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Abstract We study massive scalar field perturbation on
Kerr black holes in dynamical Chern–Simons gravity by per-
forming a (2+1)-dimensional simulation. Object pictures of
the wave dynamics in time domain are obtained. The tachy-
onic instability is found to always occur for any nonzero black
hole spin and any scalar field mass as long as the coupling
constant exceeds a critical value. The presence of the mass
term suppresses or even quench the instability. The quanti-
tative dependence of the onset of the tachyonic instability
on the coupling constant, the scalar field mass and the black
hole spin is given numerically.

1 Introduction

Past years have witnessed the great achievements in astro-
nomical observations, especially the first-ever detection
of gravitational wave (GW) [1–3]. With the continuous
improvement of the GW detection ability, the study of black
hole physics has entered a golden age, which enables us to
test general relativity (GR) with unprecedented precision in
the strong gravity regime. Despite the great successes of GR
in explaining various astrophysical and cosmological phe-
nomena [4], there remain tension between it and quantum
theory and cosmological observations. Therefore, to allevi-
ate the tension, a variety of modified gravity theories (MOGs)
have been proposed among which some were found viable
by employing the current available observational constraints,
such as scalar–tensor theory, dynamical Chern–Simons grav-
ity (dCSG), scalar-Einstein–Gauss–Bonnet theory (sEGB)
and Lorentz-violating gravity [5].

As a special MOG, dCSG has attracted lots of attention
recently. In this theory, beyond the usual Einstein–Hilbert
term, an additional dynamical scalar field is introduced to
couple non-minimally with the gravitational Chern–Simons
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invariant (also called Pontrayagin density) [6,7]. This kind
of coupling naturally arises in some candidate quantum grav-
ity theories including string theory [8,9] and loop quantum
gravity [10–12], and also in effective field theories [13]. For
a review, please refer to Ref. [14]. Amounts of effort have
been devoted to study black hole physics in dSCG and its
astrophysical implications [15–31]. It is interesting to note
that GR black hole solutions, the Kerr black holes, are also
allowed in dSCG. However, dynamics of perturbations on
the same Kerr background is generally different from that
in GR, which actually provides us a method to distinguish
dSCG and GR through the study of perturbation dynamics.
Most recently, with the presence of such coupling and in Kerr
background, it is found that the massless scalar field will
acquire an effective mass square which becomes negative
in the vicinity of black hole horizon, resulting in the tachy-
onic instability and thus leading to the so-called spontaneous
scalarization [32–34]. Actually, this novel phenomenon has
long been observed in neutron stars but there the instability
is caused by the surrounding matter instead of the curvature
[35]. It has also been observed and studied extensively most
recently in sEGB theory where a similar coupling is present
but between the scalar field and the Gauss-Bonnet invariant
[36–49].

The minority existing work on the tachyonic instability in
dSCG [32–34] are all focused on the case when the scalar
field is massless. From the viewpoint of effective field theory,
it is natural to include a mass term or a more general self-
interaction term for the scalar field, which has been studied a
lot in sEGB theory [40–42,46]. However, at linearized level,
only the mass term can alter the onset of the tachyonic insta-
bility and the induced spontaneous scalarization. So, in the
present paper, we would like to extend the study of the tachy-
onic instability of Kerr black hole in dCSG to the case when
the scalar field is massive. We will see later that the inclusion
of mass term will alter the object picture of the wave dynam-
ics and the onset of the tachyonic instability considerably.
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This paper is organized as follows. In Sect. 2, we give
a brief introduction of the dCSG theory and write out the
scalar field perturbation equation. In Sect. 3, we describe our
numerical method for solving the scalar field perturbation
equation. In Sect. 4, we present our numerical results. The
last section is devoted to summary and discussions.

2 Dynamical Chern–Simons gravity and massive scalar
field perturbation

The action of a general dynamical Chern–Simons gravity is
[14,32–34]

S = 1

2κ

∫
dx4√−g

(
R − 2� + α f (�)∗RR + L�

)
,

L� = −1

2
∇μ�∇μ� − V (�),

where the scalar field � is non-minimally coupled to the
Chern–Simons invariant

∗RR ≡ 1

2
εαβγ δRαβμ

νRγ δν
μ, (1)

with the coupling constant α. f (�) is a function of the scalar
field and � is the cosmological constant. From the action, one
can derive the equations of motion

∇2� = dV

d�
− α ∗RR d f

d�
, (2)

