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Abstract A spherically symmetric solution of the field
equations of the Hořava–Lifshitz gravity–gauge vector inter-
action theory is obtained and analyzed. It describes a charged
throat. The solution exists provided a restriction on the rela-
tion between the mass and charge is satisfied. The restriction
reduces to the Reissner–Nordström one in the limit in which
the coupling constants tend to the relativistic values of Gen-
eral Relativity. We introduce the correct charts to describe
the solution across the entire manifold, including the throat
connecting an asymptotic Minkowski space-time with a sin-
gular 3+1 dimensional manifold. The solution external to the
throat on the asymptotically flat side tends to the Reissner–
Nordström space-time at the limit when the coupling param-
eter, associated with the term in the low energy Hamilto-
nian that manifestly breaks the relativistic symmetry, tends
to zero. Also, when the electric charge is taken to be zero
the solution becomes the spherically symmetric and static
solution of the Hořava–Lifshitz gravity.

1 Introduction

The Hořava–Lifshitz (HL hereinafter) theory stands nowa-
days as a strong candidate to describe a quantum description
of the gravitational interaction [1,2]. The proposal breaks the
relativistic symmetry by introducing an anisotropic scale of
temporal and spatial coordinates. In addition, it introduces
terms with higher order spatial derivatives in the potential,
compatible with the geometric structure of the formulation,
which make the theory, in the UV regime, renormalizable
by power counting. Although the original proposal given in
[1] was incomplete, since it suffered from instabilities at all
energy scales and strong coupling [2–4], a subsequent anal-
ysis [5] overcame these problems by including a new terms
in the Hamiltonian compatible with the symmetries of the
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original proposal. The anisotropic behavior becomes mani-
fest by the introduction of the so-called critical dynamical
exponent z. Furthermore, the exponent z describes different
scale energies, for example the case z = 1 corresponds to the
IR point whilst z = 3 the UV one.1 The HL theory can be
seen as general framework containing two classes of theo-
ries: i) the projectable ones, namely when the lapse function
is restricted to be a purely time function N = N (t) and ii)
the non-projectable ones where the lapse function is more
general N = N (t, �x). Both theories are not equivalent since
they do not propagate the same spectrum, besides its con-
straints structure is also different. Along the years the feasi-
bility of the HL theory has been widely studied, for exam-
ple in [7–9] the Hamiltonian formulation was analyzed, and
from the phenomenological point of view in [10] the radiation
of gravitational waves of self-gravitating binary systems in
the low-energy limit was investigated. On the cosmological
background within the framework of the projectable version,
interesting solutions have been obtained [11–14] and also
in the standard model domain [15] and four-fermion Gross–
Neveu like models [16] novels results were presented.

In a more particular context than the quantum and cos-
mological aspects that this proposal offers, it is especially
interesting as well as intriguing to investigate the possible
existence of exotic structures such as wormholes (WH from
now on). Since the pioneering work by Morris and Thorne
[17,18], the study of WH in the GR framework has laid
the foundations for both the geometric shape that they must
adopt, and the type of matter that must support them. WHs
are visualized as connecting two relatively distant regions or
universes located on an asymptotically flat space-times. This
type of WH is known in the literature as traversable or pass-
able WH [17–19]. Of course, this is conditioned to a strong
restriction, which implies the violation of the energy condi-
tions [19], mainly the null (NEC): ρ+ pr ≥ 0 and ρ+ pt ≥ 0,

1 Obviously, the value of the exponent z at the UV point depends on
the spatial dimension d.
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and weak (WEC): ρ ≥ 0, ρ + pr ≥ 0 and ρ + pt ≥ 0 con-
ditions, being ρ the energy-density, pr and pt the radial and
lateral pressures, respectively. This type of matter is called as
exotic matter [17–19]. In the references [20,21] it was shown
that in the background of GR it is not possible to obtain a
passable WH satisfying at the same time the energy con-
ditions. In this respect, during last years dozens of articles
were devoted in obtaining WH solutions within the arena of
modified gravity theories satisfying the energy conditions.
For example, in the background of f (R) gravity cosmolog-
ical WH solutions and WH space-times satisfying different
equations of state [22–29] (and references therein) were stud-
ied. However, as occurs in GR, in the f (R) gravity arena it
is not possible to get a traversable WH space-time satisfying
the energy conditions, unless the theory propagates ghost
fields [30,31]. On the other hand, in the f (R, T ) gravity
[32–36], Brans–Dicke gravity [37,38], Einstein–Cartan the-
ory [39] and extra dimensions [40,41] scenarios, it is possible
to meet at the same time both the traversability and energy
conditions. This is so, because the extra terms or fields intro-
duced in these kind of theories can be seen as corrections to
the Einstein field equations.

