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Abstract A systematic procedure is proposed for inclusion
of Stueckelberg fields. The procedure begins with the involu-
tive closure when the original Lagrangian equations are com-
plemented by all the lower order consequences. The Stueck-
elberg field is introduced for every consequence included
into the closure. The generators of the Stueckelberg gauge
symmetry begin with the operators generating the closure
of original system. These operators are not assumed to be
a generators of gauge symmetry of any part of the original
action, nor are they supposed to form an on shell integrable
distribution. With the most general closure generators, the
consistent gauge invariant theory is iteratively constructed,
without obstructions at any stage. The Batalin–Vilkovisky
form of inclusion of the Stueckelberg fields is worked out and
the existence theorem for the Stueckelberg action is proven.

1 Introduction

In 1938, Stueckelberg proposed [1] to reformulate the Proca
action for the massive vector field in a gauge invariant way
by introducing the scalar field. Since then, the general idea
attributed to Stueckelberg has been widely used to equiva-
lently reformulate the original non-gauge theory in a gauge
invariant way by introducing some extra fields. Historical
review of ideas about, and applications of the Stueckelberg
method can be found in the article [2].

The most often used scheme of introducing the Stueckel-
berg fields follows the pattern of the original work [1] imply-
ing that Lagrangian includes the gauge invariant part, and the
non-gauge invariant part. In the case of massive vector field,
the gauge invariant part is the Maxwell Lagrangian, while the
non-invariant part is the massive term. Then, the finite gauge
transformation defining the symmetry of the invariant part is
made of the fields in the entire Lagrangian. This makes the
Lagrangian depending on the gauge parameters. After that,
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the gauge parameters are treated as the Stueckelberg fields.
Under this scheme, the Stueckelberg gauge transformations
of the original fields are the same as in the theory without
non-invariant part of the Lagrangian. In this sense, the broken
gauge invariance of the original fields is restored. Once the
Stueckelberg fields are included as the parameters of gauge
transformations of the invariant part of the action, their own
gauge symmetry is defined as the composition of original
gauge transformations. In this way, the gauge transformation
of Stueckelberg fields compensates the change of the non-
invariant part of the Lagrangian caused by the transforma-
tion of original fields. The equivalence to the original theory
is established by imposing the gauge conditions fixing the
Stueckelberg fields to zero. In this gauge, the Stueckelberg
theory reduces to the original one. This pattern of inclusion
the Stueckelberg fields, sometimes referred to as the “Stueck-
elberg trick”, is summarized and studied in very general form
in the article [3] where one can also find a review of the vast
contemporary literature on this topic.

The “Stueckelberg trick” works well in many models, but
it does not seem consistent as a general method as it is more
art than science. The division of the Lagrangian into invari-
ant and non-invariant parts is rather arbitrary, as is the pre-
defined choice of gauge transformations. For example, given
any transformations of the fields that form the Lie group, any
invariant of the group can be added to and subtracted from
any Lagrangian. Thus, one can get a division into invariant
and non-invariant parts with respect to any transformation.
Thereafter, the above pattern can be applied, resulting in a
model with almost any gauge symmetry that is not neces-
sarily relevant to the original dynamics. Even the number
of gauge parameters can be any within this approach. In the
case of the Proca action, one could shift the original vector
field not by a gradient of a scalar, but – for example – by
a divergence of anti-symmetric second rank tensor. In this
case, another part of the Lagrangian – the square of diver-
gence of original vector field – is considered as an invariant,
and the rest as a non-invariant part. The method works, and

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-021-09256-9&domain=pdf
mailto:sll@phys.tsu.ru


472 Page 2 of 14 Eur. Phys. J. C (2021) 81 :472

results in the gauge invariant theory of massive spin one with
reducible gauge symmetry parameterized by antisymmetric
tensor.

Another commonly used scheme of inclusion of Stueck-
elberg fields is the method of conversion of the Hamiltonian
second class constrained systems into the first class ones.
The first version of the method [4–6] implied to extend the
phase space of the original system by new canonical vari-
ables whose number coincides with the number of second
class constraints. After that, the constraints and Hamiltonian
are continued into the extended space to convert the system
into the first class. Once the gauge conditions are imposed
killing the conversion variables, the system reduces to the
original second class system. The conversion variables can
be viewed as Hamiltonian version of Stueckelberg fields. The
original proposal for conversion implied to linearly include
the conversion variables into the effective first class con-
straints. In general, the gauge symmetry, being generated
by the effective first class constraints, is non-abelian. Later
on, the abelian conversion scheme has been proposed [7–
9]. Under this scheme, the original second class constraints
are extended by a power series in the conversion variables
to become abelian first class constraints. Any original phase
space function, including Hamiltonian, is extended by the
conversion variables to Poisson commute with the effec-
tive abelian first class constraints. The existence theorem of
the abelian conversion is proven by the homological pertur-
bation theory (HPT) tools in the article [9]. In the article
[10], the conversion method is extended to the general sec-
ond class systems on symplectic manifolds, with the con-
straints not necessarily being scalar functions, but sections
of a bundle over the symplectic base. In this setup, the con-
version is proven to exist, though not necessarily abelian.
This conversion scheme allows one to extend Fedosov
deformation quantisation to the second class constrained
systems.

Notice important distinctions of the Hamiltonian conver-
sion method from the described above “Stueckelberg trick”
which is widely applied in Lagrangian formalism. The start-
ing point of the Hamiltonian conversion is a complete sys-
tem of the second class constraints, including primary and
secondary ones. The Hamiltonian equations are first order,
while primary constraints are zero order. All these equations
are variational. The secondary constraints are zero order dif-
ferential consequences of the variational equations, and they
are not variational by themselves. It is the completion of the
original equations by the lower order consequences which
allows one to explicitly count the degree of freedom (DoF)
number. The same applies not only to the constrained Hamil-
tonian equations, but to any system of field equations. The
completion of the system by the lower order consequences is
known as the involutive closure. Given the involutive closure
of the equations, one can count degree of freedom number in

a covariant manner, not appealing to the 1+(d−1) decompo-
sition. Simple and explicitly covariant DoF number counting
recipe is worked out in the article [11] for any involutively
closed system of field equations, not necessarily Lagrangian.
For the involutive closure of Lagrangian system, the gen-
eral recipe (see relation (8) of the article [11]) can be fur-
ther simplified. The covariant DoF count is explained in the
Appendix of this article. The Hamiltonian scheme of includ-
ing Stueckelberg fields proceeds from involutive closure of
variational equations, in particular the number of conver-
sion variables coincides with the number of constraints. The
Lagrangian pattern of the Stueckelberg trick does not account
for the structure of involutive closure, even the number of
the Stueckelberg fields is unrelated to the number of lower
order consequences of the Lagrangian equations. Notice one
more essential distinction between the pattern of Lagrangian
“Stueckelberg trick” and the Hamiltonian conversion proce-
dure. The first one proceeds from certain integrable distri-
bution on the space of fields, which is considered as gauge
symmetry of “invariant part” of the action. The second class
constraints are unrelated, in general, to any integrable dis-
tribution, and the Hamiltonian conversion methods do not
employ any predefined transformations of the original fields.