Rμν − 1

2
gμνR + �gμν = αTCS

μν + T�
μν,

TCS
μν = −4∇σ f εσαβ(μ∇β R α

ν) − 4∇α∇β f ∗Rα(μν)β,

T�
μν = 1

2
∇μ�∇ν� − 1

2
gμνV (�) − 1

4
gμν∇ρ�∇ρ�. (3)

The theory admits GR black hole solutions with constant
scalar profile � = �0, if

V (�0) = 0,
dV

d�

∣∣∣∣
�0

= 0,
d f

d�

∣∣∣∣
�0

= 0. (4)

In the following, we will consider a simple case by choosing
� = 0 andV (�) = 1

2m
2
��2 so that the scalar field is massive

with mass m� without self-interaction. Also, we assume the
coupling function f (�) to take a general form as

f (�) = 1

2β

(
1 − e−β�2

)
, (5)

where β > 0 is a constant. In the small-� limit, f (�) reduces
to a quadratic form considered in Ref. [32].

We are going to study the wave dynamics of scalar field
perturbations on the background of Kerr black holes in the
linear regime. The metric in the Boyer–Lindquist coordinates
is

ds2 = − 

ρ2 (dt − a sin2 θdφ)2 + ρ2


dr2 + ρ2dθ2

+ sin2 θ

ρ2 (adt − (r2 + a2)dϕ)2, (6)

where  ≡ r2 − 2Mr + a2 and ρ2 ≡ r2 + a2 cos2 θ . In
this case, the scalar perturbation equation (2) in the Kerr
background reduces to

∇2� =
(
m2

� − α ∗RR
)

�,

∗RR = 96aM2r cos θ
(
3r2 − a2 cos2 θ

) (
r2 − 3a2 cos2 θ

)
(
r2 + a2 cos2 θ

)6 ,

(7)

where the Chern–Simons (CS) invariant is valued in the back-
ground. As one can see, the scalar field acquires an effec-
tive mass square m2

eff = m2
� − α ∗RR, which is position-

dependent and may become negative close to the horizon,
thus leading to possible tachyonic instability. When α = 0,
the above equation describes wave propagation of a free
scalar field in the Kerr background which has been studied
thoroughly and stability depends on the value of the physical
mass m�: When m� = 0, no instability is observed [50–52];
While for m� �= 0, superradiant instability may occur [53–
59]. For m� = 0 and α > 0, tachyonic instability is found to
exist for any nonzero spin as long as α exceeds a critical value
αc, and αc decreases as a is increased [32]. Scalarized rotat-
ing black hole solution, which is expected to be the end-state
of this tachyonic instability, has been constructed in Ref. [34]
in the so-called “decoupling limit”. It should be noted that
the scalar field perturbation equation (7) is invariant under
the transformation

α → −α, θ → π − θ. (8)

So the sign of α can be absorbed into the CS invariant by
redefining the θ -coordinate, and thus the situation with α < 0
should be the same as the case with α > 0, as has been
confirmed numerically and analytically in Ref. [33]. This is
different from the case in sEGB, where α > 0 and α < 0
yield different pictures of instability and spontaneous scalar-
ization, with the latter resulting the so-called spin-induced
spontaneous scalarization [43–49].

In the following sections, taking into account the symme-
try (8), we will only consider α > 0 and study carefully the
time evolution of the massive scalar field perturbation and
obtain object pictures on the influences of the coupling con-
stant α and the mass m� on wave dynamics in the dCSG
theory.
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3 Numerical method

We will apply the numerical method as Refs. [45,46,50,
51,60] to solve the scalar perturbation equation (7). In this
method, the tortoise coordinate r∗ and Kerr azimuthal coor-
dinate φ∗ are utilized, which are defined through the trans-
formation

dr∗ = r2 + a2


dr, dφ∗ = dφ + a


dr. (9)

In the new coordinates (t, r∗, θ, φ∗), the semi-infinite radial
domain outside the horizon r ∈ (r+,∞) is mapped to infinite
range r∗ ∈ (−∞,+∞) and the scalar perturbation equation
can be written as[

a2 sin2 θ −
(
r2 + a2

)2
]

∂2
t � +

(
r2 + a2

)2
∂2
r∗�

+2r∂r∗� − 4Mar∂t∂φ∗�

+2a
(
r2 + a2

)
∂r∗∂φ∗� + 

[
1

sin θ
∂θ (sin θ∂θ�)