In considering the HL theory, these objects have been
widely explored by taking into account both the projectable
and non-projectable versions. For instance, in the projectable
case, in [42] traversable WHs connecting two asymptoti-
cally de Sitter/anti-de Sitter regions were studied, in [43]
asymptotically flat WHs threading by phantom energy were
obtained. More recently, the so-called Euclidean WHs have
been analyzed in the Euclidean path integral approach to
quantum gravity [44], also within the branch of 2d causal
dynamical triangulations [45] this kind of object were
explored. On the other hand, in the non-projectable branch
it has been shown that these configurations are not allowed,
instead of it one obtains a throat [46,47]. The main difference
between a WH and a throat, relies on the fact that the former
is connecting necessarily two asymptotically flat regions. In
the models found in [46,47] the structure is not asymptot-
ically flat. Interestingly, the throat solution does not need
to be supported by any kind of exotic matter distribution,
that is, this solution was obtained by solving only the fields
equations without any assumption on the energy–momentum
tensor [46] (vacuum solution).

Taking advantage of these remarks, in the present paper
we study charged throats within the non-projectable HL
background. The motivation behind this analysis, is sup-
ported on recent articles [48,49] working out the anisotropic
gravity–vector gauge coupling in 3+1 dimensions. This for-
mulation is obtained, starting from the the 4+1 dimensional
non–projectable HL theory after a dimensional reduction
a la Kaluza–Klein. The resulting 3+1 dimensional theory
exhibits the same features as the original proposal [1] ı.e.,
the anisotropic gravity-vector gauge coupling respects the

DiffF (M) symmetries [48,49] and is power-counting renor-
malizable [50]. In this case, in contrast with the solution
provided in [46], here we have a spherical throat supported
by and static spatial electric field. This contribution is com-
ing from the gauge sector of the reduced theory. The anal-
ysis will we performed at the low energy regime. In this
case the higher order derivatives terms in the potential of
the HL Hamiltonian are dismissed and we are left with the
electromagnetic coupling to HL gravity in the standard way.
Despite the higher non-linear behavior of the resulting equa-
tion, we have thoroughly demonstrated the existence of a
global minimum describing the existence of a throat con-
necting to regions, one of them asymptotically flat while the
other presenting an essential singularity. Besides, the asymp-
totic behavior has been studied finding out that the solution
tends to the well-known Reissner–Nordström solution in GR.
To support the feasibility of the present study we have incor-
porated a graphical analysis, where the assigned values to
the coupling constants k, α and β satisfy the known restric-
tions arising from experimental data. In fact, α and β must
be very near to 0 and 1 respectively [51,52]. Consequently,
the parameter k we introduce satisfies k2 = 1 − α/2β > 0,
β > 0.

The article is organized as follows: in Sect. 2 are pre-
sented the 3+1 dimensional reduced theory and its equations
of motion. In Sect. 3 the main equations to be solved for the
spherical charged throat are provided. Next, in Sect. 4 the
resulting differential equation is solved, showing the exis-
tence of the throat. Section 5 shows the asymptotic behavior
of the obtained solution and in Sect. 6 the full metric charts
of the charged throat are presented. Finally, Sect. 7 concludes
the work.

2 The anisotropic gravity–vector gauge interaction in
the Hořava–Lifshitz framework

The Hamiltonian formulation of the pure electromagnetic–
gravitational interaction in the HL scenario was obtained
and studied in [48,49]. In that work the 3+1 Hamiltonian
was obtained from a Kaluza–Klein reduction from a 4+1
dimensional HL gravity. At this point, we can take the dilaton
scalar field be 1 in the Hamiltonian as one does in GR when
following a Kaluza–Klein reduction to obtain the Einstein–
Maxwell Hamiltonian. Otherwise one can leave the dilaton
field unconstrained and obtained a formulation not equiva-
lent to the previous one. In this case it is not possible to take
the dilaton to be one in the field equations without restricting
the other fields of the model. Both models are consistent and
compatible with the geometric symmetries of the HL pro-
posal. When the dilaton is taken to be 1, that is at its ground
state, the Hamiltonian density describing this interaction is
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expressed as follows

