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Abstract We present an extension of the large-Nf formal-
ism that allows one to study cases with multiple fermion
representations. The pole structure in the beta function is
traced back to the intrinsic non-abelian nature of the gauge
group, independently from the fermion representation. This
result validates the conjectured existence of an interactive
UV fixed point for non-abelian gauge theories with large
fermion multiplicity. Finally, we apply our results to chiral
gauge theories.

1 Introduction

The expansion in a large number, Nf , of fermionic matter
fields has been used to study the dynamical properties of
gauge theories. In particular, the gauge beta function, rele-
vant for the renormalization group equation (RGE) of the
gauge coupling and the mass anomalous dimension have
been computed for both abelian [1,2] and non-abelian [3]
theories. Some information about higher-order terms is also
available [4–6]. An important property of this expansion is
that the first order is scheme independent, as discussed in
[7–9]. More recently, this technique has been reused to show
that gauge theories in the large-Nf limit may feature a non-
trivial, interacting Ultra-Violet (UV) fixed point [10] (see also
[11]). This observation is very important in understanding the
dynamics of gauge theories, as the presence of an UV fixed
point would allow one to understand large-Nf gauge theories
as fundamental, in the Wilsonian sense [12,13]. This effort
falls in the larger quest for asymptotic freedom, first identi-
fied by Weinberg for quantum gravity [14] and later discov-
ered by Sannino and Litim for perturbative gauge-Yukawa
theories [15]. It is worth recalling that increasing Nf makes
the theory lose the property of asymptotic freedom. This is
where the large-Nf formalism comes to the rescue. A dif-
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ferent limit, relevant for a complementary region in theory
space, consists in taking large-Nc and large-Nf limits, while
keeping the ratio Nf/Nc fixed and relatively small. In this
case, asymptotic freedom can be preserved in the UV, and
an interactive fixed point may arise in the infra-red region
[16,17].

The presence of a fixed point is linked to the fact that the
first order in the large-Nf expansion has a negative pole at a
given value of the gauge coupling, thus canceling the positive
leading term when the gauge coupling grows near the singular
value. This conclusion has been recently challenged in Ref.
[18], where the resummation was re-organized thanks to non-
perturbative information obtained from critical exponents.
The result shows that a singularity in the leading large-Nf

critical exponent does not necessarily imply a singularity in
the beta function; however, without excluding the presence of
an UV fixed point. Preliminary results from large-Nf lattice
studies also remain inconclusive [19]. Thus, at the moment
the presence of a physical UV fixed point cannot be excluded.
This phenomenon has been applied in various contexts, from
attempts to define a safe Standard Model [20–25], to grand
unification [26,27], dark matter [28,29] and a variety of new
physics scenarios [30–32]. In composite Higgs models with
fermion partial compositeness [30], two irreps are needed
to form spin-1/2 bound states that couple to the elementary
quark and lepton fields. In general, the phenomenologically
relevant application of theories with a UV fixed point consist
in UV completions of the standard model, avoiding issues
like vacuum stability and Landau poles.

The basic formulas for large-Nf resummation are known
[33] for a simple gauge group G, while an extension to semi-
simple groups G = ×αGα can be found in Ref. [34]. In
all cases, the large-multiplicity fermions belong to a single
irreducible representation (irrep) Rf of the gauge groups.
In this note, we generalize the resummation to cases with a
large multiplicity of fermions in multiple irreps of the gauge
groups. We find that the pole structure is preserved, reveal-
ing that its presence is intrinsically linked to the non-abelian
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structure of the gauge group. This result is in agreement with
the presence of the UV safety for non-abelian gauge groups
and not for abelian ones. The latter was already in question
due to the fact that the mass anomalous dimension diverges
near the pole [10]. Our results are also relevant to understand
the dynamical properties of some class of models, like gauge
theories with a large number of chiral families, and composite
Higgs models with top partial compositeness [30].

The paper is organized as follows: in Sect. 2 we review
the main results useful for a large-Nf resummation, while
presenting the results in a different form that can be applied
to the case of multiple irreps. In Sect. 3 we present general
formulas for the new case, before applying the results to phys-
ically interesting theories in Sect. 4. We offer our conclusion
in Sect. 5.

