual, the β

function is defined by

β = λ
∂

∂λ
gR, (71)

where gR is the (renormalized) gauge coupling of the theory
considered, and λ is the renormalisation scale (in dimen-
sional methods, this is identified as μDR). Until this point,
no distinction between regularisations in fixed dimension
and dimensional methods was done. To proceed further, we
will adopt the framework of dimensional regularisation tech-
niques, in which the (renormalized) coupling is replaced by

gR = μ
4−d

2 g̃R ⇒ β = μ
∂

∂μ
gR

β = 4 − d

2
gR + μ

6−d
2

∂

∂μ
g̃R, (72)

where g̃R is an adimensional (renormalized) coupling. Notice
that the equation above reduces to Eq. (71) when using meth-
ods in fixed dimension. One may also introduce Zg which is
the renormalisation constant related to the coupling g satis-
fying g0 = ZggR , where g0 is the bare coupling. Therefore,
the β-function can also be given by the related equation in
general

β = −gRλ
∂

∂λ
ln Zg. (73)

In the background field method, the relation Zg = Z−1/2
A

is valid, which reduces the calculation of the β function in
a non-abelian theory to the knowledge of only two-point
functions. To proceed, we assume that ZA can be expanded
in the (renormalized) adimensional coupling constant g̃R

Z A = 1 + A1g̃
2
R + A2 g̃

4
R, (74)

where Ai is related to the counterterm of the i-order that
renormalize the i-loop correction to the two-point function
in the background field A. This amounts to

β = gR
2

λ
∂

∂λ

[
A1g̃

2
R +

(
A2 − A2

1

2

)
g̃4
R

]
. (75)

Notice that the above formula is valid for methods in fixed
dimension as well, since for those g̃R = gR . To proceed
further, one has to choose a subtraction scheme, which will be
the MS-subtraction scheme (for methods in fixed dimension
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we will discuss this point later). Therefore, all Ai will be
independent of μ which implies

β = gR
2

[
A1μ

∂

∂μ
(g̃2

R) +
(
A2 − A2

1

2

)
μ

∂

∂μ
(g̃4

R)

]
,

= g̃R
2

[
2 A1g̃R

(
β − 4 − d

2
gR

)

+4g̃3
R

(
A2 − A2

1

2

) (
β − 4 − d

2
gR

)]
,

= d − 4

2
gR

[
A1g̃

2
R + 2A2 g̃

4
R

]
. (76)

As standard, one can also define the expansion of the β-
function in the adimensional coupling constant as

β = −gR

[
β0

(
g̃R
4π

)2

+ β1

(
g̃R
4π

)4
]

; (77)

which, after careful comparison between eqs. 77, 62 and 74,
allows the identification

β0 = εZ (1)
A , β1 = 2εZ (2)

A , (78)

since d = 4 − 2ε. Notice that, since the β function is finite,
even the two-loop coefficient of ZA must only have terms up
to ε−1. This can be explicitly confirmed by looking at Eqs.
63 to 70.

Regarding methods in fixed dimension, there are some dif-
ferences among them in the definition of the counterterms.
In FDR [72] as well as DIFR [68], the divergent expres-
sions are replaced by finite ones, meaning that divergences
are automatically removed by applying the method. In IREG,
divergences are kept, being identified as basic divergent inte-
grals such as I (2)

log(λ
2), and Ilog(λ2). As can be immediately

seen, in IREG the divergent part will depend on the renor-
malisation scale λ, while in dimensional methods this does
not occur. By defining the MS-subtraction scheme in IREG
as the removal of only basic divergent integrals, the IREG
version of eq.(76) will be

β = gR
2

[
g2
Rλ

∂

∂λ
(A1) + A1λ

∂

∂λ
(g2

R)

+g4
Rλ

∂

∂λ

(
A2 − A2

1

2

)
+

(
A2 − A2

1

2

)
λ

∂

∂λ
(g4

R)