H = N√
γ

[
pi j pi j + pi pi

2
+ λ

(1 − 4λ)
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)2

−γβ

(
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, (1)

where λ �= 1/4. In the above expression Ṽ
(
γi j , Ak, N

)
rep-

resents the higher order spatial derivatives terms in the poten-
tial of the theory and, R is the curvature associated with the 3-
dimensional metric γi j . Furthermore, �, � j and σ Lagrange
multipliers and the two form Fi j dxi ∧ dx j is defined by

Fi j = ∂i A j − ∂ j Ai . (2)

From now on we will dismiss the higher order derivative
terms contained in the potential Ṽ . Physically, it corresponds
to consider the low energy Hamiltonian. So, Following [48],
the first class constraints associated to (1) are given by

∂i p
i = 0 (3)

2∇i p
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and the second class one is
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Next, the Hamiltonian density (1) provides the following evo-
lution equations
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3 The spherically symmetric and static equations

As we are interested in the study of spherically symmetric,
static and charged configurations we consider the following
line element describing the 3-dimensional manifold

ds2
(3) = dr2

f (r)
+ r2d
2, (10)

together with a lapse function N = N (r) and a shift �i =
0, where d
2 ≡ dθ2 + sin2θdϕ2. Besides, the staticity
assumption implies that the magnetic field is null ı.e, Fi j = 0,
Ȧi = 0 and γ̇i j = 0 then from Eq. (6) one obtains pi j = 0
for λ different from 1 and 1/4. The latter means that the terms
containing the dimensionless constant λ are canceled on the
field equations. At this point it is worth mentioning that the
static electric field is encoded in pi . The field equations (7)–
(8) reduce then to

N√
γ
pi + ∂i� = 0, (11)

1
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γ i j
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Now, taking the trace of the above expression (12) one gets

1

4γ
pk pk + 1

2
βR − 2

β

N
∇i∇ i N + α

2
aka

k = 0. (13)

From Eq. (5) one arrives to

1

2

1

γ
pk pk − βR − αaiai + 2α

∇i∇ i N

N
= 0. (14)

Combining Eqs. (13) and (14) one gets

1

2
pk pk + (α − 2β)

∇i∇ i N

N
= 0. (15)

Due to the spherical symmetry the only non vanishing com-
ponent in (11) is the radial one. So, we have

pr√
γ

= −∂r�(r)

N
. (16)

Raising the indices with the 3-dimensional metric tensor γ i j

from (16) one gets

pr√
γ

= − f (r)

N
∂r�(r). (17)
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Now from (3) and (11) we get

r2

N

√
f ∂r� = A, (18)

being A a new integration constant. We then have for the
static electric field

√
pr pr

γ
= |A|

r2 . (19)

Next, putting together Eqs. (15), (16), (17) and (18) we arrive
at the following equation

1

4
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2
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r2
√

f
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where C is an integration constant. By replacing (18) on the
right hand side of (20) we obtain
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2
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where B is an integration constant. Equation (21) can be
reorganized as follows
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Equation (12) has only two independent components, the
r − r and the θ − θ components. The complete set of field
equations then reduces to the θ −θ component of Eq. (12), its
trace (13), Eq. (15) or equivalently Eqs. (22), (17) and (18).

For the 3-dimensional metric under consideration we have
the following components of the Ricci tensor

Rrr = − f

r
∂r f, Rθθ = −r∂r f + 2 f − 2

2r4

and Rϕϕ = csc2(θ)Rθθ , (23)

and the Ricci’s scalar is given by

R = − 2
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of (13) on it, is
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Finally, from Eqs. (25) and (26) we get
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Consequently, the independent field equations reduce to (17),
(18), (22), (25) or (26) and (27).