2 Basic resummation results

In this section we will give a pedagogical introduction to
the basic results for the large-Nf beta-function calculation,
following Ref. [34]. We will, however, change some defini-
tions, which will be useful to better understand the origin of
the singularity and to extend the calculation to multiple irrep
cases in the next section.

Let us consider a gauge–fermion theory with one species
of Dirac fermions, �, in the irrep R of a simple gauge groupG
(with gauge coupling constant g). To compute the β-function
we need to calculate the radiative corrections to the 2-point
function of the gauge boson propagator. For a large number of
fermions, the leading contribution to the beta function comes
from the one-loop fermion contribution:

(1)

where we have defined an effective gauge coupling K , which
takes into account the large fermion multiplicity by

K = g2

4π2 Nf T (R), (2)

where T (R) is the index of the fermion irrep R. K can be
considered as the effective coupling controlling the perturba-
tive expansion, thus the one-loop contribution can be counted
at O(N 0

f ). This also allows one to define a chain of fermion
bubbles, which are all contributing at O(N 0

f ), as shown in
Fig. 1.

Fig. 1 Example of bubble-chain of length 5

Fig. 2 Next-to-leading order diagrams. C is one representative of the
diagrams containing gauge boson self-interactions

Two-loop corrections to the diagram in Eq. (1) correspond
to attaching a gauge propagator to the fermion loop: as no
additional Nf multiplicity is added, this diagram will effec-
tively contribute to order K 2/Nf , thus providing next-to-
leading order terms. Now, replacing the simple gauge prop-
agator with a bubble-chain, will not increase the 1/Nf order.
In fact, the leading term is simply given by the resumma-
tion of the bubble-chain in the gauge propagator, as shown
in the first two diagrams in Fig. 2. For a non-abelian the-
ory, there are also contributions coming from gauge boson
self-interactions: in this case, even the one-loop result is sup-
pressed by 1/Nf and should be considered at next-to-leading
order. As before, the resummed results stem from dressing
the gauge propagators with the bubble-chain, as exemplified
in the third diagram in Fig. 2.

For each type of diagram X, we can write the amplitude
in the form δab p2Δμν (p) Π

(n)
X (p), where Δμν(p) = ημν −

pμ pν/p2. Here n corresponds to the length of the bubble-
chain in A and B, while for C it is the total length of the two
bubble-chains. A simple calculation gives

Π
(n)
A (p) = Nfg

4 T (R) C(R)
Kn

(4π2)2 A
(n)
A (p), (3)

Π
(n)
B (p) = Nfg

4 T (R) C(R)

(
1 − 1

2

C(G)

C(R)

)

× Kn

(4π2)2 A
(n)
B (p), (4)

Π
(n)
C (p) = g2 C(G)

Kn

(4π2)
A(n)
C (p), (5)

where C(R) the Casimir operator of the irrep R and C(G)

of the adjoint. The functions A(n)
X are integrals of the loop

momentum and contain the information needed to compute
the leading order; however, we need to take into account all
the n-long bubble-chains to extract the contribution to the β-
function. The beauty of the large-Nf expansion stands in the
fact that this resummation can be done, and the ε-dependence
of the loop in dimensional regularization can be converted in
a dependence on K of the resummed result (see Ref. [2] and
the appendix of Ref. [34] for the proof).

To compute the evolution of the coupling we need to sum
up all the diagrams: the total contribution thus reads

Π =
∑
n

2Π
(n)
A + Π

(n)
B + Π

(n)
C
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= K

NfT (R)
C(G)

∑
n

K n A(n)
C (p)

+ K 2

NfT (R)
C(R)

∑
n

K n
[

2 A(n)
A (p)

+
(

1 − 1

2

C (G)

C (R)

)
A(n)
B (p)

]
, (6)

where the factor of 2 comes from the two possible insertions
of the bubble-chain in the diagram A. Upon closer inspection
to the above formula, we can reorganize the sum as follows:

Π = K

NfT (R)

∑
n

⎧⎪⎪⎨
⎪⎪⎩
C(R) Kn

[
2A(n−1)

A + A(n−1)
B

]
︸ ︷︷ ︸

(∗)

+C(G) Kn−1
[
A(n−1)
C − K A(n−1)

B /2
]

︸ ︷︷ ︸
(∗∗)

⎫⎪⎪⎬
⎪⎪⎭

. (7)

