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Abstract Quasinormal modes of massless test scalar field
in the background of gravitational field for a non-extremal
dilatonic dyonic black hole are explored. The dyon-like
black hole solution is considered in the gravitational 4d
model involving two scalar fields and two 2-forms. It is
governed by two 2-dimensional dilatonic coupling vectors
λi obeying λi (λ1 + λ2) > 0, i = 1, 2. The first law of
black hole thermodynamics is given and the Smarr relation
is verified. Quasinormal modes for a massless scalar (test)
field in the eikonal approximation are obtained and anal-
ysed. These modes depend upon a dimensionless parameter
a (0 < a ≤ 2) which is a function of λi . For limiting strong
(a = +0) and weak (a = 2) coupling cases, they coin-
cide with the well-known results for the Schwarzschild and
Reissner–Nordström solutions. It is shown that the Hod con-
jecture, connecting the damping rate and the Hawking tem-
perature, is satisfied for 0 < a ≤ 1 and all allowed values of
parameters.

1 Introduction

The recent discovery/detection of gravitational waves [1–3]
has strengthen a long-living interest to quasinormal modes
(QNMs) [4–13], predicted by Vishveshwara in 1970. The
detected gravitational waves were emitted during the final
(ringdown) stage of binary black hole mergers. The frequen-
cies of these waves were governed by a certain superpositions
of decaying oscillations, i.e. QNMs. The careful analysis of
these experiments may be rather important since it can shed
some light on nature of gravity in a strong field regime.
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From the mathematical point of view, the quasinormal
mode (QNM) problem can be reduced to studying the solu-
tions to a wave equation for a scalar function Φ(t, x) chosen
in the following form

Φ(t, x) = e−iωtΦ∗(x), (1)

where Φ∗ = Φ∗(x) obeys a Schrödinger-type equation
(

−ε2 d2

dx2 + V (x)

)
Φ∗ = ω2Φ∗, (2)

defined on a certain domain of real line R = (−∞,+∞),
where ε > 0 is some parameter, e.g. ε = 1; for reviews
see [10–13]. For asymptotically flat black-hole solutions the
functions Φ∗(x) are defined onR. In this case x is chosen as a
so-called tortoise coordinate (in the body of the paper denoted
as R∗), and (at least) for certain known spherically symmetric
solutions (e.g. Schwarzschild and Reissner–Nordström ones)
the potential V (x) is a positively defined smooth function,
having sufficiently fast fall off (to zero) in approaching either
to the horizon (x → −∞) or to the spatial infinity (x →
+∞). Usually QNM frequencies ω are defined as complex
numbers obeying Re ω > 0 and Im ω < 0, such that the
wave functions (1) are exponentially damped in time as (t →
+∞), corresponding to asymptotically stable perturbations.
The QNM frequencies appear for the solutions to Eq. (2)
which behave as outgoing waves at spatial infinity: Φ∗(x) ∼
e
iωx
ε for x → ∞ (Re ω > 0) and ingoing ones at the horizon:

Φ∗(x) ∼ e− iωx
ε for x → −∞ with exponential growth (in

|x |) for |Φ∗(x)| as |x | → ∞ (due to Im ω < 0).
For calculation of QNM [12,13] there exists a (most pop-

ular) method, introduced in Refs. [7–9], which may be called
as analytical continuation method. The most transparent ver-
sion of this method was recently proposed (and verified) in
Ref. [14]. Here we consider for simplicity the case of the
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potential defined on all real axis R = (−∞,+∞) to avoid
the boundary problems. (For more involved and subtle case
when the Schrödinger operator and effective potential are
defined on (0,+∞) and proper boundary condition should
be specified see Ref. [15].) The prescription is as follows: one
should start with the Schrödinger equation for non-relativistic
quantum particle (of mass 1/2) moving in the inverted poten-
tial −V (x):
(

−h̄2 d2

dx2 − V (x)

)
Ψ = EΨ, (3)

where Ψ = Ψ (x) is the wave function. For a potential under
consideration the inverted potential −V (x) may have certain
bounded states described by discrete spectrum energy levels
En = E(h̄, n| − V ), where n = 0, 1, . . . . The correspond-
ing wave functions Ψ = Ψn(x) for a proper potential under
consideration is exponentially decaying at both infinities, i.e.

Ψn ∼ e∓√−En
x
h̄ as x → ±∞. The Hatsuda’s (analytical con-

tinuation) approach [14] tells us that QNM frequencies for
the potential V (x) may be obtained from bounded states for
the inverted potential −V (x) by putting formally h̄ = iε
in (2). Hence, due to this prescription we get the following
QNM frequencies

ω2 = −E(h̄ = iε, n| − V ), (4)

where n = 0, 1, . . . is called as (QNM) overtone number.
It should be noted, that the method suggested in Ref.

[14] for computation quasinormal frequencies of spherically
symmetric black holes, relates them to bound state energies
of anharmonic oscillators by using the analytic continua-
tion in h̄. It was stated in Ref. [14], that the known WKB
results are easily reproduced by this method and, moreover,
“the perturbative WKB series of the quasinormal frequencies
turn out to be Borel summable divergent series both for the
Schwarzschild and for the Reissner–Nordström black holes”.