4 The charged throat solution

We consider a non-trivial electrostatic field, hence A �= 0.
We will now introduce a new variable χ . This new variable
will be the correct one to describe the metric on the throat.
Eq. (27) can be solved in terms of the new variable χ . From
now on we shall employ prime to denotes derivatives with
respect to the radial coordinate r ,

kr
√

f
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Now using (28) we obtain

N 2 = E A2

(2kβ)2
(
r2Sinh2(χ) − A2

4β
Cosh2(χ)

) , (34)

we will show that its right hand member is positive. From (31)
and (34) we finally obtain a first order differential equation
determining r as a function of χ . Explicitly it reads

dr

dχ
= −

(
Cosh(χ)

Sinh(χ)
− 1

k

)
r

(
1 − A2

4βr2

)

×
(

1 − A2

4kβr2

Cosh(χ)

Sinh(χ)

)−1

. (35)

In the particular case in which A = 0 this differential equa-
tion was solved explicitly in [46]. Moreover, the expressions
for

√
f in (30) and N 2 in (34) reduces to the ones in that ref-

erence. In order to analyze the first order differential equation
(35) and following the theorem of existence and uniqueness
of the solution to ordinary differential equations we give the
initial data. At χ̂ we give r̂ defined as follows: χ̂ is the solu-
tion of the equation

Cosh(χ̂)

Sinh(χ̂)
= 1

k
, (36)

and we take r̂ any real number satisfying

r̂ >
|A|

2k
√

β
L (37)

We have already assumed k2 = 1 − α
2β

> 0, β > 0 in
agreement with the experimental data. We assume now, α >

0, hence we have k < 1. There exists then the solution χ̂

to Eq. (36). L is defined as L = (1/k)[(1 + k)1+k/(1 −
k)1−k]1/2k = e(χ̂/k)/Sinh(χ̂), it is L > 1 and when k goes
to 1, then L tends to 2. We notice that if α = 0 there does
not exist χ̂ , in this case the field equations on the previous
section, after a redefinition in order to eliminate β, are the
corresponding ones in GR. We then have at χ̂
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dχ
|χ̂ = 0, (38)

d2r

dχ2 |χ̂ = r̂(
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)2

(
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4βr̂2

) (
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4k2βr̂2

)−1

> 0,

(39)

hence we have a local minimum at χ̂ . We will show now that
it is a global minimum of r = r(χ).

Let us denote h(χ, r(χ)) the right hand member of Eq.
(39). Since at χ̂ , r(χ̂) = r̂ satisfies the bound (37), then by

continuity of the factors in h(χ, r(χ)) there exists a neigh-
borhood U of χ̂ such that

1 − A2

4βr2 > 0, 1 − A2

4k2βr2 > 0, (40)

for all χ ∈ U . Let us denote U+ ≡ {χ ∈ U : χ > χ̂} and
U− ≡ {χ ∈ U : χ < χ̂}.

Then for all χ ∈ U+
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Sinh(χ)
<

1

k
, (41)

hence h(χ, r(χ)) > 0 and dr/dχ > 0. Consequently, r(χ)

is a monotonically increasing function of χ . Then
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1

k
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Sinh(χ)

) (
1 − A2

4βr2

)
r > 0, (42)

where the right hand member is a monotonically increasing
function of χ , for all χ ∈ U+. But now we can extend the
neighborhood U+, for all χ > χ̂ and (40), (41) and (42)
remain valid for the extension, the function r(χ) is then a
monotonically increasing function for all χ > χ̂ , with an
infimum value at r̂ . We can also bound dr/dχ from above
for all χ > χ̂ . In fact

0 <
dr

dχ
<

(
1

k
− Cosh(χ)

Sinh(χ)

)
r

(
1 − A2

4βr2

) (
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4k2βr2

)−1

.

(43)

Hence dr/dχ is bounded from above and from below by
strictly positive differentiable functions of χ . The solution
r(χ) extends then as a differentiable function for all χ > χ̂

and r(χ) → +∞ when χ → +∞. Indeed, dr
dχ

∼ ( 1
k − 1

)
r

when χ → +∞.
We may now analyze the solution for χ < χ̂ . We consider

χ ∈ U− and introduce

ω(χ) = χ − 1

k
Ln

⎡
⎣

√
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⎤
⎦ , (44)
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(
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) dr
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)
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We notice that

1

k
− Cosh(χ̂)

Sinh(χ̂)
< 0, (47)

for all χ ∈ U− and it is a monotonically increasing function
of χ . From the theorem of existence and uniqueness of the
solution to the differential equation (35) we conclude that
there exists r(χ) satisfying the initial data r(χ̂) = r̂ at least
in a neighborhood U− of χ̂ , and it is differentiable. We have
for χ ∈ U−: dr

dχ
< 0. Hence dω

dχ
> 1. We then obtain the

following bound for dr
dχ

− dr

dχ
> −

(
1

k
− Cosh(χ)

Sinh(χ)