The combination (∗) encodes the contribution to the beta
function for an abelian gauge group (for which C(G) =
0 and C(R) → Q2

f ) and was computed originally in Ref.
[2], while the combination (∗∗) encodes the effect of the
non-abelian dynamics. After resummation, we define two
functions corresponding to the two combinations as follows:

β (K ) = 2K 2

3

[
1 + C (G)

NfT (R)

{−11

4
+ H (K )

}

+ C (R)

NfT (R)
F(K )

]
, (8)

where F(K ) stems from (∗) and H(K ) from (∗∗). Note
that the −11/4 term isolates the one-loop contribution of
gauge couplings, which is of order 1/Nf , wile the 1 corre-
sponds to the one-loop contribution of the fermions. Thus,
in our definition, the functions F(K ) and H(K ) explicitly
contain only the resummed higher-loop contribution. They
are defined by 1:

F(K ) = 3

4

∫ K

0
dx F̃

(
0,

2

3
x

)
,

H(K ) = 3

4

∫ K

0
dx F̃

(
0,

2

3
x

)
G̃

(
0,

1

3
x

)
; (9)

with

F̃ (0, ε) = (1 − ε)
(
1 − ε

3

) (
1 + ε

2

)

 (4 − ε)

3
2
(
2 − ε

2

)


(
3 − ε

2

)


(
1 + ε

2

) , (10)

1 The functions F andG we define are related to the F1 and H1 functions
of Ref. [34] by

F1 = F, H1 = F1 + C(G)

C(R)

(
−11

4
+ H

)
.

G̃ (0, ε) = 20 − 43ε + 32ε2 − 14ε3 + 4ε4

4 (2ε − 1) (2ε − 3)
(
1 − ε2

) . (11)

The function F(K ) has a singularity at K ∗ = 15/2: this
specifically arises from the singularity in the factor 
 (4 − ε)

in the loop integral F̃(0, ε). This term is relevant for abelian
gauge groups. Instead, H(K ) has a singularity at K ∗ = 3,
which stems from the (1 − ε2) factor in the denominator of
G̃(0, ε). Thus, the presence of a pole at K = 3 for non-
abelian gauge theories is to be traced back to the non-abelian
nature of the gauge bosons. It has been observed in Ref. [34]
that the mass anomalous dimension is finite in K ∗ = 3, while
it diverges at K ∗ = 15/2, thus supporting the presence of an
UV fixed point for the non-abelian gauge only. Furthermore,
preliminary results for the 1/N 2

f contribution to the abelian
β-function show that a discontinuity in K ∗ = 3 emerges.
Both observations seem to support the idea that the non-
abelian fixed point may be physical, while the abelian one
is more arguable. In the remainder of this work, we will
therefore focus on non-abelian gauge symmetries.

The resummation has been extended to semi-simple gauge
groups in Ref. [34], and we will review the main results here.
We consider a gauge groupG = ×αGα , with gauge couplings
gα , and nf fermions in the irrep Rf = ×αRα . Instead of
defining a single effective Nf as in Ref. [34], we find it more
convenient to define a fermion number Nα for each gauge
group, as this will allow us to easily generalize the result
to multiple irreps. We will consider each fermion number,
defined as

Nα = nf�β �=αd(Rβ), (12)

to be of the same order for all gauge groups, i.e. Nα = O(Nf).
Similarly, we define effective gauge couplings as follows:

Kα = g2
α

4π2 Nα. (13)

The only new ingredient in the case of semi-simple gauge
groups is that the gauge couplings contribute to each other’s
β-function. As gauge bosons of different groups do not inter-
act with each other, the leading order in Nf stems from dia-
grams of type A and B, where the gauge boson in the bubble-
chain is different from the external ones, as shown in Fig. 3.
The amplitudes can be written as

�
(n)
A’/B’(p) = g2

αT (Rα)
∑
β �=α

g2
βC(Rβ)d(Rβ)�γ �=α,βd(Rγ ) nf

× Kn
β

(4π2)2 A
(n)
A/B(p), (14)

where the integral functions are the same as before. Using
d(Rβ)�γ �=α,βd(Rγ ) nf = Nβ , the total contribution can be
written as

� = Kα

Nα

∑
β �=α

C(Rβ)

T (Rβ)
Kn+1

β

(
2A(n)

A (p) + A(n)
B (p)

)
, (15)
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Fig. 3 Next-to-leading order diagrams for the mixed contributions,
where the gauge bosons in the bubble-chain and on the external legs
belong to different gauge groups

where we recognize the function also appearing in the abelian
case.