One of the motivations for introducing the Stueckelberg
fields is the idea to provide consistent inclusion of inter-
actions by controlling compatibility of Stueckelberg gauge
symmetry when the free theory is deformed. This idea works
well in various examples, see [3] and references therein.
However, it does not seem a consistent general scheme, as it
controls just algebraic consistency of the Stueckelberg sym-
metry, not the number of propagating DoF’s, while the arti-
ficial symmetry is not necessarily reasonably related to the
structure of the dynamics. In the article [11], the method
is proposed to consistently include interactions proceeding
from the involutive closure of field equations and without
introducing Stueckelberg fields. Proceeding from the free
field equations brought to the involutive form, the method
allows one to iteratively find all the consistent vertices
in the equations. Even though the original non-involutive
equations are Lagrangian, the involutive closure is not a
Lagrangian system. Therefore, not all the vertices are neces-
sarily Lagrangian. For applications of this scheme of inclu-
sion of interactions, see, for example, [11–15]. While non-
Lagrangian vertices may have their own advantages, in par-
ticular they can be stable in higher derivative field theories
[14,16], it seems interesting to have a method of identifying
all the consistent Lagrangian vertices. The way to construct
all the consistent Lagrangian vertices is briefly noticed in the
next section as a side remark.

The main subject of this article is to work out a method
of inclusion the Stueckelberg fields which proceeds from the
involutive closure of Lagrangian equations. In this sense, the
method can be considered as the Lagrangian counterpart of
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the conversion method for the Hamiltonian second class con-
strained systems.

Notation

DeWitt’s condensed notation [17,18] is adopted, where the
indices cover both space time-points x and a set of numerical
labels. As a rule, all the indices are understood as condensed,
the exceptions are clear from the context. The derivatives ∂i
are variational w.r.t. the fields φi . Summation over condensed
indices includes integration over x . Sign ≈ is the on shell
equality.

2 Involutive closure of the Lagrangian equations and
the Stueckelberg fields

In condensed notation, given the action S(φ), Lagrangian
equations read

∂i S(φ) = 0. (1)

Suppose the action admits no gauge symmetry. This means
that matrix of second derivatives of the action does not have
on-shell kernel. Inclusion of Stueckelberg fields in the case
with gauge symmetry can be considered along the similar
lines, though it is slightly more complex. It will be addressed
elsewhere.

Let us complement equations (1) with the consequences

τα(φ) = −�i
α(φ)∂i S(φ), (2)

such that the system

∂i S(φ) = 0, τα = 0 (3)

is involutive. Here, the involution means that the system
does not admit any lower order consequence which is not
already included. For a review of the involution concept in
the partial differential equation (PDE) theory, and various
applications, one can consult the book [19]. If the original
Lagrangian equations are not involutive, by adding conse-
quences, it will be brought to the involution. This can be con-
sidered as Lagrangian analogue of Dirac–Bergmann algo-
rithm of constrained Hamiltonian formalism with the conse-
quences τα being analogues of the second class constraints.
The difference is that the order of derivatives is considered
w.r.t. any space-time coordinate. Much like the Hamiltonian
conversion, the Lagrangian procedure of inclusion Stueck-
elberg fields begins with involutive closure of equations of
motion.

In principle, one can include the consequences of the
higher order than the original Lagrangian equations. The only
requirement is that the system of Lagrangian equations and
their consequences (3) are involutive — i.e. any lower order

consequence is already contained among these equations1.
Example of this sort is considered in the end of this section.

The consequences τα are supposed independent. This also
means that the generators �i

α , being the local differential
operators, are also independent. The specific conditions of
independence are explained in the next section. The over-
complete set of generators � would lead to the reducible
Stueckelberg gauge symmetry. This case is not considered in
the article, though it can be of interest for some models.

The involutive system (3) admits gauge identities

�i
α(φ)∂i S(φ) + τα(φ) ≡ 0, (4)

which can be viewed as a rephrasing of the definition of
consequences τα (2). The involutively closed system (3) is
non-Lagrangian as such though it is equivalent to the original
Lagrangian system (1). In non-Lagrangian systems, the sec-
ond Noether theorem does not apply, so the gauge identities
are not necessarily related to a gauge symmetry. Since the
original Lagrangian equations (1) do not have gauge sym-
metry, then their involutive closure (3) will not be gauge
invariant either, because they define the same mass shell.

The involutive closure (3) of the Lagrangian system is
characterised by three types of numbers which determine the
DoF number: (i) the orders of original Lagrangian equations
(1); (ii) the orders of the consequences τα included into invo-
lutive closure (3) of the system; (iii) the orders of differential
operators �i

α generating consequences of Lagrangian equa-
tions included into the involutive closure. The DoF number is
a certain linear combination of these three types of integers.
The DoF counting is detailed in the Appendix, see relation
(65) and corresponding explanations.

Let us make a side remark on consistent inclusion of inter-
actions, proceeding from the involutive closure (3) of the
Lagrangian system. Given the free Lagrangian without gauge
symmetry, the problem is to find all the vertices such that the
DoF number remains unchanged upon inclusion of interac-
tions. The procedure is quite simple. At first, one has to bring
the system of the free Lagrangian equations into the involu-
tive form, by complementing them with all the lower order
consequences. Given the involutive closure, the DoF number
is fixed. The second step to consistent inclusion of interac-
tions is to simultaneously deform the free action S and the

1 This also has a counterpart in the constrained Hamiltonian formalism.
Given the Lagrangian with the first order derivatives, one can construct
the Hamiltonian formalism as if the acceleration were included. Then,
the phase space would include auxiliary coordinates, absorbing veloci-
ties, and also extra momenta. These extra variables are suppressed by the
second class constraints. In principle, these constraints can be converted
into the first class, by usual conversion procedure. This conversion pro-
cedure, at Lagrangian level, would correspond to the involutively closed
system constructed by inclusion of the higher order consequences of
original Lagrangian equations.
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generators �i
α of the consequences,

S(φ) = 1

2
Mi jφ

iφ j �→ Sint =
∑

k=0

(k)
S (φ),

(k)
S= 1

k + 2
Mi1...ik+2φ

i1 . . . φi1+2 ; (5)

�i
α �→ Gi

α(φ) =
∑

k=0

(k)
G i

α,
(k)
G i

α = Gi
α j1... jkφ

j1 . . . φ jk ,

(6)

where the vertices Mi1...ik+2 , G
i
α j1... jk are field-independent

poly-differential operators. The first operator Mi j is the same

as in the free theory, and
(0)

G i
α coincides with the generator

of the consequences included into the involutive closure at
the free level. Given the vertices in the action (5) and the
generators of consequences (6), one gets the deformation of
the consequences included into the involutive closure (3):

τα = −�i
α∂i S �→ −Gi

α∂iSint = Tα =
∑

k=0

(k)
T α,

(k)
T α= Tαi1...ik+1φ

i1 . . . φik+1 ; (7)

Tαi1...ik+1 =
k+1∑

l=0

Gi
α( j1... jl M jl+1... jk+1)i . (8)

Here, the round brackets mean symmetrization of corre-
sponding indices. Upon inclusion of interaction, the deformed
action (5) and consequences (7) by construction obey the
gauge identity:

Gi
α∂iSint + Tα ≡ 0. (9)

One can see once again that from the perspective of alge-
braic consistency, any interaction is admissible for the field
equations without gauge symmetry. The consistency of inter-
actions is provided not just by algebraic consistency but also
the DoF number should remain unchanged upon deforma-
tion. This condition can be easily controlled making use of
the involutive form of field equations. The vertices (5), (6)
will be consistent if the following two conditions are met: (i)
the system

∂iSint = 0, Tα = 0 (10)

remains involutive; (ii) the DoF number (65) for Eq. (10)
remains the same as it is for the free system. Upon inclusion
of interaction, the orders of Lagrangian equations, genera-
tors, and consequences, being ingredients of the DoF num-
ber count, can increase, or remain unchanged. If they do
not increase, the DoF number obviously remains unchanged.
These three orders can increase, however, in the correlated
way without changing the DoF number, once relation (65)

still holds true. Therefore, the interaction can be consistent,
in principle, even if the higher derivatives are involved.