+ 1

sin2 θ
∂2
φ∗�

]
=

(
m2

� − α∗RR
)

ρ2�. (10)

Taking into account the axial symmetry of the Kerr space-
time, the scalar perturbation can be decomposed as

�(t, r∗, θ, φ∗) =
∑
m

�(t, r∗, θ)eimφ∗ , (11)

wherem is the well-know azimuthal number. With this ansatz
and by introducing a new variable � ≡ ∂t�, finally the
perturbation equation can be cast into a form of two coupled
first-order partial differential equations

∂t� = �,

∂t� = 1

�2

[
− 4iamMr� +

(
r2 + a2

)2
∂2
r∗�

+
(

2iam(r2 + a2) + 2r
)

∂r∗�

+∂2
θ � +  cot θ∂θ�

−
(

m2

sin2 θ
+ m2

� − α∗RR
)

�

]
, (12)

where �2 ≡ (r2 + a2)2 − a2 sin2 θ .
Equations with the form as (12) are suitable for the method

of line [61]. Precisely, the derivatives in r∗ and θ directions
are approximated by finite differences, and the evolution
in the time direction is implemented with the fourth-order
Runge–Kutta integrator. Also, we impose physical boundary
conditions, namely ingoing wave at the horizon and outgoing
wave at infinity, following [62]. In practical calculations, one
has to truncate the infinite radial computational domain to a
finite range and put boundary conditions at the outer edges,
thus inevitably resulting spurious wave reflections from the
outer edges. To overcome this “outer-boundary problem”,

one can simply push the outer edges to very large values so
that the spurious reflections will not affect the observed sig-
nal for a sufficiently long evolution time. At the poles in the
angular direction θ = 0 and π , we impose physical boundary
conditions �|θ=0,π = 0 for m �= 0 while ∂θ�|θ=0,π = 0 for
m = 0 [60].

As Ref. [49], the initial data of the scalar perturbation is
considered to be a Gaussian distribution localized outside the
horizon at r∗ = r0∗ and has time symmetry,

�(t = 0, r∗, θ) ∼ Y�me
− (r∗−r0∗)

2

2σ2 , (13)

�(t = 0, r∗, θ) = 0. (14)

where Y�m is the θ -dependent part of the spherical harmonic
function and σ is the width of the Gaussian distribution. In
the following, without loss of generality, we take r0∗ = 20M .
Also, we set M = 1 so that all quantities are measured in
units of M . Observers are assumed to locate at r0∗ = 30M
and θ = π

4 .
One should note that the Kerr spacetime is not spherically

symmetric except when a = 0, so the mode-mixing phe-
nomenon occurs [32,52,63,64]: a pure initial �-multipole
will excite other multipoles with the same m as it evolves.
Taking into account this phenomenon and for simplicity, in
the following we will only consider axisymmetric perturba-
tions with � = m = 0.

4 Results

We have performed the time evolution of the scalar perturba-
tions for various values of spin a and scalar field mass m�,
and found that instability always occurs as long as the cou-
pling constant α exceeds a critical value αc. Representative
examples are given In Figs. 1 and 2 , with similar pictures
for other values of parameters.

In Fig. 1, time evolutions of the axisymmetric scalar per-
turbation are plotted with fixed spin and scalar field mass.
From the figure, one can see that instability will be triggered
once the coupling constant α exceeds a critical value αc, and
αc decreases as the spin a is increased. For α > αc, larger
α makes the instability to appear earlier and more violent.
In Fig. 2, we fix the spin and the coupling constant to study
the influence of the scalar field mass on the time evolution of
the perturbations. From the figure, one can see that increasing
m� will suppress the instability and delay its appearance, and
the instability will cease to appear if m� is further increased,
which implies that αc increases as m� is increased.