In this paper we continue our previous studies [16–18]
devoted to dilatonic dyon and dyon-like black hole solutions.
Dilatonic and dyon-like black hole solutions were considered
in numerous papers, see [19–22] and [23–29], respectively,
and references therein. We note that earlier the main moti-
vation for considering the dilaton scalar fields was coming
from (super)string theory or certain higher-dimensional (e.g.
supergravity) models.

Here we study QNM spectrum in eikonal approximation
for a special dyon-like dilatonic black hole solution from
Ref. [30], with electric and magnetic color charges Q1 and
Q2, respectively, in the 4d model with metric g, two scalar
fields ϕ1, ϕ2, two 2-forms F (1) and F (2), corresponding to
two dilatonic coupling vectors λ1 and λ2 (λ1 	= −λ2), respec-
tively.

These eikonal QNM modes depend upon a dimensionless
parameter a (0 < a ≤ 2) which is a function of λi . It should

be noted that QNMs for dilatonic black holes were considered
in numerous papers, see Refs. [31–39] and references therein.

The relation between the 2-forms and color charges are
given by

F (1) = Q1τ1, F (2) = Q2τ2, (5)

where τ2 = vol[S2] is magnetic 2-form, which is volume
form on 2-dimensional sphere and τ1 is an “electric” 2-form.

We note that in the case of one scalar field ϕ and two
coupling constants λ1, λ2 the dyon-like ansatz was consid-
ered recently in Refs. [17,18,28,29]. For λ1 = λ2 = λ our
solutions from Ref. [17] were dealing with a trivial non-
composite generalization of dilatonic dyon black hole solu-
tions in the model with one 2-form and one scalar field which
was considered in Ref. [16], see also Refs. [24–27], and ref-
erences therein.

The solutions with one scalar field from Refs. [17,18] may
be embedded to the solutions under examination by consid-
ering the case of collinear dilatonic coupling vectors:

λ1 = λ1e, λ2 = λ2e, (6)

where e2 = 1, λ1 + λ2 	= 0.
The paper is organised as follows: in Sect. 2 we review

the main properties of the black hole dyon solution from
Ref. [30]. In Sect. 3 we consider the physical parameters and
particular cases of the dyonic black hole solutions. In Sect. 4
we analytically derive the eikonal approximation for frequen-
cies of QNM corresponding to massless test scalar field in
the background metric of our dyonic-like black hole solution
and study their features. In Sect. 5 we consider two limiting
casesa = +0 anda = 2, corresponding to the Schwarzschild
and Reissner–Nordström black hole solutions. In Sect. 6 we
test/check the validity of the Hod conjecture [40] for the
solution under consideration when 0 < a ≤ 2. Finally, we
summarize our conclusion in Sect. 7.

2 Black hole dyon solutions

The action of a model containing two scalar fields, 2-form and
dilatonic coupling vectors which was considered in Ref. [30],
is following

S = 1

16πG

∫
d4x

√|g|
{
R[g] − gμν∂μϕ∂νϕ

−1

2
e2λ1ϕF (1)

μν F
(1)μν − 1

2
e2λ2ϕF (2)

μν F (2)μν

}
, (7)

where g = gμν(x)dxμ⊗dxν is the metric, |g| = | det(gμν)|,
ϕ = (ϕ1, ϕ2) is the vector of scalar fields belonging to R

2,
F (i) = d A(i) = 1

2 F
(i)
μν dxμ ∧ dxν is the 2-form with A(i) =

A(i)
μ dxμ, i = 1, 2, G is the gravitational constant, λ1 =

(λ1i ) 	= 0, λ2 = (λ2i ) 	= 0 are the dilatonic coupling vectors
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obeying

λ1 	= −λ2 (8)

and R[g] is the Ricci scalar. Here and in what follows we
put c = 1 (where c is the speed of light in vacuum).

We consider a dyonic-like black hole solution to the field
equations corresponding to the action (7) which has the fol-
lowing form [30]

ds2 = Ha

{
−H−2a

(
1 − 2μ

R

)
dt2 + dR2

1 − 2μ
R

+ R2dΩ2

}
,

(9)

ϕi = νi ln H, (10)

F (1) = Q1

H2R2 dt ∧ dR, F (2) = Q2τ, (11)

where Q1 and Q2 are (color) charges – electric and magnetic,
respectively, μ > 0 is the extremality parameter, dΩ2 =
dθ2 + sin2 θdφ2 is the canonical metric on the unit sphere
S2 (0 < θ < π , 0 < φ < 2π ), τ = sin θdθ ∧ dφ is the
standard volume form on S2,

H = 1 + P

R
, (12)

with P > 0 obeying

P(P + 2μ) = 1

2
Q2. (13)

All the rest parameters of the solution are defined as follows

a = (λ1 + λ2)
2

Δ
, (14)

Δ ≡ 1

2
(λ1 + λ2)

2 + λ2
1λ

2
2 − (λ1λ2)

2 , (15)

νi = λ1iλ2 (λ1 + λ2) − λ2iλ1 (λ1 + λ2)

Δ
, (16)

i = 1, 2 and

Q2
1 = λ2 (λ1 + λ2)

2Δ
Q2, Q2

2 = λ1 (λ1 + λ2)

2Δ
Q2. (17)

Here the following additional restrictions on dilatonic cou-
pling vectors are imposed

λi (λ1 + λ2) > 0, i = 1, 2. (18)

Correspondingly, we note that

Δ > 0, (19)

is valid for λ1 	= −λ2.
Due to relations (18) and (19) the Q2

s are well-defined.
Note that the restrictions (18) imply relations λs 	= 0, s =
1, 2, and (8).