Below in this section, the iterative procedure is described
for inclusion of Stueckelberg fields. Under this procedure, the
Stueckelberg field ξα is assigned to every consequence τα(φ)

included into the involutive closure (3) of original Lagrangian
equations. The Stueckelberg action is sought for as a power
series in the fields ξα:

SSt (φ, ξ) =
∞∑

k=0

Sk ,

Sk(φ, ξ) = Wα1...αk (φ) ξα1 · · · ξαk , k > 0, (11)

where S0(φ) is the original action S(φ), and the first expan-
sion coefficient Wα is defined by τα (2):

Wα(φ) = ∂SSt (φ, ξ)

∂ξα
∣∣ξ = 0 = τα. (12)

Hence, at ξ = 0, the field equations for the Stueckelberg
action reproduce the involutive closure (3) of the original
Lagrangian equations.

The equivalence of the Stueckelberg theory to the orig-
inal one is provided by the gauge symmetry of the action
(11) such that the fields ξα can be gauged out, with ξα = 0
being admissible gauge fixing condition. This means, the
number of gauge parameters should coincide with the num-
ber of consequences τα (2) included into involutive closure of
the original Lagrangian system. The gauge transformations
are iteratively sought for order by order of the Stueckelberg
fields

δεφ
i = Ri

α(φ, ξ)εα, δεξ
γ = Rγ

α (φ, ξ)εα,

Ri
α(φ, ξ) =

∑

k=0

(k)
R i

α, Rγ
α (φ, ξ) =

∑

k=0

(k)
R γ

α , (13)

(k)
R i

α(φ, ξ) = Ri
αβ1...βk

(φ)ξβ1 . . . ξβk ,

(k)
R γ

α (φ, ξ) = Rγ
αβ1...βk

(φ)ξβ1 . . . ξβk . (14)

The Stueckelberg action (11) is supposed to be invariant with
respect to the gauge transformations (13). The gauge sym-
metry (13) of the action is equivalent to the Noether identities

δεSSt = 0, ∀εα ⇔ Ri
α∂iSSt + Rγ

α

∂SSt

∂ξγ
≡ 0. (15)

These identities can be expanded in Stueckelberg fields,
(
Rγ

α (φ, ξ)
∂

∂ξγ
+ Ri

α(φ, ξ)
∂

∂φi

)
SSt

≡
∑

k=0

k∑

m=0

(
(k−m)

R γ
α

∂S(m+1)

∂ξγ
+ (k−m)

R i
α

∂S(m)

∂φi

)
≡ 0.

(16)
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Once the Noether identities are valid for every order in ξ ,
each term in the sum over k should vanish separately. In this
way, the requirement of the gauge symmetry results in the
sequence of relations

k∑

m=0

(
(k−m)

R γ
α

∂S(m+1)

∂ξγ
+ (k−m)

R i
α

∂S(m)

∂φi

)
≡ 0, (17)

k=0,1, 2,…. For k = 0, given the boundary condition (12),
the above relations reduce to the identities between conse-
quences τ and Lagrangian equations,

(0)

R γ
ατγ + (0)

R i
α∂i S ≡ 0. (18)

Any identity between τα and ∂i S reduces2 to the linear com-
bination of the identities in the closure of the original system
(4). This means, the identity (18) reads

(0)

R γ
α

(
τγ + �i

γ ∂i S
)

≡ 0, (19)

where
(0)

R
γ
α can be any non-degenerate matrix. Below, we

stick to the simplest choice

(0)

R γ
α = δγ

α . (20)

This choice does not restrict the generality for two reasons.
First, as demonstrated below, it admits consistent inclusion
of Stueckelberg fields for any action and any generating set
of the consequences included into the involutive closure of
original Lagrangian system (3). Second, any other choice of

non-degenerate
(0)

R
γ
α can be absorbed by the change of the

gauge parameters εα .
Given relation (19), the choice (20) defines zero order of

the Stueckelber gauge symmetry (13) for the original fields:

(0)

R i
α = �i

α. (21)

Given zero order of the expansion for the gauge transforma-
tions (13) in ξ , and zero and first order in the Stuekelberg
action (11),

SSt (φ, ξ) = S(φ) + τα(φ)ξα + . . . ,

δεφ
i = �i

α(φ)εα + . . . , δεξ
α = εα + . . . , (22)

all the higher orders are iteratively defined by relations (17),
both for the action and for the gauge transformations. The
procedure of resolving relation (17) with certain k for S(k+1)

and
(k)
R α is inductive. Relations (18), (20), (21) solve Eq. (17)

2 Accurate formulation of completeness of the identities (4) is provided
in the next section, see in particular relations (26), (27). Here we proceed
from the intuitive understanding that the consequences τ , being defined
as independent linear combinations of the equations by relations (2),
cannot admit any other dependency with ∂i S besides the one following
from the definition.

for k = 0. Substituting this solution into (17) with k = 1, we

get the equation for S(2) and
(1)

R α . This equation is labeled
by index α, and it is linear in ξβ . Once the relation has to be
met for any ξβ , the equation is a square matrix. The symmet-
ric part of the matrix defines the structure coefficient Wαβ

of S(2), while the anti-symmetric part defines the structure

coefficients of
(1)

R α . The solution involves certain ambiguity
related to the fact that gauge generators are defined modulo
on-shell vanishing contributions, and up to a linear combi-
nation. It is the ambiguity which is common for any gauge

theory. Given
(l)
Rα, S(l+1), l = 0, 1, . . . , k, they all are sub-

stituted into Eq. (17) of the order k + 1 that defines
(k+1)

R α

and S(k+2). This iterative procedure is unobstructed at any
stage. This is seen from the algebraic consequences of the
gauge identity studied in the next section. The formal proof
of consistency of the procedure for inclusion the Stueckel-
berg fields is provided in Sect. 4 by the HPT tools.

3 Gauge algebra of the involutive closure of Lagrangian
system

In this article, the class of field theories is considered such
that the action does not admit gauge symmetry3, while the
Lagrangian equations are not involutive. The involutive clo-
sure (3) is non-Lagrangian as such, though it is equivalent
to the original Lagrangian system (1). Since the original
equations (1) are complemented by their consequences τα

(2), the extended system (3) admits gauge identities (4).
These identities are unrelated to any gauge symmetry. This
is possible because the involutively closed system (3) is non-
Lagrangian, so the second Noether theorem does not apply.
The procedure of inclusion Stueckelberg fields described in
the previous section is intended to convert the identities (4)
into Noetherian ones by introducing the new fields ξ and
gauge symmetry such that the generators of the identities are
converted into gauge generators (22).

The gauge identities (4) turn out having a sequence of con-
sequences of their own. The gauge identities and their conse-
quences are understood as the gauge algebra of the involutive
closure (3). It is the algebra which is behind existence of the
solution to the conversion equations (17) in every order. This
algebra is considered in this section.