]
,

= gR
2

[
g2
Rλ

∂

∂λ
(A1) + 2 A1gRβ

+g4
Rλ

∂

∂λ

(
A2 − A2

1

2

)
+ 4g3

R

(
A2 − A2

1

2

)
β

]
,

= −gR

[
−g2

R

2
λ

∂

∂λ
A1 − g4

R

2
λ

∂

∂λ
A2

]
, (79)

which, by comparing eqs. 77, 62 and 74, implies

β0 = −1

2
λ

∂

∂λ
Z (1)
A , β1 = −1

2
λ

∂

∂λ
Z (2)
A (80)

As already pointed out, the Z (i)
A in IREG will depend on basic

divergent integrals, which implies that the derivatives of those
with respect to λ will be needed. They can be obtained in a
straightforward way as shown in eqs. 19. For our purposes
here, we only need

λ
∂

∂λ
Ilog(λ

2) = −2b; λ
∂

∂λ
I (2)
log(λ

2) = −2b − 2Ilog(λ
2);
(81)

Notice that the second of the equations above is still diver-
gent. However, the combination I 2

log(λ
2)−2bI (2)

log(λ
2), which

appears in Z (2)
A |IREG, will give a finite result as it should.

Finally, by applying our results collected in Eqs. 63 to 70,
we obtain the well-known one and two-loop contributions
for the gauge β coupling in QED (scalar and spinorial) [109]

β0|IREG = −4

3
; β0|CDR = −4

3
; (82)

β1|IREG = −4; β1|CDR = −4; (83)

for pure Yang–Mills [104]

β0|IREG = 11

3
CA; β0|CDR = 11

3
CA; (84)

β1|IREG = 34

3
C2

A; β1|CDR = 34

3
C2

A; (85)

and QCD [108,110,111]

β0|IREG = 11 − 2

3
n f ; β0|CDR = 11 − 2

3
n f ; (86)

β1|IREG = 102 − 38

3
n f ; β1|CDR = 102 − 38

3
n f (87)

As can be readily seen, the results of all regularization
methods applied in this work agree. We emphasize that this
was expected since in all cases we are adopting a subtrac-
tion scheme independent of the mass which, in dimensional
methods, translates in the removal only of poles in ε while
in IREG it amounts to the subtraction of BDI’s. Therefore,
for the methods under study in this contribution the first two
coefficients of the β-function of gauge couplings are univer-
sal [42].

4 Concluding remarks

To extract any deviation between theory and experimental
data in the SM as well as test BSM theories, precision observ-
ables demand at least N 2LO and N 3LO approximations
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involving multi-loop Feynman diagrams. Clearly the choice
of the regularisation scheme to separate UV and IR divergen-
cies of multi-loop amplitudes that enter into a computer code
is guided by consistency and expediency. For the reasons we
have discussed in the introduction, practical and symmetry-
preserving regularisation frameworks that work fully in the
physical dimension are desirable especially when dealing
with dimensional-specific models in which the analytical
continuation in the space-time dimension is ambiguous. This
has justified to exploit quasi-dimensional methods such as
DRED and FDH. They have been successfully employed in
calculations in gauge and supersymmetric models after hav-
ing their consistency validated, order by order in perturbation
theory, through verification of Ward identities via quantum
action principles. The main drawback of such schemes is
that some modifications at Lagrangian level become neces-
sary. For instance higher covariant derivative terms improve
the ultraviolet behaviour of the propagators at the expense
of complicating the Feynman rules (for recent application
of this technique in the context of supersymmetric theories
see [112–114]). In the case of DRED or FDH, evanescent
scalar ε-particles add a Lε term to QCD Lagrangian as a
result of decomposing the quasi-4-dimensional gluon field.
Moreover, two new coupling constants besides gs emerge as
a result to the coupling of ε-scalars to (anti-)quarks, namely
gε , and a quartic ε-scalar coupling g4ε , with their respective
β-functions and anomalous dimensions. Whilst such modi-
fications are crucial for inner consistency of the method as
well as shedding light on the ultraviolet and infrared factori-
sation structure of the amplitudes, they are unnecessary in
fully non-dimensional methods such as IREG.