)
r > 0, (48)

for all χ ∈ U−. We can integrate both side of (48) from χ to
χ̂ , obtaining

r > r̂
eχ/k

Sinh(χ)

Sinh(χ̂)

eχ̂/k
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L

eχ/k

Sinh(χ)
, (49)

and also

1 > 1 − A2

4kβr2

Cosh(χ)

Sinh(χ)
> 1 − A2

4kβ

L2

r̂2 > 0, (50)

where we have used (49) and (37). Additionally from equa-
tions (35) and (50) we get

−1

r

dr

dχ
<

(
Cosh(χ)

Sinh(χ)
− 1

k

) (
1 − A2L2

4βkr̂2

)−1

, (51)
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r <
r̂

L

eχ/k

Sinh(χ)

(
1 − A2L2

4βkr̂2

)−1

. (52)

The differential function r(χ) is a monotonically decreas-
ing function , bounded, from below by (49) and from above
by (52), the function can then be extended for all χ < χ̂

with the same properties and bounds. Its infimum values is
obtained at r̂ = r(χ̂) and when χ → 0+ then r(χ) → +∞.
We conclude then that r(χ) is a differentiable function with
a global minimum at χ̂ , it is monotonically decreasing for
0 < χ < χ̂ and monotonically increasing for χ̂ < χ . Also,
r → +∞ when χ → 0+ and r → +∞ when χ → +∞.
The previous analysis is depicted in Fig. 1, where the left
panel shows the existence of the global minimum r̂ = r(χ̂)

describing the throat (blue curve). To compare the resulting
solution with the GR limit, we have plotted the solution of
(35) it for the values {β;α; k} = {1; 0; 1} represented by the
red curve. As it is appreciated, for the GR limit there isn’t
a throat. Besides, the middle and right panels are displaying

the behavior of the χ coordinate in terms of the radial r one.
As was mentioned , it is clear the one to one correspondence
between both variables away from the throat. Moreover, the
radial coordinate r is divergent when χ → 0+ or χ → +∞,
the χ is the correct one to describe the charged throat.

5 Asymptotic behaviour of the solutions

In this section we analyze the asymptotic behavior of the
solution. Interestingly, this analysis can be done either, start-
ing from the original equations without the introduction of
the variable χ or from the previous analysis in terms of χ .
So, from (15) and (19) we obtain

∇i∇ i N

N
= A2

4k2r4β
. (53)

We replace it on (25) to get

r

2
f ′ + f − 1 + r f

N ′

N
= − A2

4k2r2β
. (54)

From (26) we have

1

r2

(
r f ′ + f − 1

) − α

2β
f

(
N ′

N

)2

= A2

2βr4

(
1

2
− 1

k2

)
.

(55)

We notice from (30), that for χ < χ̂ ,
√

f is bounded when
r → +∞. We can then expand f , asymptotically when
r → +∞, as

f = f0 + a

r
+ b

r2 + O
(

1

r3

)
. (56)

After replacing this expression for f in the previous equa-
tions we obtain, assuming a �= 0,

f0 = 1, (57)

and

b = − α

2β

a2

4
+ A2

2β

(
1

k2 − 1

2

)
. (58)

In the particular case α = 0, β = 1 we obtain b = A2

4 , f
coincides in this case with the Reissner-Nordström solution
in GR. From the above equations we also obtain the lapse N
as follows

N 2 = N 2
0

[
1 + a

r
+ A2

4k2r2β
+ O

(
1

r3

)]
. (59)
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Fig. 1 Left panel: The throat located at the point (χ̂, r̂) (blue curve) and the GR limit (red curve), against χ . Middle panel: The χ variable as a
function of the radial r one, for points χ < χ̂ . Right panel: The χ variable versus the radial r one for points χ > χ̂

where we shall take N0 = 1. As before, if α = 0 and β = 1
we then obtain the same asymptotic behaviour of the metric
as in the Reissner–Nordström space-time in GR. In order to
express the parameter a in terms of the initial data {r̂ , χ̂}, we
consider the asymptotic expansion of f from the expansion
(30). Therefore, we take

χ = m

r
+ n

r2 + O
(

1

r3

)
. (60)

From the differential equation (35) we obtain

n = m2

k
− A2

4βk
, (61)

and from the expansion of (30) we get

a = −2

k
m, (62)

that is

a = −2

k
lim

χ→0+ r(χ)Sinh(χ). (63)