Let us begin with the remarks concerning equivalence
relations for the generators of consequences �i

α (2). First,
notice that the original action S(φ) is assumed having
no gauge symmetry. Hence, if an identity occurs between

3 Inclusion of Stueckelberg fields in the models enjoying another gauge
symmetry can be considered along the same lines, though the procedure
would need some adjustments.
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Lagrangian equations, the identity generator is trivial,

κ i∂i S ≡ 0 ⇔ ∃Ei j = −E ji : κ i = Ei j∂ j S. (23)

Since the consequences τα (2) are supposed independent, any
identity between them is trivial in the similar sense:

κατα ≡ 0 ⇔ ∃Eαβ = −Eβα : κα = Eαβτβ. (24)

The generators of the involutive closure �i
α (2) are consid-

ered equivalent if they result in the same consequences τα .
Hence, the difference between equivalent generators �i

α and
�′i

α is a trivial generator of the identity between the original
equations:

�i
α(φ)∂i S(φ) − �′i

α(φ)∂i S(φ) ≡ 0

⇔ �i
α − �′i

α = Ei j
α ∂ j S, Ei j

α = −E ji
α . (25)

Once the consequences τα (2) are independent, any set of
identities (we label the set elements by the index A) among
the involutive equations (3) is spanned by the identities (4):

i
A∂i S + α

Aτα ≡ 0 ⇔ ∃Uα
A :

i
A∂i S + α

Aτα ≡ Uα
A

(
�i

α∂i S + τα

)
. (26)

The expansion coefficients Uα
A define the generators of the

identities A modulo natural ambiguity,

i
A = Uα

A�i
α + Ei j

A ∂ j S + Eiα
A τα,

α
A= Uα

A−Eiα
A ∂i S+Eαβ

A τβ, Ei j
A=−E ji

A , Eαβ
A =−Eβα

A ,

(27)

with EA being arbitrary. All the relations above are valid, in
principle, for any regular system of field equations admitting
irreducible generating set for gauge identities. These rela-
tions do not imply that the Eq. (3) follow from Lagrangian
equations (1).

Now, let us exploit the fact that the original field equa-
tions are Lagrangian to deduce the consequences of the gauge
identities (4). Consider the action of variational vector field
�α = �

j
α∂ j onto the consequence τβ (2). On shell, this

amounts to the second variation of the action S along the
field �α . Since the variational derivatives commute, the sec-
ond variations of the action along variational vector fields
commute on shell

�i
α(φ)∂iτβ(φ) ≈ �i

α�
j
β∂2

i j S = �i
β� j

α∂2
i j S. (28)

Once the matrix �i
α(φ)∂iτβ is symmetric on shell, off shell

the symmetry can be broken by the contributions proportional
to τα and ∂i S:

�i
α(φ)∂iτβ = Wαβ + Ri

αβ∂i S + Rγ
αβτγ , Wαβ = Wβα. (29)

The matrix Wαβ is off shell symmetric. On shell, Wαβ ≈
�i

α�
j
β∂2

i j S. The structure coefficients Rγ
αβ, Ri

αβ do not have

certain symmetry w.r.t. the lower labels. Consider antisym-
metric part of relations (29), and use the definition of τα (2)
(
�i[α(φ)∂i�

j
β] − R j

[αβ]
)

∂ j S − Rγ
[αβ]τγ ≡ 0. (30)

The relation above is the identity between the original
Lagrangian equations ∂i S and their consequences τα . Any
identity of this type reduces to the basic identity (4) accord-
ing to relation (26). The coefficients in this identity are con-
nected with each other by relation (27). Applying (27) to
the specific identity (30) we arrive at the following relations
defining the set of structure functions Ri

αβ, Rγ
αβ involved in

(30) in terms of a single independent structure coefficient
Uγ

αβ and arbitrary structure functions E :

� j
α∂ j�

i
β − �

j
β∂ j�

i
α −U γ

αβ�i
γ − Ri

αβ + Ri
βα

−E ji
αβ∂ j S − Eiγ

αβτγ = 0; (31)

Uμ
αβ − Rμ

αβ + Rμ
βα + E jμ

αβ ∂ j S − Eμν
αβ τν = 0. (32)

Let us briefly comment on relations (31), (32). The first of
them demonstrates that the generators of the consequences
�i

α do not necessarily form an on-shell integrable distribu-
tion, unlike the generators of gauge symmetry. These gen-
erators commute on shell to their linear combinations with
the structure coefficients Uγ

αβ , while Ri
αβ describes deviation

from integrability of the distribution. Both Uγ
αβ and Ri

αβ are
defined modulo natural off-shell ambiguity, given the origi-
nal generators �i

α . Relations (32) identify the anti-symmetric
part of structure function Rγ

αβ involved in the relation (28)

as the involution coefficient U γ
αβ in commutation relations

of generators (31). Symmetric parts of Rγ
αβ, Ri

αβ can be
absorbed by on-shell vanishing part of symmetric structure
function Wαβ defined by relation (29).

Notice that relations (29), (31), (32) are the immediate
consequences of the identity (4). They follow from the fact
that the set of identities (4) is complete and irreducible. In
their turn, the identities (4) follow from the definition of the
functions τ as independent linear combinations (2) of the
l.h.s. of Lagrangian equations (1). Once the original equa-
tions are consistent, all their consequences, including rela-
tions (29), (31), (32) cannot be inconsistent.

Once the structure coefficients Rγ
αβ, Ri

αβ,Wαβ are found
from relations (29), (31), (32) modulo natural ambiguity, they
define the first order of the Stueckelberg gauge symmetry
generators and the second order of Stueckelberg action,

(1)

R i
α = Ri

αβξβ,
(1)

R γ
α = Rγ

αβξβ, S(2) = 1

2
Wαβξαξβ.

(33)

Notice that if the generators �i
α of consequences included

into involutive closure of Lagrangian equations form inte-

grable distribution,
(1)

R i
α will vanish, as Ri

αβ = 0. In this
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case, the Stueckelberg symmetry does not mix up the origi-
nal fields with the Stueckelberg ones, much like it happens in
the “Stueckelberg trick”. If the distribution generated by � is
not integrable, i.e. Ri

αβ �= 0, the deviation from integrability
is included into the generator of Stueckelberg symmetry at
the first order in ξ , compensating non-commutativity of zero
order term. As demonstrated in the next section, the iterative
procedure consistently continues in the higher orders, and it
inevitably results in the gauge transformations with on-shell
integrable distribution.

Concluding this section, let us mention that relations (29),
(31), (32) can have further consequences involving higher
structure functions. These higher structures contribute to the
higher orders in the Stueckelberg action and gauge genera-
tors. All these higher relations should be also consistent as
the original Lagrangian equations are supposed having no
contradictions, and hence any inconsistency is impossible in
their consequences.

4 BV master equation for the Stueckelberg gauge
symmetry

In this section, the BV formalism is rearranged to serve as a
tool for consistent inclusion of Stueckelberg fields.