In other to raise a non-dimensional scheme such as IREG
to the level of more conventional methods a series calcu-
lations had to be performed. Firstly, show that a program
that displays the UV (and IR) content of an amplitude as a
BDI, without recoursing to explicit evaluation, can be consis-
tently and invariantly extended beyond one loop respecting
gauge invariance. We have explicitly verified that this is the
case by fully evaluating the contributions to the β-function of
abelian and non-abelian models. We have verified the conjec-
ture (proved for the abelian case) that a constrained version
of IREG that sets to zero well defined surface terms in con-
sonance with momentum routing invariance in the loops of
Feynman diagrams automatically implements gauge invari-
ance. We have obtained the renormalization constants by con-
ducting the subtraction of subdivergences within IREG and
compared with CDR and DRED. It is well-known that CDR
and DRED are not equivalent in general in the sense that the
residues of the poles in ε do not coincide. In this respect it

is noteworthy, as we have explicitly verified, that evaluating
the BDI’s of IREG in 4 − 2ε dimensions in the end of the
calculation does not yield the same residues for the poles of
arbitrary orders. Nonetheless, as we have shown in tables 2
to 18, a systematic summation among different contributions
from Feynman graphs and counterterms renders an identical
result for CDR, DRED. Matter-of-factly a tuned cancellation
of ε-scalar contributions take place. Because IREG does not
recourse to such modifications, it would be interesting to per-
form a calculation where such cancellations do not occur in
DRED such as in the g+g → q+ q̄+g [115] or H → g+g
[52,53] scatterings to NLO and N 2LO . Finally, we have
computed the universal two-loop β-functions of gauge cou-
pling in scalar and spinorial QED as well as pure Yang-Mills
and QCD in a fully quadridimensional framework by defin-
ing the renormalization constants as BDI’s. Derivatives of
BDI’s with respect to a renormalization scale that naturally
appears through a scale relation are also expressable as BDI’s.
This enable us to perform the calculations without explicitly
evaluating the BDI’s.

In order to pursuit the IREG program to apply it to preci-
sion calculations, it is important to show that IREG respects
the factorisation properties of infrared divergences in QCD
as well as to evaluate the cusp anomalous dimensions. This
can be achieved in two ways: either by parametrising the
infrared divergences in IREG as ln μ2 as μ → 0 or by using
a parametrisation of infrared divergences in the reciprocal
space in terms of infrared BDI in the coordinate space. Both
approaches are under active investigation.
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Fig. 6 Feynman rules

Appendix A: Feynman rules

For scalar and spinorial QED we refer to [106] for the Feyn-
man rules and conventions. As for QCD with a background
field A and gauge fixing parameter α, we follow the conven-
tions of [104] to yield the following rules in Fig. 6.

Appendix B: Explicit results of integrals

Here we present explicit results for the integrals used in this
work. They were obtained combining in-house routines with
1-loop evaluation of some integrals performed with Package
X [116].

B.1 1-loop: two point functions

∫
k

1

k2(k + p)2 = Ilog(λ
2) − b ln

(
− p2

λ2

)
+ 2b, (B1)

∫
k

kμ
k2(k + p)2 = − pμ

2

[
Ilog(λ

2) − b ln

(
− p2

λ2

)
+ 2b

]
, (B2)

∫
k

kμkν
k2(k + p)2 = − gμν p2

12

[
Ilog(λ

2) − b ln

(
− p2

λ2

)
+ 8b

3

]

+ pμ pν

3

[
Ilog(λ

2) − b ln

(
− p2

λ2

)
+ 13b

6

]

(B3)

B.2 1-loop: three point functions

∫
k

kμkν

k4(k + p)2

= gμν

4

[
Ilog(λ

2) − b ln

(
− p2

λ2

)
+ 2b

]
+ pμ pν

p2

b

2
(B4)

∫
k

kμkνkρ

k2(k + p1)2(k + p2)2

= [
gμν(p1 + p2)ρ + gνρ(p1 + p2)μ
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+gμρ(p1 + p2)ν
] [

− Ilog(λ2)

12
+ finite

]
(B5)

B.3 2-loop: explicit results involving logarithms

We recall the general structure given in Eq. 10

I ν1...νm =
∫
kl

Aν1···νm (kl , qi )∏
i [(kl − qi )2 − μ2] lnl−1

(
−k2

l − μ2

λ2

)
,

(B6)