Indeed, in this case we have the sum of two non-negative
terms in (16): (λ1 + λ2)

2 > 0 and

C = λ2
1λ

2
2 − (λ1λ2)

2 ≥ 0, (20)

due to the Cauchy–Schwarz inequality. Moreover, C = 0
if and only if vectors λ1 and λ2 are collinear. Relation (20)
implies

0 < a ≤ 2. (21)

For non-collinear vectors λ1 and λ2 we get 0 < a < 2 while
a = 2 for collinear ones.

This solution may be verified just by a straightforward
substitution into the equations of motion.

The calculation of scalar curvature for the metric ds2 =
gμνdxμdxν in (9) yields

R[g] = a(2 − a)P2(R − 2μ)

2R3−a(R + P)2+a
. (22)

3 Particular cases and physical parameters

Here we analyze certain cases and physical parameters cor-
responding to the solutions under consideration.

3.1 Non-collinear and collinear cases

Non-collinear case For non-collinear vectors λ1 and λ2 (0 <

a < 2) we obtain

R[g] → −∞, (23)

as R → +0 and hence we have a black hole with a horizon
at R = 2μ and singularity at R = +0.
Collinear case For collinear vectors λ1, λ2 from (6) obeying
λ1 + λ2 	= 0 we obtain νi = 0, a = 2 and

Q2
1 = λ2

λ1 + λ2
Q2, Q2

2 = λ1

λ1 + λ2
Q2, (24)

where λ1λ2 > 0. By changing the radial variable, R = r−P ,
we get a little extension of the solution from Ref. [17]

ds2 = − f (r)dt2 + f (r)−1dr2 + r2dΩ2
2 , (25)

F (1) = Q1

r2 dt ∧ dr, F (2) = Q2τ, ϕ = 0, (26)

where f (r) = 1 − 2GM
r + Q2

2r2 , Q2 = Q2
1 + Q2

2 and GM =
P + μ =

√
μ2 + 1

2 Q
2.

The metric in these variables coincides with the well-
known Reissner–Nordström metric governed by two param-
eters: GM > 0 and Q2 < 2(GM)2. We have two horizons
in this case. The electric and magnetic charges are not inde-
pendent but obey Eqs. (24). Note that to be consistent with
the literature the net charge here is related to the charge of
the Reissner–Nordström black hole as follows Q2 = 2Q2

RN .
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3.2 Gravitational mass and scalar charges

The definition of the ADM gravitational mass is obtained
from Eq. (9) in the weak field regime by comparing with
g00 = −(1 − 2GM/R + O(1/R))

GM = μ + a

2
P. (27)

In turn, the scalar charge vector Qϕ = (Q1
ϕ, Q2

ϕ) is
derived from (10) in the weak field regime using the fol-
lowing definition: ϕi = Qi

ϕ/R + O(1/R):

Qϕ = νP, (28)

where ν is given by Eq. (16).
By combining relations (27) and (28) we obtain the fol-

lowing identity

2(GM)2 + Q2
ϕ = Q2

1 + Q2
2 + 2μ2. (29)

This formula does not contain vectors λs .
The identity (29) may be verified by using (14), (17) and

the following relation

ν2 = (λ1 + λ2)
2 (

λ2
1λ

2
2 − (λ1λ2)

2)
Δ2 = a(2 − a)

2
. (30)

For further analyses it is convenient to introduce the fol-
lowing dimensionless parameters

p = P/μ > 0, q = |Q|/(GM). (31)

We obtain

f∗(p, a) = p(p + 2)(
1 + a

2 p
)2 = q2

2
. (32)

The function f∗(p, a) is monotonically increasing in p on
(0,+∞) for any a ∈ (0, 2] since

∂

∂p
f∗ = 16

[(
1 − a

2 p
) + 1

]
(2 + ap)3 > 0. (33)

Due to (32) and limp→+∞ f∗(p, a) = 4/a2 relation (32)
defines a one-to-one correspondence between p ∈ (0,+∞)

and q ∈ (0, 2
√

2
a ) for any (fixed) a ∈ (0, 2]. Thus, we have

0 < q2 <
8

a2 , 0 < Q2 <
8

a2 (GM)2. (34)

The inverse map p(q) = p(q, a) is defined for any a ∈ (0, 2]
as follows

p =
8
√

1
2 (1 − a)q2 + 1 + 2aq2 − 8

8 − a2q2 . (35)

3.3 Black hole thermodynamics

In this subsection we consider black hole thermodynamics
by calculating the Hawking temperature and entropy, check-
ing the first law (of black hole thermodynamics) and testing
the Smarr relation.