If the Stueckelberg action SSt (φ, ξ) (11) and the cor-
responding gauge generators Ri

α(φ, ξ), Rβ
α (φ, ξ) (13), (15)

would have been known from the outset, it could be consid-
ered as the usual Lagrangian gauge theory without any dis-
tinction between Stueckelberg fields ξα and original fields φi .
Then, the master action can be constructed for the gauge sys-
tem along the usual lines of the BV formalism [20,21]. The
ghosts Cα are assigned to all the gauge parameters εα , and
the anti-fields are introduced for all fields, including ghosts.
The usual Grassmann parity and ghost number gradings are
imposed on the fields and anti-fields4:

ε(φi ) = ε(ξα) = 0, ε(Cα) = 1, gh(φi ) = gh(ξα) = 0,

gh(Cα) = 1;
ε(φ∗

i ) = ε(ξ∗
α ) = 1, ε(C∗

α) = 0, gh(φ∗
i ) = gh(ξ∗

α) = −1,

gh(C∗
α) = −2. (34)

The BV action is sought for as a solution to the master equa-
tion

(SBV , SBV ) = 0, gh(SBV ) = 0, ε(S) = 0, (35)

4 For simplicity, we consider the case with even gauge symmetries and
even original fields. Adjustments are made to the odd case by inserting
known sign factors.

where (·, ·) is the anti-bracket

(A, B) = ∂ R A

∂ϕ I

∂L B

∂ϕ∗
I

− ∂ R A

∂ϕ∗
I

∂L B

∂ϕ I
,

ϕ I = (φi , ξα,Cα), ϕ∗
I = (φ∗

i , ξ
∗
α ,C∗

α). (36)

To solve the master equation, the usual setup of the BV for-
malism for irreducible gauge systems would imply imposing
the boundary condition on the action,

SBV (ϕ, ϕ∗)=SSt (φ, ξ)+Cα
(
Ri

α(φ, ξ)φ∗
i +Rγ

α (φ, ξ)ξ∗
γ

)
+ . . . .

(37)

Here, the first term is the gauge invariant action, and the
second one includes generators of the gauge symmetry of the
action multiplied by corresponding ghosts Cα and anti-fields
φ∗
i , ξ∗

γ . This term has anti-ghost degree 1. The dots stand for
the terms of higher anti-ghost degrees. The anti-ghost degree
is imposed in usual way [22]:

agh(φ∗
i ) = agh(ξα) = 1, agh(C∗

α) = 2;
agh(φi ) = agh(ξα) = agh(Cα) = 0. (38)

Given the boundary condition (37), the higher terms can be
iteratively found from the master equation (35) by expansion
with respect to the anti-ghost degree. The unique existence
of the solution can be proven by the usual HPT tools [21,22].

From the perspective of including Stueckelberg fields in
the BV formalism, the boundary condition (37) is unsuitable,
because neither the Stueckelberg action SSt is known from
the outset, nor are the gauge generators Rβ

α , Ri
α . The action is

known up to the first order in Stueckelberg fields (12), while
the gauge generators are known only at ξα = 0, see (20),
(21). Hence, the known part of the boundary condition (37)
reads

SBV (ϕ, ϕ∗) = S(φ) − τα(φ)ξα + Cα�i
α(φ)φ∗

i + Cαξ∗
α + . . . ,

(39)

where the dots stand for the higher orders of anti-fields and
Stueckelberg fields. So, to find the solution for the master
equation (35) of the Stueckelberg theory one has to pro-
ceed from the boundary condition (39) iterating the solution
order by order w.r.t. anti-fields and Stueckelberg fields. This
means, another resolution degree has to be imposed instead
of the anti-ghost number (38) such that would be nonzero for
Stueckelberg fields. The boundary condition (39) should be,
at maximum, of the first order in the resolution degree, so ξ

has to be assigned the weight 1. So, we impose the following
resolution degree:

deg(ξα) = deg(ξ∗
α ) = deg(φ∗

i ) = 1,

deg(C∗
α) = 2, deg(Cα) = deg(�i ) = 0. (40)

The solution to the master equation (35) is sough for as
the expansion of the action SBV (ϕ, ϕ∗) w.r.t. the resolution
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degree,

SBV (ϕ, ϕ∗) =
∑

k=0

(k)
S , deg

(k)
S = k. (41)

Once the solution is found in all the orders resolution degree,
the complete Stueckelberg action is extracted as zero order
w.r.t. to the anti-ghost number (i.e. with switched off anti-
fields), while the Stueckelberg gauge generators are defined
by the first order of SBV w.r.t. the anti-ghost degree (i.e. as
the coefficients at ξ∗

γ and φ∗
i ).

Consider the master action up to the next order of the
resolution degree after the boundary condition (39),

SBV (ϕ, ϕ∗) = S(φ) − ταξα + Cα
(
�i

α(φ)φ∗
i + ξ∗

α

)

+1

2
Wαβξαξβ + Cα

(
Rγ

αβξβξ∗
γ + Ri

αβξβφ∗
i

)

+1

2
CβCα

(
U γ

αβC
∗
γ + φ∗

jφ
∗
i E

i j
αβ + ξ∗

μφ∗
i E

μi
αβ

+ξ∗
μξ∗

ν E
μν
αβ

)
+ . . . , (42)

where all the structure coefficients are supposed to be func-
tions of the original fields. The first line in this expression is
the boundary condition (39) defined by the original action,
and by the generators �i

α of the consequences τα included in
the involutive closure of the system. The next lines include
the most general expression with the resolution degree 2, and

ghost number 0. The structure coefficient involved in
(2)

S are
defined by the master equation. Let us expand the l.h.s. of
the master equation w.r.t. the resolution degree up to the first

order. Notice that
(k)
S , k > 2 cannot contribute to zero and

first orders of the expansion, so (42) is sufficient at this level

(SBV , SBV )0 = 2(�i
α∂i S + τα)Cα ≡ 0, (43)

(SBV , SBV )1 = 2ξγ (�i
α∂i τγ − Ri

αγ ∂i S − Rβ
αγ τβ − Wγα)Cα

−CαCβ
(
φ∗
i (�

j
α∂ j�

i
β − �

j
β∂ j�

i
α

−Uγ
αβ�i

γ − Ri
αβ + Ri

βα − E ji
αβ∂ j S − Eiγ

αβτγ )

−ξ∗
μ(Uμ

αβ − Rμ
αβ + Rμ

βα + E jμ
αβ ∂ j S

−Eμν
αβ τν)

) = 0. (44)

Relation (43) is valid, given the gauge identity (4). The first
order of the master equation (44) holds by virtue of identi-
ties (29), (31), (32) upon identification of the structure coef-
ficients in the expansion (42) with corresponding structure
functions in the mentioned identities.

As we have seen, the solution to (35) exists up to the
second order w.r.t. resolution degree (40). Let us consider the
general order k. Substitute the expansion (41) into the master
equation and take k-th order. It has the following structure:

(SBV , SBV )k = δ
(k+1)

S +Bk(S,
(1)

S , . . . ,
(k)
S ), (45)

where Bk involves only
(l)
S , l ≤ k, and the operator δ reads:

δO = −∂ RO

∂φ∗
i

∂i S − ∂ RO

∂ξ∗
α

τα + ∂ RO

∂C∗
α

(
φ∗
i �

i
α + ξ∗

α

)

+∂ RO

∂ξα
Cα. (46)

By virtue of identity (4), the operator δ squares to zero,

δ2O = ∂ RO

∂C∗
α

(
�i

α∂i S + τα

)
≡ 0, (47)

so it is a differential. Obviously, δ decreases the resolution
degree by one,

deg(δ) = −1. (48)

Notice that δ is acyclic in the strictly positive resolution
degree because the identities (3) are independent, i.e.