The above limit exits and it is bounded by the following
expressions

r̂

L
≤ lim

χ→0+ r(χ)Sinh(χ) ≤ r̂

L

(
1 − A2L2

4βkr̂2

)−1

. (64)

6 The metric of the charged throat

We use two coordinate charts to describe the 4-dimensional
metric describing the charged throat solution of the
electromagnetic–gravitational HL field equations. In one
chart the radial coordinate r is used. In that chart defined
as r > r(χ̂ − ε) that is, r evaluated at χ̂ − ε or equivalently
0 < χ < χ̂ − ε, with ε > 0, the metric is given by

ds2 = −N 2(r)dt2 + dr2

f (r)
+ r2d
2, (65)

where f (r) is given by

f (r) =
(

1 − A2

4r2β

) (
Coshχ(r) − 1

k
Sinhχ(r)

)2

, (66)

and N 2 by (34). When 0 < χ < χ̂ we have shown that the
solution to the field equations satisfies r > r̂ , where r̂ is the
value of r at the throat. It is the infimum of r on that interval.
Hence

f (r) >

(
1 − A2

4r̂2β

) (
Cosh(χ̂ − ε) − 1

k
Sinh(χ̂ − ε)

)2

> 0, 0 < χ < χ̂ − ε (67)

and f (r) → 1 when r → +∞. The function χ(r) is the
solution to

− dχ

dr
= 1

r

(
Cosh(χ)

Sinh(χ)
− 1

k

)−1 (
1 − A2

4βr2

)−1

×
(

1 − A2

4kβr2

Cosh(χ)

Sinh(χ)

)
, (68)

we have shown that the solution χ(r) or equivalently r(χ)

exist, they are differentiable functions and there is a one to
one correspondence between χ and r , moreover dr

dχ
< 0 for

0 < χ < χ̂ . All the factors on the right hand side are positive
on that range of χ . We now show that N 2 is also well defined
for 0 < χ < χ̂ . In fact, the denominator of the expression of
N 2, Eq. (34), is bounded from below by

(rSinh(χ))2 − A2

4β
(Cosh(χ))2 ≥

(
r̂2

L2 − A2

4β

)

× (Cosh(χ))2 ≥ r̂2

L2 − A2

4β
> 0. (69)

Moreover, the lim r(χ)Sinh(χ) when χ → 0+ exits and it is
bounded (64). We then take the integration constant E such
that

lim
χ→0+ N 2 = 1. (70)

The second chart in order to describe the throat solution
is defined in terms of χ for χ̂ − ε < χ . The metric is given
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by

ds2 = −N 2(r(χ))dt2 +
(
dr

dχ

)2 dχ2

f (r(χ))
+ r2(χ)d
2,

(71)

where r(χ) is the solution of the differential equation (35).
It is a differentiable function with a minimum at r̂ = r(χ̂)..
The expression

(
dr

dχ

)2 1

f (r(χ))
= 1

(Sinh(χ))2

(
1 − A2

4βr2

)

×
(

1 − A2

4βkr2

Cosh(χ)

Sinh(χ)

)−2

, (72)

is non-singular and bounded away from zero on the throat
χ̂ − ε < χ < χ̂ + ε. Indeed,

1 − A2

4βr2 ≥ 1 − A2

4βr̂2 > 0 ∀ χ, (73)

1 − A2

4βkr2

Cosh(χ)

Sinh(χ)
≥ 1 − A2

4βk2r̂2 > 0 ∀ χ ≥ χ̂ ,

(74)

and the bound (50) for all χ < χ̂ . Furthermore, N 2 is well
defined on the throat, since

(rSinh(χ))2 − A2

4β
(Cosh(χ))2 ≥

(
r̂2 − A2

4βk2

)
(Sinh(χ))2

> 0 ∀ χ > χ̂, (75)

and it is also bounded (69) for all χ < χ̂ . Henceforth, we
have a regular metric on the throat. On the other hand, away
from the throat, the expression (72) has a singularity when
χ → +∞, corresponding to r → +∞. It is an essential
singularity of the metric (71). This behavior is shown on
Fig. 3, where it is clear that for points χ > χ̂ the function N
tends to zero, while the function f tends to infinite.

On the other hand, the functions N and f of the metric
(71) in terms of the χ variable are depicted in Fig. 3, left and
right panel respectively.

At this point it is illustrative to compare the charged throat
solution with well-known Morris–Thorne (MT) WH space-
time [17–19]. Of course, the comparison can be done only
from the geometrical point of view.