To this end, for simplicity here we put h̄ = c = kB =
1. The Bekenstein–Hawking (area) entropy S = A/(4G),
associated with the black solution (12) at the horizon at R =
2μ, where A is the horizon area, reads

S = SBH = 4πμ2

G

(
1 + P

2μ

)a

, (36)

while the related Hawking temperature is following one

T = TH = 1

8πμ

(
1 + P

2μ

)−a

. (37)

It may be verified that relations (27), (36) and (37) imply
the first law of the black hole thermodynamics

dM = TdS + ΦdQ (38)

as well as the Smarr formula

M = 2T S + ΦQ, (39)

where

Φ = aQ

4G(P + 2μ)
. (40)

Relations (38), (39) may be presented in the following
form

dM = TdS + Φ1dQ1 + Φ2dQ2, (41)

M = 2T S + Φ1Q1 + Φ2Q2, (42)

where

Φi = Qi

2G(P + 2μ)
, (43)

i = 1, 2. In derivation of relations (41), (42) the following
identity is used

Q2
1 + Q2

2 = a

2
Q2. (44)

Let us clarify the physical sense of potentials (43). The
first relation in (11) for F (1) = d A(1), has a special solution
for 1-form:

A(1) = A(1)
0 (R)dt = Q1

R + P
dt. (45)

Thus, we get

Φ1 = 1

2G
A(1)

0 (2μ), (46)

i.e. Φ1 is coinciding up to a factor 1/(2G) with the value of
the zero component of the first Abelian gauge field A(1), or
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electric potential, (in chosen gauge) for the field of electric
charge at the horizon.

Now let us consider the magnetic term in (11). The calcu-
lation of Hodge-dual gives us

∗ F (2) = Q2

HaR2 dt ∧ dR, (47)

(here ∗Fμν = 1
2

√|g|εμνρσ Fρσ , ε0123 = 1). Relation (16)
implies

λ2ν = a

2
− 1, (48)

and hence (see (10))

e2λ2ϕ = Ha−2. (49)

For S-dual 2-form

F̃ (2) = d Ã(2) = e2λ2ϕ ∗ F (2) (50)

we get

F̃ (2) = Q2

H2R2 dt ∧ dR (51)

and we can choose a corresponding 1-form as follows

Ã(2) = Ã(2)
0 (R)dt = Q2

R + P
dt. (52)

Hence,

Φ2 = 1

2G
Ã(2)

0 (2μ), (53)

i.e. Φ2 is coinciding up to a factor 1/(2G) with the value
of the zero component of the dual Abelian gauge field Ã(2),
or dual electric potential, (in chosen gauge) at the horizon,
which corresponds to the field of magnetic charge modulated
by scalar fields.

4 Quasinormal modes

In this section we derive quasinormal modes (in eikonal
approximation) for our static and spherically symmetric solu-
tion with the metric given (initially) in the following general
form

ds2 = −A(u)dt2 + B(u)du2 + C(u)dΩ2, (54)

where A(u), B(u), C(u) > 0 and dΩ2 = dθ2 + sin2 θdφ2.
Note that in this section and below we use the Planck units,
i.e. we put h̄ = G = c = 1.

We consider a test massless scalar field defined in the
background given by the metric (54). The equation of motion
in general is written in the form of the covariant Klein–Fock–
Gordon equation

ΔΨ = 1√|g|∂μ

(√|g|gμν∂μΨ
)

= 0, (55)

where μ, ν = 0, 1, 2, 3. In order to solve this equation we
separate variables in function Ψ as follows

Ψ = e−iωt e−γ Ψ∗(u)Ylm, (56)

where Ylm are the spherical harmonics. Equation (55), after
using (56) yields the equation describing the radial function
Ψ∗(u) and having a Schrödinger-like form

d2Ψ∗(u)

du2 +
{
B

A
ω2 − B

C
l(l + 1) − γ ′′ − (γ ′)2

}
Ψ∗(u) = 0 (57)

where

γ = 1

2
ln

(
B−1C

√
AB

)
(58)

and γ ′ = dγ /du, and l is the multipole quantum number,
l = 0, 1, . . . .

Taking into account above expressions one can examine a
dyon-like black hole solution which has the following form

ds2 = − f (R)dt2 + dR2

f (R)
+ HaR2dΩ2, (59)

Fig. 1 The eikonal part of the effective potential Veik = V for a
dyon black hole solution. Left panel: The reduced (eikonal) effective
potential V/ l(l + 1) as a function of R. Right panel: The reduced
(eikonal) effective potential V/ l(l + 1) as a function of R∗. In both

panels the solid red, dashed green and dotted blue curves correspond
to a = 0, a = 1 and a = 2 cases, respectively. For numerical goals
here we adopted P = 1 and μ = 1/2
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where f (R) and C(R) according to Eq. (10) can be written
as

f (R) = A = H−a
(

1 − 2μ

R

)
, (60)

C = HaR2, (61)

where H(R) = 1 + P/R is the moduli function, μ, P > 0
and 0 < a ≤ 2 as shown earlier. After using the “tortoise”
coordinate transformation

dR∗ = dR

f
(62)

the metric takes the following form

ds2 = − f dt2 + f d R2∗ + CdΩ2. (63)

For the choice of the tortoise coordinate as a radial one (u =
R∗) we have A = B = f and

γ = 1

2
lnC = 1

2
ln(HaR2). (64)

Thus, the Klein–Fock–Gordon equation becomes

d2Ψ∗
dR2∗

+
{
ω2 − V

}
Ψ∗ = 0, (65)

where ω is the (cyclic) frequency of the quasinormal mode
and V = V (R) = V (R(R∗)) is the effective potential

V = V + δV, (66)

V = l(l + 1) f

Ha R2 , (67)

δV = γ ′′ + (γ ′)2 = f 2a(a − 2)P2

4H2R4

+ f (2R − (a − 2)P)(aP(R − 2μ) + 2μ(P + R))

2Ha+2R5
, (68)

so that V is the eikonal part of the effective potential. Here
and below we denote F ′ = dF

dR∗ = f dF
dR .