δX = 0, deg(X) > 0 ⇔ ∃ Y : X = δY. (49)

By Jacobi identity (S, (S, S)) ≡ 0, ∀S. Expanding the iden-
tity w.r.t. the resolution degree, one can see that Bk of relation
(45) is δ-closed,

δBk = 0, k > 0. (50)

Then, because of (49), Bk is δ-exact,

∃Yk+1 : Bk = δYk+1, deg(Yk+1) = k + 1. (51)

Substituting (51) into (45) we arrive at the relation

δ

(
(k+1)

S +Yk+1

)
= 0. (52)

This provides solution for
(k+1)

S ,

(k+1)

S = −Yk+1 + δZk+2, deg(Zk+2) = k + 2. (53)

The solution is unique modulo natural δ-exact ambiguity.
In this way, one can iteratively find the master action of the

Stueckelberg theory, given the original action, generators �i
α

of consequences τα (2) included into the involutive closure
(3) of Lagrangian system. The solution is unobstructed at any
order. Once the master action is found, its zero order w.r.t.
the anti-ghost number defines complete Stueckelberg action,
while the Stueckelberg gauge generators are defined by the
first order of agh, in accordance with (37).

In the end of this section, notice some similarity between
the BV formalism for the Stueckelberg embedding described
above, and the BV formalism for the field theories with unfree
gauge symmetry5 [23]. In the latter case, the BV formalism

5 By unfree gauge symmetry, we mean the case when the gauge parame-
ters are constrained by differential equations. The most known example
of the unfree gauge symmetry is the unimodular gravity where the gauge
parameters are constrained by transversality equation.
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[23] also involves the compensatory fields ξ with ghost num-
ber 0 and resolution degree 1. These fields compensate, in a
sense, the constraints imposed on the gauge parameters mak-
ing the effective gauge symmetry parameters unconstrained.
These variables can be viewed, in a broad sense, as Stueckel-
berg fields. In the case of unfree gauge symmetry, however,
there is no pairing between the gauge symmetry parameters
and the compensator fields, unlike the case of Stueckelberg
symmetry considered in this article.

5 Concluding remarks

Let us make concluding remarks and discuss further perspec-
tives. At first, let us sum up the proposed scheme of including
Stueckelberg fields.

Proposed inclusion of Stueckelberg fields proceeds from
involutive closure of Lagrangian system (3) which includes
the consequences (2) of the original Lagrangian equations.
The involutive system (3) does not admit any lower order
consequence, while the original Lagrangian equations are
not necessarily involutive. The Hamiltonian analogue of the
involutive closure is the completion of the original equations
by secondary constraints, being zero order consequences of
the original primary constraints and the first order Hamilto-
nian equations. The involutive closure of Lagrangian equa-
tions allows explicitly covariant degree of freedom count,
see relations (61), (65) in the Appendix. The explicit con-
trol of the DoF number in the involutive closure allows one
to consistently include interactions in the covariant form for
the second class systems, see (5), (6), (7). This method has
been first proposed in the article [11] (for applications of the
method in specific models see, for example, [12–15]). The
original proposal of [11] allows one to find all the consistent
vertices in the field equations, including non-Lagrangian one,
without distinctions between variational and non-variational
interactions. In this articles we added a side remark which
allows one to identify all the consistent Lagrangian interac-
tions. In this article, however, the involutive closure is consid-
ered not for its own sake, but as a starting point for inclusion
of Stueckelberg fields.

The proposed procedure implies to introduce the Stueck-
elberg field ξα for every consequence (2) added to the
Lagrangian equations to form the involutive closure (3). The
Stueckelberg action (11) and gauge symmetry generators
(13) are sought for as the power series in Stueckelberg fields
proceeding from the requirement of gauge symmetry. The
boundary conditions (22) for the action and gauge generators
are defined by the original action and generators �i

α of con-
sequences τα included into the involutive closure (3). Given
the boundary conditions, relations (17), being the expansion
coefficients of the Noether identities for Stueckelberg gauge
symmetry, allow one to iteratively find order by order all

the expansion coefficients of the action and gauge genera-
tors. This iterative procedure of inclusion Stueckelberg fields
is unobstructed at every stage. Upon inclusion of Stueckel-
berg fields, the theory has the same DoF number (see in the
Appendix), while the gauge fixing ξ = 0 is admissible. This
means the equivalence of the Stueckelberg theory to the orig-
inal one. It is worth to mention that existence of the Stueckel-
berg embedding of the original system does not impose any
restriction on the generators �i

α (2) besides independence of
consequences τα included into involutive system (3). In par-
ticular, the generators of consequences �, being the leading
terms in Stueckelberg gauge symmetry transformations of
original fields (22), are not required to form the integrable
distribution, even on shell. This contrasts to the logic of the
most common form of “Stueckelberg trick” which implies
that the Stueckelberg gauge transformations of the original
fields begin with the gauge generators of gauge symmetry of
a part of original action. Being the generators, they inevitably
commute to each other, at least on shell. As is seen from this
article, the integrability of the distribution generated by �’s is
unnecessary for existence of consistent Stueckelberg embed-
ding. The algebraic structure behind the consistency of the
proposed Stueckleberg embedding is described in Sect. 3.
This algebra follows from the gauge identities (4) of the
involutive closure (3) much like the gauge algebra of the
gauge invariant system follows from the Noether identities.
In the case of Noether identities of gauge invariant system,
the structure relations of the gauge algebra are deduced pro-
ceeding from the three factors: (i) dependence of the equa-
tions, (ii) independence of the generators of identities, and
(iii) the gauge symmetry of the equations. It is the third fac-
tor which does not apply to the gauge identity (4), while the
first two ones do. Therefore, similar structure relations fol-
low from the first two factors, while the integrability of the
gauge distribution, being a consequence of the third factor
is not required. The structure relations of the gauge alge-
bra of the closure of Lagrangian system, being described in
Sect. 3, are equivalent to the equations of Sect. 2 defining
the Stueckelberg action and Stueckelberg gauge generators.
Once the gauge algebra is consistent (as it is a consequence
of the non-contradictory identities (4)), this explains why the
Stueckelberg embedding is unobstructed at all the stages.

In this article, also BV formalism is proposed to perform
the Stueckelberg embedding proceeding from the involutive
closure of Lagrangian system (3). There are three key distinc-
tions from the conventional BV-formalism [20,21]. The first
difference is that the boundary conditions (39) imply to spec-
ify, besides the action, also the generators of consequences
�i

α and the consequences τα included into the involutive clo-
sure of Lagrangian equations (3). The second difference is
the set of variables. Once the original action is non-gauge
invariant, no ghost would be introduced under the usual BV
procedure [20]. For inclusion of the Stueckelberg embed-
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ding, the ghosts are assigned to every generator of conse-
quence �i

α , and the Stueckelberg field ξα is introduced for
every consequence τα (34). The anti-fields are introduced for
all the fields, including ghosts and Stueckelberg fields. The
third distinction is that the solution of the master equation is
iterated w.r.t. a different resolution degree (40) which counts
the orders both anti-fields and Stueckelberg fields. The solu-
tion of master equation exists at every order of the iterative
procedure, no obstruction can arise. Once the master action is
found, the anti-field independent part gives the Stueckelberg
action, while the first order in the anti-fields gives the gen-
erators of Stueckelberg gauge symmetry. This gives another
way to construct the Stueckelberg embedding of the original
theory.

Concerning further perspectives, two directions can be
mentioned for developing the proposed method. The first
direction is related to the possibilities of applying this method
to specific models of field theory. From this perspective the
potential advantage of the method is that it allows one to
control the degree of freedom number in an explicitly covari-
ant fashion at every stage, be it inclusion of interactions,
on Stueckelberg embedding. Among the models of current
interest, various generalizations of gravity can be mentioned
where the original Lagrangian equations are not involutive,
and hence the second class constraints arise. On the other
hand, these models do not offer any obvious hint for the
“Stueckelberg trick” which would correspond to the conver-
sion of the second class constraints at Hamiltonian level. In
particular, this concerns generalizations of unimodular grav-
ity [24,25] and “new massive gravity” in 3d [26–28]. The
proposed method seems an appropriate tool to study dynam-
ics in the models of this type. These models, being complex
by themselves, are not suitable, however, as touchstones for
the first article on the general method, so the applications
will be studied elsewhere.