Considering the 2-loop case (l = 2), it simplifies to (after
relabeling k2 = k)

I ν1...νm =
∫
k

Aν1···νm (k, qi )∏
i [(k − qi )2 − μ2] ln

(
−k2 − μ2

λ2

)
, (B7)

B.3.1 One point functions

∫
k

1

(k + p)2 ln

(
− k2

λ2

)
= p2

2
Ilog(λ

2) + finite, (B8)

B.3.2 Two point functions

∫
k

1

k2(k + p)2 ln

(
− k2

λ2

)

= I (2)
log(λ

2) + finite, (B9)∫
k

kμ

k2(k + p)2 ln

(
− k2

λ2

)

= − pμ

2

[
I (2)
log(λ

2) + Ilog(λ2)

2
+ finite

]
, (B10)

∫
k

kμkν

k2(k + p)2 ln

(
− k2

λ2

)

= gμν

12

[
−I (2)

log(λ
2) + Ilog(λ2)

6
+ finite

]

+ pμ pν

3

[
I (2)
log(λ

2) + 5

6
Ilog(λ

2) + finite

]
, (B11)

B.3.3 Three point functions

∫
k

kμkν

k4(k + p)2 ln

(
− k2

λ2

)

= gμν

4

[
I (2)
log(λ

2) + Ilog(λ2)

2
+ finite

]
+ pμ pν

p2 finite,

(B12)

B.4 2-loop: overlapped integrals

We will have the general structure

I [ f (k, q)] =
∫
k

f (k, q)

k2(k − p)2(k − q)2q2(q − p)2 (B13)

I [k.q] = bIlog(λ
2) + finite (B14)

I [kμqν] = gμν

4

[
Ilog(λ

2) + finite
]

+ pμ pν

p2 finite

(B15)

I [kμkν] = gμν

4

{
I 2
log(λ

2) − bI (2)
log(λ

2) + bIlog(λ
2)

×
[

9

2
− ln

(
− p2

λ2

)]
+ finite

}

+ pμ pν

p2 finite (B16)

I [kμqνq.p] = pμ pν

8

{
I 2
log(λ

2) − bI (2)
log(λ

2) + bIlog(λ
2)

×
[

11

2
− ln

(
− p2

λ2

)]
+ finite

}

+ gμν p2

8

[
Ilog(λ

2) + finite
]

(B17)

I [kμkνq.p] = gμν

8

{
I 2
log(λ

2) − bI (2)
log(λ

2) + bIlog(λ
2)

×
[

9

2
− ln

(
− p2

λ2

)]
+ finite

}

+ pμ pν

4

[
Ilog(λ

2) + finite
]

(B18)

I [kμk.q] = pμ

8

{
I 2
log(λ

2) − bI (2)
log(λ

2) + bIlog(λ
2)

×
[

19

2
− ln

(
− p2

λ2

)]
+ finite

}
(B19)

I [kμqνk.q] = gμν

24

{
−I 2

log(λ
2) + bI (2)

log(λ
2) − bIlog(λ

2)

×
[

29

6
− ln

(
− p2

λ2

)]
+ finite

}

+ pμ pν

6

{
I 2
log(λ

2) − bI (2)
log(λ

2) + bIlog(λ
2)

×
[

85

12
− ln

(
− p2

λ2

)]
+ finite

}
(B20)

I [k2] = I 2
log(λ

2) − bI (2)
log(λ

2) + bIlog(λ
2)

×
[

4 − ln

(
− p2

λ2

)]
+ finite (B21)

I [k2kμ] = pμ

4

{
3I 2

log(λ
2) − 3bI (2)

log(λ
2) + bIlog(λ

2)
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×
[

25

2
− 3 ln

(
− p2

λ2

)]
+ finite

}
(B22)

I [k2qμ] = pμ

2

{
I 2
log(λ

2) − bI (2)
log(λ

2) + bIlog(λ
2)

×
[

9

2
− ln

(
− p2

λ2

)]
+ finite

}
(B23)

I [k2kμqν] = gμν

24

{
−I 2

log(λ
2) + bI (2)

log(λ
2) − bIlog(λ

2)