In what follows we consider the so-called eikonal approx-
imation when l � 1.

The maximum of the eikonal part of the effective potential
is found from the condition

V ′ = f
dV
dR

= −2 f
[
R2 + ((1 − a)P − 3μ)R + (2a − 3)Pμ

]
×

×(H−2a−1R−5) = 0, (69)

or, equivalently,

R2 + ((1 − a)P − 3μ)R + (2a − 3)Pμ = 0, (70)

which yields the corresponding radius

R0 = a − 1

2
P + 3μ

2
+ 1

2

√
D, (71)

D = (1 − a)2P2 + 2(3 − a)Pμ + 9μ2 > 0. (72)

The inequality (72), which is valid for 0 < a ≤ 2, is a trivial
one.

It may be readily verified by using quadratic equation for
Z = R − 2μ

Z2 + ((1 − a)P + μ)Z − 2μ2 − Pμ = 0 (73)

and D > 0 that

R0 = R0,+ > 2μ > R0,−, (74)

for all 0 < a ≤ 2. Here R0,− is another root of the quadratic
equation (70) , which corresponds to the “location” under the
horizon and is irrelevant for our consideration.

The maximum of the eikonal part of the effective potential
thus becomes

V0 = V (R0) = l(l + 1)

R2
0

(
1 − 2μ

R0

)(
1 + P

R0

)−2a

. (75)

In Fig. 1 we plot the reduced eikonal part of the effective
potential V/(l(l + 1)) (l 	= 0) as a function of the radial
coordinate R (left panel), and tortoise coordinate R∗ (right
panel). As can be seen from examples presented in figure
for special fixed values of P and μ, the maximum of the
effective potential is largest for a = 0 case and smallest for
a = 2 case. The case with a = 1 is in the middle. At large
distances the effective potential tends to zero, as expected.

The second derivative with respect to the tortoise coordi-
nate is given by

V ′′
0 = d2V

dR2∗

∣∣∣∣
R∗=R∗(R0)

= f 2 d
2V

dR2

∣∣∣∣
R=R0

= −2l(l + 1)

R5
0

×
(

1 − 2μ

R0

)2 (
1 + P

R0

)−(1+4a) √
D, (76)

where D is defined in (72).
The square of the cyclic frequency in the eikonal approx-

imation reads as following [12,13]

ω2 = V0 − i

(
n + 1

2

)√
−2V ′′

0 + O(1), (77)

where l � 1 and l � n. Here n = 0, 1, . . . is the overtone
number. By choosing an appropriate sign for ω we get the
asymptotic relations (as l → +∞) on real and imaginary
parts of complex ω in the eikonal approximation

Re(ω) =
(
l + 1

2

)
H−a

0 F1/2
0 R−1

0 + O

(
1

l + 1
2

)
, (78)

Im(ω) = −
(
n + 1

2

)
H−a−1/2

0 F1/2
0 R−3/2

0 D1/4

+O

(
1

l + 1
2

)
, (79)

where H0 = 1 + P
R0

, F0 = 1 − 2μ
R0

and R0,D are given by
(71), (72), respectively.
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Fig. 2 The dependence (of eikonal limit) of Re(ω)/(l + 1/2) on P for different a in the range 0 < a ≤ 2. Here we adopt μ = 1/2. Left panel:
two dimensional plot. Right panel: three dimensional plot

Fig. 3 The dependence (of eikonal limit) of −Im(ω)/(n + 1/2) on P for different a in the range 0 < a ≤ 2. Here we adopt μ = 1/2. Left panel:
two dimensional plot. Right panel: three dimensional plot

In Fig. 2 we constructed the (eikonal limit of) reduced real
part of the QNM frequency, Re(ω)/(l + 1/2), as a function
of parameter P for different values of a and μ = 1/2. In the
right panel we have a three-dimensional plot of Re(ω) versus
P and a. Here one can notice that in the limiting case when
a = 0 we recover constant Re(ω) identical to the case of the
Schwarzschild black hole.

In Fig. 3 we constructed the (eikonal limit of) reduced
imaginary part of the QNM frequency with negative sign,
−Im(ω)/(n+1/2), as a function of parameter P for different
values of a and μ = 1/2 in analogy to Fig. 2. At first sight
Figs. 2 and 3 seem similar. However, according to Eqs. (78)
and (79) this is not the case.

Remark It was shown in Ref. [41] that parameters of the
unstable circular null geodesics around stationary spherically
symmetric and asymptotically flat black holes are in corre-
spondence with the eikonal part of quasinormal modes of
these black holes. See also [42,43] and references therein.
But as it was pointed out in Ref. [44] this correspondence is
valid if: (a) perturbations are described by a “good” effective
potential, (b) “one is limited by perturbations of test fields
only, and not of the gravitational field itself or other fields,

which are non-minimally coupled to gravity.” Here we do
not consider this correspondence for our solution, postpon-
ing this to future publication.