Another aspect of possible future developments concerns
generalizations of the method as such. With this regard,
the inclusion of the case of gauge invariant actions whose
Lagrangian equations admit the lower order consequences.
The extension of the procedure for inclusion Stueckelberg
fields seems straightforward. One more issue concerns the
case where the reducible set of consequences is included
into the involutive closure (3) of Lagrangian system. Notice
that the involutive closure is not unique, as the higher order
consequences can be added without breaking involutivity,
and also the generating set of consequences can be chosen
over-complete. Therefore, the same action can admit differ-
ent involutively closed extensions of Lagrangian equations.
The set of Stueckelberg fields is defined by specific involutive
closure of Lagrangian equations. That is why, the multiple
choice is possible for the set of Stueckelberg fields for the
same Lagrangian, including, in principle, reducible sets of
gauge generators. One more potential aspect of interest in

this story is related to gauge fixing. Hypothetically, there
can be the case when the gauge fixing is admissible which
kills the original fields while the physical degrees of freedom
are described by the Stueckelberg fields. This would allow
to construct dual formulations of the same dynamics con-
necting them by different schemes of inclusion Stueckelberg
fields and different gauge fixing.

Finally, let us mention the issue of locality of the Stueckel-
berg embedding procedure proposed in this article. The exis-
tence of the embedding is proven in Sect. 4 in terms of con-
densed notation that could potentially hide the obstructions
related to locality. There is, however, a non-rigorous reason
to believe that the locality problem should not arise. Once
the action and the generators of consequences (2) are of the
finite order, the structure functions of the algebra (see Sect. 3),
being consequences of the identities (4), should involve the
finite number of the derivatives. The theory involves a natural
invertible operator Wαβ (29) which defines the kinetic term
for Stueckelberg fields. The inverse can be non-local, but the
embedding procedure does not need to invert W .
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Appendix

Degree of freedom count in involutive closure of
Lagrangian systems

In this Appendix, the relations are provided for DoF number
count in the involutively closed systems. First these relations
have been obtained in the article [11] for general involutive
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field equations6, not necessarily being the involutive closure
of any Lagrangian system. Here, these relations are slightly
re-arranged to be more convenient for making simplifica-
tions related to the systems being the involutive closure of
Lagrangian equations (3).

In the Appendix, all the indices are by default understood
as numerical labels, not condensed ones. Exceptions are spe-
cially reported in each case.

The degree of freedom number is counted in terms of
orders of equations, gauge identities and gauge symmetries.
Let us explain the definitions of these orders.

Consider a system of field equations

EI (φ, ∂φ, . . . , ∂nI φ) = 0, (54)

where nI is the maximal order of partial derivatives involved
in the equation with the label I . The number nI is considered
as the order of equation nI . The partial derivatives by all
space-time coordinates are treated on the equal footing, and
the order nI accounts for the mixed derivatives. For example,

the order of the equation ∂2φ
∂x∂t = 0 is 2.

A system of equations is considered involutive if it does
not admit such consequences of a lower order that are not yet
included in the original system. If the system is not involu-
tive, it can be always complemented by the lower order con-
sequences, to make it involutive. In principle, higher order
consequences can be also added, to make the system invo-
lutive. Completion of the system by the consequences is
understood as involutive closure of the system, if no new
lower order consequences exist. The involutive closure has
the same solutions as the original system. In this sense, the
involutive closure is equivalent to the original system.

Let the Eq. (54) admit gauge identities

L I
AEI ≡ 0, (55)

where L I
A are the differential operators with the field depend-

ing coefficients,

L I
A=

l IA∑

k=0

L I
A

μ1...μk (φ, ∂φ, ∂2φ . . . )∂μ1 . . . ∂μk , l IA∈N.

(56)

Operator L I
A is called the generator of gauge identity, and l IA

is the order of the operator. The order i A of the gauge identity
(55) with the label A is defined by the following rule:

i A = max{I }

(
l IA + nI

)
, (57)

i.e. it is the maximal aggregate order of the identity generator
and the equation it acts on.

6 Certain regularity assumptions are made for deducing these relations,
see in [11]. Here, the regularity issues are not addressed.

Suppose the involutive system (54) admits gauge symme-
try transformations,

δεφ
i = Ri

αεα, δεEI ≈ 0, ∀εα, (58)

where the gauge generators Ri
α are the differential operators

with the field-depending coefficients,

Ri
α =

r iα∑

k=0

Riμ1...μk
α (φ, ∂φ, . . . ) ∂μ1 · · · ∂μk . (59)

The gauge variation (58), by definition, leaves the mass shell
invariant.

The order rα of the gauge transformation with specific
parameter εα is defined as the maximal number of derivatives
acting on the parameter in the transformation of any field,

rα = max{i}

(
r iα

)
. (60)

Given the involutive equations with the complete set of gauge
identities and gauge symmetries, the DoF number is counted
by the rule

NDoF =
∑

I

n I −
∑

A

iA −
∑

α

rα. (61)

So, the DoF is computed as follows: the total order of the
identities and the total order of gauge symmetries are sub-
tracted from the total order of the equations. Notice two
interesting features of this counting recipe. First, it does not
involve the number of fields. Second, zero order relations (of
any sort, be it equation, identity, or gauge symmetry) do not
contribute to the DoF number. This relation for NDoF has
been first deduced in the article [11] in a slightly different
form. The recipe (61), being equivalent to the original one, is
more convenient for simplifications accounting for specifics
of involutive closure of Lagrangian systems.

Let us apply the DoF number counting recipe (61) first to
the involutive closure of Lagrangian system (3). Denote as
nα the order of consequence τα (2), and let giα be the order of
the differential operator �i

α generating the consequence, and
ni is the order of Lagrangian equation (1). By construction
(2), the order of consequence τα cannot exceed the maximal
aggregate order of the generator of consequence and original
Lagrangian equations (1),

nα ≤ max{i}

(
giα + ni

)
. (62)

If only lower-order consequences are included, then this is
a strict inequality. With the consequences whose order is
higher than the original equations, the equality is possible.
The maximum of the l.h.s. inequality (62) is reached at certain
i , which is denoted ī ,

max{i}

(
giα + ni

)
= gīα + nī . (63)
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The order of the corresponding operator � ī
α is unique for

given α. This order is denoted just gα . In the identity (4), the
coefficient at τα has zero order. Given the inequality (62), the
order of identity (4), being defined by the rule (57), reads

iα = gα + nī . (64)

As a result, the DoF number of any Lagrangian system with-
out gauge symmetry7 can be counted making use of the orders
related to its involutive closure (3):

NDoF =
∑

i

ni +
∑

α

(nα − iα) =
∑

i �=ī

ni +
∑

α

(nα − gα).

(65)

The above formula allows one to count DoF number of
any Lagrangian system in explicitly covariant way. In this
form, it works for the case without gauge symmetry (second
class constrained systems, from Hamiltonian perspective).
To account for the gauge symmetry, one has to subtract the
total order of gauge symmetry generators (see (61)) in the
irreducible case. Further adjustments can be made for the
reducible gauge symmetry.