Finally, the β-function for Kα can be written as

β(Kα) = 2K 2
α

3

⎡
⎣1 + C(Gα)

NαT (Rα)

{
−11

4
+ H(Kα)

}

+
∑
β

C(Rβ)

NαT (Rβ)
F(Kβ)

⎤
⎦ . (16)

If we only consider non-abelian gauge groups, the second
term, which includes the mixed contributions, will always
remain finite and small as Kβ < 3. Thus, the presence of an
UV fixed point only comes from the first term, i.e. from the
non-abelian nature of each gauge factor in the semi-simple
group.

In order to offer a direct comparison with the results in the
next section, we can also redefine the fermion multiplicities
by absorbing the index of the irrep:

Ñα = NαT (Rα), Kα = g2
α

4π2 Ñα, (17)

with the β-function given by

β(Kα) = 2K 2
α

3

⎡
⎣1 + C(Gα)

Ñα

{
−11

4
+ H(Kα)

}

+ 1

Ñα

∑
β

C(Rβ)T (Rα)

T (Rβ)
F(Kβ)

⎤
⎦ . (18)

In the above form, the β-function can be easily extended to
cases with a large multiplicity of multiple irreps, as we will
show in the following section.

3 Extension to multiple irreps

We are now ready to extend the resummation formulae to
cases with large numbers of multiple irreps. We will first
start with a simple gauge group, and then generalize to semi-
simple groups.

3.1 Simple gauge group

We start with the case of a simple gauge group G with ni
fermions �i in different irreps Ri . In such a case, the leading
order contribution is given by the one-loop diagram below,
where we sum over all the fermion species:

(19)

Following Eq. (1), we can define an effective gauge coupling
as follows:

K = g2

4π2 N , N =
∑
i

ni T (Ri ), (20)

where it is evident why we absorbed the index of the irrep
in the definition of the fermion multiplicity. Interestingly, a
large N can now also be due to the contribution of irrepswith
large index.

The next-to-leading order in 1/N is given by the same
diagrams A, B and C in Fig. 2, yielding

Π
(n)
A (p) = g4

∑
i

T (Ri ) C(Ri )ni
K n

(4π2)2 A
(n)
A (p), (21)

Π
(n)
B (p) = g4

∑
i

T (Ri ) C(Ri )

(
1 − 1

2

C(G)

C(Ri )

)

×ni
K n

(4π2)2 A
(n)
B (p), (22)

Π
(n)
C (p) = g2 C(G)

Kn

(4π2)
A(n)
C (p). (23)

It is crucial that the loop factors do not depend on the irrep
of the fermions. Furthermore, a sum on the fermion species
can be introduced in the third contribution by inserting

Π
(n)
C (p) = g2

∑
i

ni T (Ri )

N
C(G)

Kn

(4π2)
A(n)
C (p). (24)

The total result can thus be written as∑
n

2Π
(n)
A + Π

(n)
B + Π

(n)
C

= K

N

∑
i

{∑
n

ni T (Ri )C(Ri )

N
Kn

×
[
2A(n−1)

A (p) + A(n−1)
B (p)

]

+
∑
n

ni T (Ri )C(G)

N
Kn−1

×
[
A(n−1)
C (p) − K A(n−1)

B (p)/2

]}
. (25)

We can now identify again the sums leading to the abelian
F(K ) and non-abelian H(K ) functions, defined in Eq. (9).

123



Eur. Phys. J. C (2021) 81 :476 Page 5 of 9 476

The β-function can thus be expressed as

β(K ) = 2K 2

3

[
1 + C(G)

N

{−11

4
+ H(K )

}

+ 1

N

(∑
i

T (Ri ) C(Ri ) ni
N

)
F(K )

]
. (26)

The coefficient in front of F(K ) evaluates to anO(1) number
as it sums the degrees of freedom of the fermions weighted
by the Casimir operators, thus the second term is genuinely
an O(1/N ) contribution. Nevertheless, we see that, for non-
abelian gauge groups, the singularity driving the UV fixed
point is the same as in the case of a single large-multiplicity
irrep. Note how this result compares to Eq. (18).