5 Limiting cases corresponding to the Schwarzschild
and Reissner–Nordström black holes

In this section we consider two limiting cases a = +0 and
a = 2 corresponding to the Schwarzschild and Reissner–
Nordström metrics, respectively.

(a) Let us first consider the case when a = +0. This limit
may be obtained in a strong coupling regime when

λ1 = λe1, λ2 = λe2, (80)

where e1
2 = e1

2 = 1, and

e1e2 	= ±1, λ → +∞. (81)
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Fig. 4 The dependence of y on p for different a (see (88)) in the range 0 < a ≤ 1. Left panel: two dimensional plot in logarithmic scale. Right
panel: three dimensional plot

Table 1 Maximum and limiting values of y for various values of the
model parameter a in the ground state n = 0. ymax is the maximum of
y, p0 is the value of p corresponding to ymax and ylim = limp→∞ y

a p0 ymax ylim

10−2 1.314 0.770 0.769

0.1 1.421 0.772 0.762

0.2 1.563 0.774 0.752

0.4 1.954 0.780 0.726

0.5 2.233 0.785 0.707

0.6 2.608 0.790 0.681

0.8 3.933 0.808 0.588

1.0 8.196 0.847 0

In this case the relations (78) and (79) for QNM in the
eikonal approximation read as follows

Re(ω) =
(
l + 1

2

) √
M

r3
0

+ O

(
1

l + 1
2

)
, (82)

Im(ω) = −
(
n + 1

2

) √
M

r3
0

+ O

(
1

l + 1
2

)
, (83)

where r0 = R0 = 3M corresponds the position where
the black-hole effective potential attains its maximum. Note
that r0 = 3M is the radius of the photon sphere for the
Schwarzschild black-hole. These results have been obtained
in Ref. [7] and our outcomes are consistent with them.

(b) Now let us consider the case when a = 2. As was
mentioned above this takes place for collinear vectors λ1,
λ2. One can also obtain the limit a = 2 in the weak coupling
regime when dilatonic coupling vectors obey (80) and

e1e2 	= −1, λ → +0. (84)

In this case the eikonal QNM (see (78) and (79)) read

Re(ω) =
(
l + 1

2

) √
M

r3
0

− Q2

2r4
0

+ O

(
1

l + 1
2

)
, (85)

Table 2 Critical values of p denoted as pcrit , obeying y(pcrit ) = 1,
and qcrit corresponding to pcrit according to Eq. (94) for certain values
of a (1 < a ≤ 2)

a pcrit qcri t

1.1 8131.908 2.571

1.2 18.157 2.274

1.3 8.031 2.041

1.4 5.402 1.870

1.6 3.356 1.627

1.8 2.461 1.457

2.0 1.951 1.330

Im(ω) = −
(
n + 1

2

)√
M

r3
0

− Q2

2r4
0

√
3M

r0
− 2Q2

r2
0

+O

(
1

l + 1
2

)
, (86)

where r0 = 3M/2 + (1/2)
√

9M2 − 4Q2 = R0 + P corre-
sponds to the position of the unstable, circular photon orbit in
the Reissner–Nordström spacetime. These results have been
obtained in Ref. [45] (for n = 0) and our outcomes are
compatible with them when the relation (for our notation)
Q2 = 2Q2

RN is applied.

6 Hod conjecture

Here we test/check the conjecture formulated by Hod [40] on
the existence of quasi-normal modes obeying the inequality

|Im(ω)| ≤ πTH , (87)

where TH is the Hawking temperature.
Recently the Hod conjecture has been tested in theories

with higher curvature corrections such as the
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Einstein-Dilaton–Gauss–Bonnet and Einstein–Weyl for the
Dirac field [46]. It has been shown that in both theories the
Dirac field obeys the Hod conjecture for the whole range of
black-hole parameters [46].

Here we test/check this conjecture by using eikonal rela-
tions (79) for Im(ω) and the relation for the Hawking tem-
perature (37). For our purpose it is sufficient to check the
validity of the inequality

y ≡ |Im(ωeik)(n = 0)|
πTH

= 4
(

1 + p

x

)−a−1/2

×
(

1 − 2

x

)1/2

x−3/2d1/4
(

1 + p

2

)a
< 1, (88)

for all p = P/μ > 0, where

x ≡ R0/μ = a − 1

2
p + 3

2
+ 1

2

√
d, (89)

d ≡ D/μ2 = (1 − a)2 p2 + 2(3 − a)p + 9 > 0. (90)

In (88) we use the limiting “eikonal value” given by the first
term in (79) for the lowest overtone number n = 0.

In Table 1 we present the results for the numerical test-
ing of the Hod bound by using obtained relations for the
eikonal QNM in the ground state n = 0. It turned out that
the Hod bound is valid (in the eikonal regime) in the range
0 < a ≤ 1. There are maximum ymax = ymax (a) and lim-
iting ylim = ylim(a) values of function y(p, a) for different
values of parameter a in the considered range.