Now, let us discuss the DoF number upon inclusion
Stueckelberg fields. Consider the Stueckelberg action and
gauge symmetry transformations,8

SSt = S(φ) + ταξα + 1

2
Wαβξαξβ + · · · ,

δεξ
α = εα + · · · , δεφ

i = �i
αεα + · · · , (66)

where · · · stand for the higher orders in ξ . From the perspec-
tive of the DoF number counting, there are two main dis-
tinctions between the involutive closure (3) of the original
Lagrangian system, and the Stueckelberg theory (66). First,
the consequences τα are replaced by Lagrangian equations
for ξα

τα(φ) �→ ∂SSt

∂ξα
= τα + Wαβξβ + · · · , (67)

where the indices are condensed. Denote n̄α the order of the
equation for Stueckelberg field ξα . Notice that the operator
Wαβ results from the action of the operator �i

α on τβ . This

means that the total order of the equations ∂SSt
∂ξα exceeds the

total order of the equations τβ by the total order of operators
�, i.e.
∑

α

n̄α =
∑

α

(nα + gα) . (68)

Hence, inclusion of Stueckelberg fields increases the positive
contribution to the DoF number (65) by

∑
α gα . The second

7 If the Lagrangian system had gauge symmetry, one should addition-
ally subtract the total order of gauge symmetry transformations, see
(59), (60)
8 Here, the labels are understood as condensed indices.

relevant distinction of the Stueckelberg theory (66) from the
involutive closure of original Lagrangian equations (3) is the
gauge symmetry. The order of the gauge transformation is
gα , at least in the first approximation in Stueckelberg fields.
Hence, the negative part of the DoF count changes to the
same number

∑
α gα . These two changes cancel each other,

so the DoF number remains unchanged.
Below, we illustrate involutive closure, inclusion of

Stueckelberg fields and DoF counting by two simple exam-
ples: mechanical toy model, and Proca Lagrangian.

Example 1. Mechanical toy model

As a toy example, consider L = 1
2 ẋ

2. The Lagrangian equa-
tion, ẍ = 0, is involutive, as it does not admit any lower order
differential consequence. However, one could add a higher
differential consequence, being just a derivative of the equa-
tion. This extension is also involutive system, as no lower
order consequences exist. The system (3) in this case reads

δS

δx
= −ẍ = 0, τ = ...

x = 0, (69)

and the generator of the consequence � is just d
dt . The identity

(4) between the Eq. (3) in this case reads

τ + �
δS

δx
≡ ...

x − ...
x ≡ 0, (70)

Let us exemplify the DoF count formula (65) by the toy model
(69). There is one Lagrangian equation of the second order
ẍ = 0, i.e. ni = 2. There is one consequence of the third
order

...
x , i.e. nα = 3. There is one generator of consequence

� = d
dt , it is of the first order, i.e. g = 1. Substituting these

numbers into (65), one gets NDoF = 2 + 3 − (2 + 1) = 2, as
it should be. Now, given the involutive system of Lagrangian
equation and its consequence (69), let us include the Stueck-
elberg fields following the procedure of Sect. 2. The operator
W (29) in this case is just d4

dt4
, so the Stueckelberg Lagrangian

(modulo total derivative) and gauge symmetry transforma-
tions (66) read

LSt = 1

2

(
ẋ + ξ̈

)2
, δεξ = ε, δεx = −ε̇. (71)

The degree of freedom count adds one to the positive part of
the sum (65) as the third order consequence

...
x = 0 is replaced

by the fourth order equation for ξ . Simultaneously, 1 is added
to the negative contribution, because the first order gauge
symmetry is switched on. Obviously, the Noether identity for
Lagrangian (71) at ξ = 0 reproduces the identity (70) of the
system (69). The equivalence of the Stueckelberg Lagrangian
to the original one is obvious, as the gauge fixing condition
ξ = 0 is admissible, and the Stueckelberg equations reduce
to (69) in this gauge.

Let us comment on this elementary example from the
perspective of conversion method, for the Hamiltonian sec-

123



Eur. Phys. J. C (2021) 81 :472 Page 13 of 14 472

ond class constrained systems. The Lagrangian L = 1
2 ẋ

2

could be considered as including accelerations. Then, the
Ostrogradski method should be applied. The velocity would
become an auxiliary canonical coordinate, whose conjugate
momentum should vanish due to the primary constraint. Con-
servation of the primary constraint results in the secondary
constraint which connects the canonical momentum of the
original coordinate with the velocity. The pair of primary
and secondary constraints is of the second class. If they are
converted into the first class, we arrive at gauge invariant
Hamiltonian action. All the momenta can be excluded by
the inverse Legendre transformation in this action, and we
arrive at Lagrangian (71). This example demonstrates that
the covariant procedure of inclusion Stueckelberg fields pro-
posed in Sect. 2 directly corresponds to the Hamiltonian con-
version of the second class systems. It also illustrates the fact
that the method works well proceeding from any extension of
Lagrangian system by the consequences, including the higher
order ones, if the starting point is an involutively closed sys-
tem.

Example 2. Proca action

Let us exemplify DoF count recipe (65) by the Proca equa-
tions for massive vector field,

δSProca
δAμ

≡
(
δμ
ν (� − m2) − ∂μ∂ν

)
Aν = 0. (72)

The Proca equations is a system of four equations of the
second order, so ni = 2, i = 1, 2, 3, 4. Therefore, the total
order of Lagrangian equations is 8. The Proca equations are
not involutive as they admit the first order consequence:

τ = −∂μ δSProca
δAμ

≡ m2∂μA
μ. (73)

So, we have one first order consequence τ , to be added for
the sake of involutive closure. This means, nα = 1. The
generator �μ = ∂μ of the single consequence is the operator
of divergence. It has the order one, g = 1. No other equations
and consequences are included in the involutive closure (72),
(73) of Proca system. The gauge identity (4) for the Proca
system reads,

∂μ δSProca
δAμ

+ τ ≡ 0 . (74)

The identity is of the order 3, as the first order operator ∂ acts
on the second order Proca equations. Now, let us calculate
the DoF number applying relation (65). The total order of
the equations in the involutive closure of the Proca system
is 9: there are 4 second order Proca equations (72), plus one
first order consequence,

∑
i ni + ∑

α nα = 4 × 2 + 1 = 9.
There is also one third order gauge identity (74),

∑
α iα =

3. Substituting these numbers into the formula (65), we get
9 − 3 = 6. So, it is 6 DoF’s by the phase space count, that

corresponds to 3 by configuration space count, as it should
be for the massive spin 1 in d = 4.

Given the involutive closure of the Proca equations, let us
introduce the Stueckelberg field following the prescription of
Sect. 2. The matrix W (29) in this case is the d’Alembertian,
and no higher order corrections appear. So, we arrive to
the standard Stueckelberg equations, gauge symmetries, and
Noether identities:

δS
δξ

= m2(∂μA
μ − �ξ) = 0,

δS
δAμ

= (
δμ
ν � − ∂ν∂

μ
)
Aν + m2(Aμ − ∂μξ) = 0; (75)

δεξ = ε, δε Aμ = ∂με ; δS
δξ

− ∂μ

δS
δAμ

≡ 0. (76)

Let us apply to this system the DoF number count recipe
(61). There are five second order equations (75), so the total
order of the equations is ten. There is one first order gauge
symmetry, and one third order gauge identity. So, the DoF
number is 10 − 3 − 1 = 6, as it should be.
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