×
[

29

6
− ln

(
− p2

λ2

)]
+ finite

}

+ pμ pν

24

{
10I 2

log(λ
2) − 10bI (2)

log(λ
2) + bIlog(λ

2)

×
[

139

3
− 10 ln

(
− p2

λ2

)]
+ finite

}
(B24)

I [k2k.q] = 1

4

[
I 2
log(λ

2) − bI (2)
log(λ

2) + bIlog(λ
2)

×
[

9

2
− ln

(
− p2

λ2

)]
+ finite

]
(B25)

I [k2q2] = 0 (B26)

I [k2qμqν] = gμν

12

{
−I 2

log(λ
2) + bI (2)

log(λ
2) − bIlog(λ

2)

×
[

29

6
− ln

(
− p2

λ2

)]
+ finite

}

+ pμ pν

3

{
I 2
log(λ

2) − bI (2)
log(λ

2) + bIlog(λ
2)

×
[

29

6
− ln

(
− p2

λ2

)]
+ finite

}
(B27)

Appendix C: Explicit algorithm to express a multiloop
integral as scalar BDI’s

In this appendix we provide an explicit algorithm to rewrite
BDI’s with Lorentz indexes in terms of scalar ones. For sim-
plicity, we focus only on log-divergent integrals and we set
surface terms to zero. As explained in Sect. 2.1, in the course
of applying IREG rules to a general massless n-loop ampli-
tude, one may encounters an integral of the type

I =
∫
k
G(k, pi , μ

2) lnn−1
[
− (k2 − μ2)

λ2

]
, (C1)

where pi stand for external momenta, andG may contain free
Lorentz indexes. For simplicity, we assume that the external
momenta only appear in denominators. Considering that the
integral above is log-divergent, after applying Eq. 4 as many
times as the number of external momenta, one obtains

I = Idiv + Ifin,

where Idiv =
∫
k
G(k, pi = 0, μ2) lnn−1

[
− (k2 − μ2)

λ2

]
.

(C2)

To conclude the IREG program, one has to write Idiv in terms
of BDI’s. Therefore, an explicit form for G is needed which,
for the sake of generality, we adopt to be

Idiv = A
∫
k

kν1 · · · kνm

(k2 − μ2)
m+2

2

lnn−1
[
− (k2 − μ2)

λ2

]

= A
[
I (n)
log (μ2)

]
ν1···νm

, (C3)

where A is a constant, and m is even. By setting the surface
term below to zero,

∫
k

∂

∂kν1

kν2 · · · kνm

(k2 − μ2)
m+2

2

lnn−1
[
− (k2 − μ2)

λ2

]
= 0, (C4)

one obtains the relation

[
I (n)
log (μ2)

]
ν1···νm

= 1

m + 2

{
gν1ν2

[
I (n)
log (μ2)

]
ν3···νm

+ · · · gν1νm

[
I (n)
log (μ2)

]
ν2···νm−1

}

+ 2(l − 1)

m + 2

[
I (n−1)
log (μ2)

]
ν1···νm

. (C5)

Notice that by using Eq. C5, one reduces a BDI of n-loop
order with m free Lorentz indexes to a BDI with two less free
Lorentz indexes. Also, one relates a BDI of n-loop order to a
BDI one order below. Therefore, by successive applications
of Eq. C5, one can write Idiv in terms of scalar BDI’s only.
The end result is not particularly enlightening, thus we do
not present it here. However, the coefficient of the I (n)

log (μ2)

term is easily obtained, which gives

Idiv = A

(m + 2)!! g{ν1ν2···νm−1νm } I (n)
log (μ2) + · · · (C6)

where g{ν1ν2···νm−1νm } represents the symmetric combination
of all indexes. As can be seen, one obtains the same coeffi-
cient for the higher order BDI, regardless of the actual value
of n. A similar reasoning can be applied for integrals with
higher surface degree of divergence, allowing us to write in
general

∫
k
G(k, pi , μ

2) lnn−1
[
− (k2 − μ2)

λ2

]
= A I (n)

log (μ2) + · · ·
(C7)

where A is independent of the actual value of n.
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