It may be verified that

ylim(a) =
(

1 − a

3 − 2a

)3/2−a

22−a <
4

3
√

3
< 1 (91)

for 0 < a < 1 and ylim(1) = 0. The relation for ylim(a) just
follows from

lim
p→+∞ x(p, a) = (3 − 2a)/(1 − a) (92)

for 0 < a < 1.
We denote the value of p corresponding to ymax (a) as

p0 = p0(a). For increasing a, the values of p0(a) and
ymax (a) increase and ylim(a) decrease. We obtain ymax (1) ≈
0.847 and ylim(+0) = 0. For decreasing a, both ymax (a)

and ylim(a) approach a finite value, corresponding to the
Schwarzschild case 4

3
√

3
≈ 0.7698 when a → 0.

In Fig. 4 we illustrate y = y(p, a) as a function of p. In the
left panel we build two dimensional plot for a = 0.2, 0.4, 0.6,
0.8, 1.0 and in the right panel we construct three dimensional
plot for the range 0 < a ≤ 1, where the Hod conjecture holds.
Thus, we are led to the following proposition.

Proposition The dimensionless parameter y = y(p, a)

from (88) obeys the inequality: y(p, a) < 1 for all p > 0
and a ∈ (0, 1].

For 0 < a < 1 this proposition is proved analytically in
Appendix. For a = 1 it is justified by our numerical bound
y < ymax (1) ≈ 0.847.

In addition we considered the range 1 < a ≤ 2 for testing
the Hod conjecture. In this case we have

ylim(a) = lim
p→+∞ y(p, a) = +∞ (93)

due to asymptotic relation y(p, a) ∼ C(a)pa−1 for p →
+∞ following from x(p, a) ∼ (a − 1)p, where C(a) =
22−a(a/(a − 1))−a−1/2(a − 1)−1. Strictly speaking for 1 <

a ≤ 2 there exist critical values pcrit (a) of parameter p such
that for p ∈ (0, pcrit (a)) the Hod conjecture holds in eikonal
regime while for p ∈ (pcrit (a),+∞) it fails (see Fig. 5 for
details). Here the limit p = +∞ corresponds to extremal
(black hole) case which is not considered here.

Remark Recently, in Ref. [47] some example of the viola-
tion of the Hod conjecture has been found for certain (scalar
gravitational) perturbations around D = 5 Gauss-Bonnet-de
Sitter black hole solution.

In Table 2 we present some critical values pcrit , which
are obtained through the condition y(pcrit ) = 1 (with y
calculated for the ground state n=0) and qcrit corresponding
to pcrit according to Eq. (94) for various values of the model
parameter a obeying 1 < a ≤ 2.

Here we use the following relation (see Eq. (32))

q = |Q|
M

= 2
√

2
√
p(2 + p)

2 + ap
<

2
√

2

a
= qext , (94)

where qext corresponds to extremal case. (Here G = 1.)
In Fig. 5 we illustrate y = y(p, a) as a function of p.

In the left panel we build two dimensional plot for a = 1.2,
1.3, 1.4, 1.6, 2.0 and in the right panel we construct three
dimensional plot for the range 1 < a ≤ 2. In this case the
Hod inequality (88) holds in the range p ∈ (0, pcrit (a)),
while for p ∈ (pcrit (a),+∞) it breaks.

Remark In Ref. [48], the eikonal QNM frequencies for
charged scalar field in the space-time of a charged Reissner–
Nordström black hole were obtained analytically in the
regime l2 ≥ Qq∗ ≥ l, where Q is the electric charge of
the black hole and q∗ is the electric charge of the field. In this
regime the obtained fundamental frequencies were shown to
saturate the Hod bound. It should be noted that this result can
not be applied to our analysis for a = 2, since we deal here
with q∗ = 0 case.

7 Conclusions

We have examined a non-extremal black hole dyon-like solu-
tion in a 4-dimensional gravitational model with two scalar
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Fig. 5 The dependence of y on p for different a (see (88) in the range 1 < a ≤ 2. Left panel: two dimensional plot in logarithmic scale. Right
panel: three dimensional plot

fields and two Abelian vector fields proposed in Ref. [30].
The model contains two vectors of dilatonic coupling vectors
λs 	= 0, s = 1, 2, obeying λ1 	= −λ2 and additional rela-
tions (18). We have also presented some physical parameters
of the solutions: gravitational mass M , scalar charges Qi

ϕ ,
Hawking temperature, black hole area entropy. In addition,
we considered the first law of black hole thermodynamics
and checked the validity of the Smarr relation for our model.

In fact this is a special solution with dependent electric
and magnetic charges, see (17). In the case of non-collinear
vectors λ1, λ2 the metric of the solution describes a black
hole with one (external horizon) and singularity hidden by
it. For collinear vectors λ1, λ2 the metric coincides with
the Reissner–Nordström metric possessing two horizons and
hidden singularity.

We have studied the solutions to massless (covariant)
Klein–Fock–Gordon equation in the background of our static
and spherically symmetric metric, by using the variable sep-
aration method. The Klein–Fock–Gordon equation is sim-
plified in the tortoise coordinate leading to radial equation
governed by effective potential. This potential contains the
parameters of solution such as P > 0, μ > 0 and dimen-
sionless parameter a ∈ (0, 2] depending upon the coupling
vectors λs which are the initial parameters of the model. The
physical quantities, such as mass, color charges and scalar
charges contain some of these parameters.