This result proves that models with multiple irreps have
the same dynamics as models with a single irrep in the large-
Nf limit.

3.2 Semi-simple gauge group

We now consider the most general case of a semi-simple
gauge groupG = ×αGα withni fermions�i in the irrep Ri =
×αRiα . Combining the definitions in the previous sections,
we can define a fermion multiplicity for each gauge group as
follows:

Nα =
∑
i

ni
(
�β �=αd(Riβ)

)
T (Riα), Kα = g2

α

4π2 Nα.

(27)

It is convenient to define effective fermion multiplicities that
count the multiplicity of fermion specie �i relative to one or
two gauge groups, respectively:

ñiα = ni
(
�β �=αd(Riβ)

)
, ñiαβ = ni

(
�γ �=α,βd(Riγ )

)
,

(28)

so that Nα = ∑
i ñiαT (Rα).

The generalization of the β-function is now straightfor-
ward, starting from Eqs (18) and (26):

β(Kα) = 2K 2
α

3

⎡
⎣1 + C(Gα)

Nα

{
−11

4
+ H(K )

}

+ 1

Nα

⎧⎨
⎩
∑
i

ñiαT (Riα)C(Riα)

Nα

F(Kα)

+
∑
β �=α

∑
i

ñiαβT (Riα)C(Riβ)

Nβ

F(Kβ)

⎫⎬
⎭
⎤
⎦ . (29)

The above result confirms that the UV dynamics of the theory
is fully determined by the non-abelian structure, as the addi-
tional terms proportional to F(K ) remain finite for K < 3 in
the case of non-abelian gauge groups. We also note that, as in

the simple case, the β-function and thus its pole are scheme
independent (see the proof in Appendix 1).

For completeness and reference, in Appendix 1 we pro-
vide the β-functions for Yukawa couplings from Ref. [34],
adapted to our formalism and extended to the case of mul-
tiple irreps. As we will show in Appendix 1, they maintain
the scheme independence property of the first order in the
expansion.

4 Application to chiral gauge theories: generalized
Georgi–Glashow and Bars–Yankielowicz models

Chiral gauge theories have received substantial attention in
the literature, especially in the case of asymptotical freedom,
because of the interesting low energy dynamics [35–38].
The simplest incarnations consist of two different species
of fermions, whose multiplicities are chosen to cancel the
gauge anomaly. Theories of this class can be constructed
on a simple SU(Nc) gauge group, with one fermion in the
symmetric or anti-symmetric irrep and a suitable number of
conjugate fundamental to cancel the gauge anomaly. They go
under the names of Bars–Yankielowicz (BY) [39] and gener-
alized Georgi–Glashow (GG) [40] theories. Their low energy
dynamics is still not fully understood in the asymptotically
free case with a small number of chiral families [41,42]: indi-
cations of the possible allowed phases have been inferred by
use of the minimization of degrees of freedom [37,38], or the
recent idea of generalized anomalies [43,44]. In this work
we are interested in the limit of a large number of fermions,
where asymptotic freedom in the UV is lost, and the theory
flows to a non-interacting point at low energies. Hence, we
will consider a case with ng chiral generations, with ng much
larger than Nc. Note that the results are also valid if some
of these families are vector-like and heavy: for instance, a
Georgi–Glashow model with (ng − 3)/2 vector-like families
may be a precursor of a UV-safe completion of SU (5) grand
unified theories.

The fermion content of the two template theories thus
consists of

BY ⇒ R1 = [ng], R2 = [(N + 4)ng] ; (30)

GG ⇒ R1 = [ng], R2 = [(N − 4)ng]. (31)

Following Eq. (20), we can define the following fermion mul-
tiplicity:

NBY/GG = ng
N ± 3

2
, (32)

which is large when ng is large. Thus, the β-functions from
Eq. (26) read

β(K )BY/GG = 2K 2

3

[
1 + 2N

ng(N ± 3)

{
−11

4
+ H(K )

}
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+ 1

ng

3N 2 ± N − 4

2N (N ± 3)
F(K )

]
, (33)

where the large-ng expansion is evident, and we recall that
N ≥ 3 for BY and N ≥ 5 for GG. The UV dynamics of
the theories, therefore, is determined by the H(K ) depen-
dence, which produces an attractive fixed point for K ∗ = 3,
corresponding to

g2∗
4π

= 6π

ng(N ± 3)
. (34)