Physically, the influences of the coupling constant and
the scalar field mass on the stability can be understood
qualitatively from the profiles of the effective mass square
m2

eff = m2
� −α ∗RR, as shown in Fig. 3. The profiles exhibit
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(a) (b)

Fig. 1 Time evolution of the scalar perturbation for a = 0.1 and 0.8 with fixed scalar field mass m� = 0.5. The initial multipole we considered
is � = m = 0. Time is in units of M

(a) (b)

Fig. 2 Time evolution of the scalar perturbation. The parameters are fixed as (a = 0.1, α = 30) (left) and (a = 0.8, α = 3.0) (right). The initial
multipole we considered is � = m = 0. Time is in units of M

Fig. 3 Profiles of the effective mass square m2
eff for a = 0.1 and 0.8 with fixed scalar field mass m� = 0.5
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odd parity under the transformation θ → π − θ as we have
already mentioned above in Eq. (8). We should note that the
effective mass square is a positive constantm2

eff = 0.52 when
α = 0. As α is increased and exceeds some value α0,m2

eff will
become negative in vicinity of the horizon for θ ∈ [0, π

2 ) and
become more negative when α is further increased. We note
that α0 < αc, which implies that small negative m2

eff < 0 is
not sufficient to trigger tachyonic instability. Only when m2

eff
is negative enough (α > αc) can the instability be developed.
With the further increase of α, the instability appears ear-
lier and becomes more violent for which m2

eff will become
more negative. Moreover, from the analytical definition of
the effective mass square, it is explicit that the influence of
the scalar field mass m� is opposite to that of the coupling
constant.

The more complete picture of the influences of the param-
eters (a, α,m�) on the onset of the tachyonic instability is
summarized in Fig. 4, from which the above mentioned phe-
nomena can be seen more clearly. When m� = 0, the scalar
field becomes massless and its wave dynamics has been stud-
ied in Ref. [32] by adopting a different numerical strategy.
Our results for this particular case are in good agreement with
those there.

5 Summary and discussions

In this work, within the framework of dCSG theory, we stud-
ied carefully the time evolution of the massive scalar field
perturbation on Kerr background by performing a (2 + 1)-
dimensional simulation. We found that tachyonic instability
always occurs for any nonzero spin a and any scalar field
mass m� as long as the coupling constant α exceeds a criti-
cal value αc. The value of αc depends on the values of a and
m�. For fixed m�, αc decreases as a is increased; While for
fixed a, αc increases as m� is increased, which means the

Fig. 4 Boundary between stable and unstable regions in a − α plane
for different scalar field masses. The initial multipole we considered is
� = m = 0

scalar field mass m� will suppress the instability or even
quench the instability if m� is large enough. Physically,
as shown in Fig. 3, the influences of the parameters α and
m� on the onset of the tachyonic stability can be explained
qualitatively from the behaviors of the effective mass square
m2

eff = m2
� − α ∗RR.

Although, we have obtained object pictures of the time
evolution of the scalar field perturbation and the quantita-
tive influences of the parameters (a, α,m�) on the onset of
the tachyonic instability, there remains several interesting
issues. From Figs. 1 and 2 , one can see that, if instability
is not triggered (α < αc), the scalar field perturbation will
exhibit oscillatory behavior at late time. Similar behavior has
already been observed in GR (α = 0) [65,66] and sEGB [46]
theories, and also in dCSG theory for spherically symmetric
black hole background [67], with analytical expression as

� ∼ cos(ωct)t
p, (15)

where ωc ∼ m�. The power-law index p exhibits transi-
tional behavior from p = −(� + 3/2) at intermediate times
to p = −5/6 at very late times. From the figures, it is inter-
esting to see that the coupling constant α nearly has no influ-
ence on such oscillatory behavior. How to understand this
phenomenon needs more careful studies on the late time tail.
Beyond the scalar field perturbation we considered in present
work, there is of course the possibility of gravitational field
perturbation as well. The coupling between the two types
of perturbations may make the phenomena richer. This issue
has been studied extensively for spherically symmetric black
hole background in Refs. [67–69]. It is interesting to extend
these studies to rotating case to see the influence of the black
hole spin. In this work, we only study the time evolution of
the scalar field perturbation in linearized level. The appear-
ance of instability indicates the possible existence of scalar-
ized black holes as an end-state. To gain better understand-
ing of the fate of this instability, a full non-linear evolution
of the perturbation and the construction of scalarized black
holes are called for. As perturbations with higher azimuthal
number m normally trigger more moderate instability, so in
this work we only focus on axisymmetric perturbations with
m = 0. For perturbations with m �= 0, beyond the tachyonic
instability, there may appear another type of instability for
massive scalar field perturbations, the well-known superradi-
ant instability [70]. Unfortunately, as the growing time of the
superradiant instability is usually very large, the observation
of this instability requires a long stable time evolution of the
perturbations, which will be a great challenge for numerical
calculations. We leave these questions for further investiga-
tions.
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