Here we mainly focused on the eikonal part of the effec-
tive potential and calculated the value of the radial coordinate
(radius) R0 corresponding to the maximum of this part of the
effective potential. Knowing the maximum of the eikonal part
of the effective potential and corresponding radius, we have
calculated the cyclic frequencies of the quasinormal modes
in the eikonal approximation. We have also considered two
limiting cases reducing to the Schwarzschild and Reissner–
Nordström solutions, when the parameter of the solution a

accepts two distinct values, i.e. a = +0 and a = 2, respec-
tively. Thus, we have made sure that our outcomes are con-
sistent with the previous results in the literature.

We have also tested the validity of the Hod conjecture
for our solution by using QNM frequencies in the eikonal
approximation with the lowest value of the overtone number
n = 0. It turned out that the Hod assumption holds in the
range of 0 < a ≤ 1. The conjecture is valid in this range
since it is supported by examples of states with large enough
values of angular number l. For 1 < a ≤ 2 we have found
that the Hod bound is satisfied for n = 0, and small enough
values of charge Q (Q/M < qcrit (a)) and big enough values
of l (l � 1).

It would be interesting to explore in detail QNM frequen-
cies in the vicinity of a = 0 and a = 2, by using the treatment
of Ref. [49], e.g. extending the results for the
Schwarzschild and Reissner–Nordström solutions by using
expansion in a small parameter (a or a − 2). Another issue
of interest is the numerical calculation of QNM frequencies
by using higher-order WKB formula for certain lower levels
(labelled by l and n), see Ref. [50], e.g. verifying the Hod
conjecture for 1 < a < 2, calculating grey-body factors etc.
All these issues may be addressed in our future studies.
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Appendix A: Analytic proof of the Hod conjecture

Here we prove the Proposition from Sect. 6 for 0 < a < 1.
The quadratic equation for x = x(p, a) from (89) in terms
of a, p reads

x2 − [(a − 1)p + 3)]x + (2a − 3)p = 0, (A.1)

see (70). Due to (74) we have x > 2. Substituting x = u+2,
we get

u2 + [(1 − a)p + 1]u = 2 + p = 1 + t − a

1 − a
, (A.2)

where t = 1 + (1 − a)p, t > 1 and u > 0 (since u = u+ is
the large root of the quadratic equation (A.2) and the small
root u = u− obeys u+u− = −2 − p < 0). See also Eq. (73)
for Z = uμ (μ > 0).

Thus,

p/2 + 1 = u(u + t)/2, (A.3)

see (A.2). Next, from the Eq. (A.2) we get

[1 − (1 − a)u]p = (u − 1)(u + 2), (A.4)

which implies (due to p > 0, u > 0)

1 < u < (1 − a)−1, (A.5)

and hence

p = (u − 1)(u + 2)

1 − (1 − a)u
, (A.6)

so
p

x
+ 1 = au

1 − (1 − a)u
. (A.7)

Finally, from the equation for x (89), we get
√
d = 2x − (a − 1)p − 3 = 2u + t. (A.8)

Plugging all of that in (88), we see that we need to prove the
following bound

y = 4

[
(u + t)(1 − (1 − a)u)

2a

]a [
1 − (1 − a)u

au

]1/2

×
[

u

u + 2

]1/2
(t + 2u)1/2

(u + 2)3/2 < 1. (A.9)

Now, from (A.2)

(1 − a)u(t + u) = 1 + t − 2a, (A.10)

so the first bracket in (A.9) simplifies to(
u − 1 + 2a

2a

)a

=
(

1 + u − 1

2a

)a

≤ 1 + u − 1

2
= u + 1

2
. (A.11)

Here we have used well-known convexity inequality (1 +
v)a ≤ 1 + av which is valid for v > −1 and 0 < a ≤ 1 (for
our case v > −1 is valid due to (A.5)). We can cancel u1/2

and combine all (u + 2)’s, which leaves us with the factor

F(t) = (1 − (1 − a)u)(2u + t)

a
. (A.12)

Here we use the differentiation tool

d

dt
ln F(t) = − (1 − a)u̇

1 − (1 − a)u
+ 2u̇ + 1

2u + t
, (A.13)

where u̇ = du/dt . From (A.2), we have

(1 − a)(2u + t)u̇ = 1 − (1 − a)u, (A.14)

and hence u̇ > 0 (see (A.5)). Using (A.14) we obtain

d

dt
ln F(t) = − 1

2u + t
+ 2u̇ + 1

2u + t
= 2u̇

2u + t
, (A.15)

so the logarithmic derivative evaluates to

d

dt
ln F(t) = 2u̇

2u + t
<

2u̇

2u + 1
= d

dt
ln(2u + 1) (A.16)

(here we use u̇ > 0 and t > 1). Thus, integrating (A.16)
(in t from 1 to t) and using coincidence of initial values:
F(1) = 2u(1) + 1 = 3 (u(t) → 1 as t → 1 and p → +0)
we get

F(t) < 2u + 1 (A.17)

and we end up with proving that

2(u + 1)
√

2u + 1 < (u + 2)2. (A.18)

Indeed, (u + 2)2 − 2(u + 1)
√

2u + 1
= 2 + (

u + 1 − √
2u + 1

)2
> 0. This ends the proof of the

inequality (A.9), or, equivalently, y(p, a) < 1 for all positive
p and 0 < a < 1.
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