We now investigate the UV properties of the BY and GG
models with an additional Yukawa coupling. For this pur-
pose, we focus of the simplest possibility: besides the two
fermions �R1 and �R2, we extend the models by a scalar
φ in the anti-fundamental representation. This allows one
to include a Yukawa interaction and a quartic coupling, as
follows:

L ⊃ −y φa �b R2 �ab
R1 − λ φ∗aφ∗bφaφb + h.c., (35)

where a, b are gauge indices, and we omit the flavor index.
The general formulas for the beta function for the new cou-
plings can be found in Appendix 1. They can be simpli-
fied under the assumption that the gauge coupling quickly
approaches its fixed point, so that we can replace K = 3. For
the two models, we find

β (y)BY/GG = y3 3N + 1

32π2 − y
7N 2 ± 4N − 1

8ng(N ± 3)N
(36)

β (λ)BY/GG = λ2 2N + 5

16π2 + λ

(
y2N

4π2 − N 2 − 1

ngN (N ± 3)

)

−
(
y4N

4π2 + (N 2 − 1)(N 2 − 2)cλ

ng
2(N ± 3)2N

)
, (37)

where cλ = 192 is a numerical coefficient stemming from
the gauge fixed point. The Yukawa beta function features a
flow from an IR fixed point at

y2
IR

4π2 = 7N 2 ± 4N − 1

N (N ± 3)(3N + 1)ng
, (38)

to a free UV fixed point yUV = 0.
From the quartic coupling beta function, we can see that

there always exist two real zeros for any value of y. Numerical
values are shown in Fig. 4 for ng = 10 N . These results can
be generalized to any value of ng knowing that the zeros
scale behaves as λ∗ ∼ n−1

g (as y2
IR ∼ n−1

g ). Thus, for values
below the positive zero, λ < λ∗+, the couplings will flow in
the UV towards the negative zero, λUV = λ∗−. The plot also
shows that the running is not very sensitive to the value of
the Yukawa coupling.

Fig. 4 Zeros of β(λ) as a function of N for BY (blue) and GG (red)
models. The solid lines correspond to y = yUV = 0, while the dashed
ones correspond to y = yIR. The numerical values correspond to ng =
10N ; however, other choices can be easily inferred knowing that the
zeros scale behaves as λ∗ ∼ n−1

g

This analysis shows that chiral gauge theories as the BY
and GG models, even when enriched with a scalar field, can
feature a completely UV-safe behavior. The fact that the quar-
tic coupling flows towards a negative value at high energy,
though, may signal an instability in the scalar potential.

5 Conclusions

Large-Nf resummation has proven a useful tool to study the
UV dynamics of gauge theories with large multiplicity of
fermions. This has led to the conjecture of the emergence of
an attractive interacting fixed point in the UV, which is due to
the presence of a pole in the resummed leading order in the
beta function. In this note, we extended the standard formal-
ism to include cases with multiple fermion representations.
We showed that the pole can be traced back to the intrinsic
non-abelian nature of the gauge group, independently on the
specific representations of the fermions. Thus, we support
the conjecture for non-abelian gauge groups.

As a consequence, the pole and the UV fixed point are also
found in theories with multiple representations. We apply
these results to the simplest cases of chiral gauge theories,
based on SU(Nc) gauge groups. As long as a large-enough
number of chiral families are added, the theories develop an
UV-safe dynamics.
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AppendixA:Large-Nf β-functions forYukawaandquar-
tic couplings

For completeness, we will list here the resummedβ-functions
for Yukawa couplings [45] from Ref. [34], adapted to the
notation we use in this paper, and to the case with multiple
fermion irreps. We complete the model by adding a scalar
field φA in the irrep Rφ = ×αRφα , where A is a generic
gauge index for the scalar irrep. The new Lagrangian for the
interactions reads

L ⊃ −yAbc φA �b
i �c

j − λAB
CD φ∗,Aφ∗,BφCφD + h.c., (A1)

where b and c are gauge indices of the fermion irreps, and it
is understood that the scalar gauge quantum numbers allow
the Yukawa coupling to be gauge-invariant. First we note that
the scalar will contribute to the gauge β-function with a 1/Nf

term,

�β(Kα)|scalar ⊃ 2K 2
α

3

T
(
Rφ α

)
4Nα

, (A2)

which corresponds to the one-loop result.
We recall that consistency of the expansion requires that

the Yukawa and quartic couplings shall scale in a give way
with Nf , as follows:

y2 ∼ λ ∼ 1

Nf
. (A3)