Before going into the comparison, it is instructive to briefly
go over the characteristics of the MT metric. So, in terms of
the proper radial distance l, the most general spherically,
symmetric, static and non-rotating WH space-time connect-
ing two asymptotically flat regions is being describing by
[17–19]

ds2
MT = −e−φ(l)dt2 + dl2 + r2(l)

[
dθ2 + sin2θdϕ2

]
, (76)

where the proper length l and functions φ(l) and r(l) should
satisfy some requirements:

• The coordinate l covers the entire range (−∞,+∞).
• The assumed absence of event horizons implies that φ(l)

must be everywhere finite.
• In order for the spatial geometry to tend to an appropriate

asymptotically flat limit one must impose,

lim
l→±∞

r(l)

|l| = 1 and lim
l→±∞ φ(l) = φ±, (77)

where φ± must be finite.
• The radius of the WH throat is defined by

r̂ = min{r(l)}, (78)

where without of generality one can take the WH throat
to occurs at l = 0.

The explicit relation between the radial coordinate r and the
proper radial distance l is given by

r(l) =
√

�2 + l2, (79)

being � a constant. Then it is no hard to note that when l →
−∞ then r → +∞ and when l → +∞ then r → +∞. In
the present solution, the equivalence situation corresponds to
take the χ coordinate as the proper radial distance l in the MT
space-time. However there is a small difference, the range
that χ covers is [0,+∞). Although this is not an impediment
to compare both models. As was pointed out earlier, when
χ → 0+ the radial coordinate goes to r → +∞ and when
χ → +∞ the r → +∞, just as MT solution. On the other
hand, the WH throat of the MT solution is located when
l → 0 yielding from Eq. (79) to

r(0) = |�|, (80)

|�| is identified as r(0) = r̂ the WH throat size. Now, for the
charged HL throat this occurs when χ → χ̂ , hence r(χ̂) = r̂ .
As can be seen from the line element (76) the solution is
completely regular when it is described in term of the proper
radial distance. Of course, replacing the value l = 0 in (76)
and fixing both the time and the equatorial angle ı.e, θ = π/2
the metric (76) reduce to

ds2
MT = r̂2dϕ2. (81)

The above expression is describing the WH throat region, a
circle with radius r̂ . Respect to the line element (71) when
the χ is used, the metric is completely regular. In fact, from
Fig. 4 it is clear that gχχ metric component is completely
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Fig. 2 Left panel: The lapse function N against the radial coordinate
r , for points χ < χ̂ (dashed black line). As can be seen, this function
shows an asymptotically flat behavior N → 1 when r → +∞. Middle
panel: The lapse function N versus the radial coordinate r , for points

χ > χ̂ (dashed black line). As it is appreciated, N tends to 0 making
the metric (71) singular. Right panel: The function f against the radial
coordinate r , for points χ < χ̂ (dashed black line). As can be seen, this
function shows an asymptotically flat behavior f → 1 when r → +∞

Fig. 3 Left panel: The lapse function N trend versus the χ coordinate. As can be seen, this object is completely regular at the throat χ = χ̂ . Right
panel: The behavior of the f function against the χ variable. It is observed that at the throat, f (χ̂) = 0 making the metric (71) singular

regular and non vanishing at χ̂ . On the other hand, if the
MT solution is expressed in canonical or Schwarzschild-like
coordinates, the line element (76) becomes

ds2
MT = −e�(r)±dt2 + dr2

1 − b(r)±
r

+ r2
[
dθ2 + sin2θdϕ2

]
,

(82)

where the function φ(r) is identified as the red-shift func-
tion and b(r) is the shape function. In this coordinates, the
WH throat occurs at b(r̂) = r̂ [17–19]. Therefore, it is clear
from (82) that grr metric component is indeterminate making
the metric degenerates. For our solution the same situation
happens when the metric is expressed in terms of the radial
coordinate r ı.e., χ = χ(r), where the line element (71)
degenerates. This fact is corroborated in right panel of Fig. 3
where f is vanishing at the throat χ̂ . Hence the throat area is
best described in terms of l for the MT model and in terms of
χ in the present case. In other words, l and χ are the “good
coordinates” when it comes to describing the throat in the
mentioned models, respectively. Finally, in comparing the
gtt components of the MT and (71) solution, it is evident that
the lapse function N is playing the role of the ref-shift func-
tion φ. Independently if one is on the chart described by r or
χ , the lapse function N is always regular and non vanishing

Fig. 4 The trend of the gχχ metric component of the line element (71)
versus χ

at the throat, thus there is not event horizon as required (see
Figs. 2, 3).

7 Concluding remarks

We obtain a static spherically symmetric solution of the
gauge vector-gravity HL equations [48,49], in the low energy
regime where only the z = 1 potential terms are considered.
The solution depends on three parameters, the low energy
couplings α and β of the HL gravity and the electric charge.
The metric describes a charged throat connecting a space-
time which in the limit when α tends to 0 and β to 1 becomes
the Reissner–Nordström solution of Einstein–Maxwell the-
ory and an asymptotic singular manifold. The singularity is
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an essential one. To obtain the solution we introduce a new
coordinate, which allows to describe it along the throat. We
solve the field equations up to the nonlinear differential equa-
tion (35). The solution is proven to exist starting from an
initial data, satisfying the restriction (37) at the throat and
then showing its extension to an asymptotically flat space-
time on one side and to an asymptotically singular manifold
on the other side. We also describe the asymptotic behavior
on the regular side and relate it to the initial data. We may
also identify the coefficient a of the asymptotic expansion
with M the mass of the system and the integration constant
A with Q the electric charge. From (37) and (64) we con-
clude that the solution exists when M satisfies the restriction
M > |A/2k2β1/2|. We notice that in the relativistic limit
the restriction reduces to M > |A/2| the condition in the
Reissner–Nordström solution of GR to have two horizons,
the event horizon and the internal Cauchy horizon. We have
then obtained the anisotropic generalization, in the HL frame-
work, of the Reissner–Nordström solution of GR. Hence,
although there are not horizons in the HL solution the physi-
cal relevant relation between the mass and the charge is also
obtained as in the relativistic case. Although we have shown
the existence of the solution and characterized it by using
bounds and estimates, we do not have an explicit formula for
the metric. We thus explicitly obtain the solution by follow-
ing a numerical approach. The numerical solution of (35) is
depicted by the left panel of Fig. 1. The blue curve shows
the existence of the throat located at the point (χ̂ , r̂), whilst
the red curve displays the GR limit. On the other hand the
middle and right panels in Fig. 1 exhibit the behavior of χ

is terms of r . The one to one correspondence is corrobo-
rated and it is clear from these panels, that the χ variable is
the good one to describe the throat region, since r(χ) has a
global minimum at the throat. As was mentioned in the rela-
tivistic limit, the asymptotic behavior of this solution yields
the well-known Reissner–Nordstöm solution. The asymp-
totic solution is given by Eqs. (56) and (59), where in the
relativistic limit ı.e, β → 1 and α → 0, the parameters a
and b can be interpreted as −2M and Q2 respectively, where
M is Schwarzschild mass and Q the electric charge.

In considering the full metric given by Eq. (71), its graph-
ical representation in Fig. 2 depicts the behavior for N and
f as functions of the radial coordinate r . Interestingly, both
functions for points χ < χ̂ tend to one, hence the metric
(71) is asymptotically flat, describing a Minkowski space-
time. Those are the reasons why we called the solution a
throat and not a WH, because following the definition given
in [17–19] a WH structure is asymptotically flat for points
below and above the throat. In this case we have an essential
singularity on one side and an asymptotically flat region on
the other side. On the other hand, the line element expressed
in terms of χ allows to compare with the usual WH behavior
at the throat. In fact, the Fig. 3 depicts the trend of N and

f as functions of χ , as can be observed N at χ̂ is not zero
while f is. The geometrical behavior is exactly the same as
the MT solution [17–19] where a traversable WH solution
must satisfy φ(r̂) �= 0 and b(r̂) = r̂ . Of course, it is evident
from (82) that evaluating the shape function b(r) at the WH
throat, the line element becomes singular.

Finally, it is remarkable to point out that this kind of solu-
tion are characteristic of the non-projectable HL theory, with-
out introducing any kind of exotic matter distribution [46] as
it is required in the framework of GR [17–19]. The throat
is supported by the static electric field, introduced by the
3+1 dimensional reduced theory [48,49] after performing the
Kaluza–Klein program, acting as matter content. Concerning
this point, the energy conditions, Bianchi’s identities for the
matter sector and other treatment performed in relativistic
theories when considering this type of solutions, are still not
known in the framework of the HL theory.
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