This counting ensures that the non-gauge contribution to the
beta function at one loop counts 1/Nf in the expansion. The
β-function for the Yukawa coupling reads

β (yAbc) = 1

32π2

[(
yD y

∗,DyA
)
bc

+
(
yAy

∗,DyD
)
bc

+ 2Tr
[
yAy

∗,D
]
yDbc

]

− yAbc
∑
α

3Kα

4Nα

H0

(
2Kα

3

)

[
C (Ri α) + C

(
R j α

)+ Kα

6
C
(
Rφ α

)]
,

where the traces and contractions are intended for the fermion
gauge indices, and

H0(x) =
(
1 − x

3

)

 (4 − x)

3
2
(
2 − x

2

)


(
3 − x

2

)


(
1 + x

2

) . (A4)

We recall that H0 is a smooth function up to K = 15/2,
where a pole is developed. Thus, for non-abelian semi-
simple groups, the gauge contribution to the Yukawa run-
ning remains finite. If it dominates over the contribution of
the pure Yukawa term, the coupling will flow towards a non-
interactive fixed point (asymptotic free). If there is another
Yukawa term, y′, mixed contributions will play a role in the
running as β(y) ⊃∼ yy′2. Thus we get the same behavior.

For the quartic coupling we obtain the following β-
function:

β
(
λAB

CD

)

= 1

16π2

[
2λAE

CFλBF
DE + 2λAE

DFλBF
CE + λAB

EFλEF
CD

]

+ 1

4π2 Tr
[
yD y

∗,E
]
λAB

CE

− 1

4π2 Tr
[
yAy∗

C y
B y∗

D + yAy∗
Dy

B y∗
C

]

− λAB
CD

∑
α

3

Nα

C
(
Rφ α

)
KαH0

(
2Kα

3

)

+ 48π2
∑
α<β

BAB
α,β CD

NαNβ

KαKβ

Kα − Kβ

×
[
Kα(1− Kα

6
)H0

(
2Kα

3

)
−Kβ(1 − Kβ

6
)H0

(
2Kβ

3

)]

+ 24π2
∑
α

AAB
α CD

N 2
α

K 2
α

[
(1 − Kα

3
)H0

(
2Kα

3

)

+Kα(1 − Kα

6
)

∂

∂Kα

H0

(
2Kα

3

)]
, (A5)

where the tensors A and B are defined as

AAB
α CD = 1

8

[
{T a

Rφ α
, T b

Rφ α
}AC {T a

Rφ α
, T b

Rφ α
}BD

+{T a
Rφ α

, T b
Rφ α

}AD{T a
Rφ α

, T b
Rφ α

}BC
]
, (A6)

BAB
α,β CD = 1

2

[(
T a
Rφ α

T b
Rφ β

)A
C

(
T a
Rφ α

T b
Rφ β

)B
D
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+
(
T a
Rφ α

T b
Rφ β

)A
D

(
T a
Rφ α

T b
Rφ β

)B
C

]
. (A7)

Appendix B: Scheme transformations

In this section we prove the scheme independence of all the
β-functions above. For that purpose first we recall that a

scheme transformation will map a gauge coupling α = g2

4π2

to a new one α′ = g′2
4π2 . This mapping must be invertible and

as mentioned in [7,8] [9] can be parametrized as

α = α′F(α′) (B1)

F(α′) = 1 + t1α
′ + t2α

′2 + . . . (B2)

Thus if we perform a scheme transformation only for the
gauge groupe Gα we obtain

Kα = K ′
αF(K ′

α/Nα) (B3)

= K ′
α(1 + t1K

′
α/Nα + t2K

′2
α /N 2

α + . . . ). (B4)

This feeds the gauge β-function in two ways. First the
β-function of Gα is already known to be scheme invariant
as explained in [7–9]. We note that the contribution from
the other gauge group is unchanged. Secondly, for the other
β-functions, the contribution from Ka enters through func-
tions that are already at order 1 in N . Changing the scheme
requires one to expand those functions using (B4). But the
expansion is in higher powers in Nα . Thus at first order all
the β-functions here are scheme independent.
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