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Abstract We demonstrate that the symmetric elliptic poly-
nomials Eλ(x) originally discovered in the study of gener-
alized Noumi–Shiraishi functions are eigenfunctions of the
elliptic Ruijsenaars–Schneider (eRS) Hamiltonians that act
on the mother function variable yi (substitute of the Young-
diagram variable λ). This means they are eigenfunctions of
the dual eRS system. At the same time, their orthogonal com-
plements in the Schur scalar product, Pλ(x) are eigenfunc-
tions of the elliptic reduction of the Koroteev–Shakirov (KS)
Hamiltonians. This means that these latter are related to the
dual eRS Hamiltonians by a somewhat mysterious orthogo-
nality transformation, which is well defined only on the full
space of time variables, while the coordinates xi appear only
after the Miwa transform. This observation explains the dif-
ficulties with getting the apparently self-dual Hamiltonians
from the double elliptic version of the KS Hamiltonians.

1 Introduction

The Calogero system [1] and its various trigonometric [2–7]
and elliptic [6–8] generalizations is one of the basic examples
in the theory of integrable systems, which, after a discovery
of integrable properties of QFT effective actions [9–11], are
at one of the focuses of modern theoretical studies. The whole
Calogero–Sutherland–Ruijsenaars–Schneider family is rich
enough for study the P Q dualities [12–21] (see also the spec-
tral duality version in [22–27]), and one may hope this would
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be the first case where the self-dual double-elliptic (dell) sys-
tem will be clearly formulated and investigated [28–34].

On the physics side, the dell systems describe the top
example of Seiberg–Witten theory: the low-energy limit of
six-dimensional supersymmetric Yang–Mills system with
adjoint matter multiplet [29,30,35], while on the algebraic
side, the double compactified network of the Ding–Iohara–
Miki algebra [36,37] (see also [38]). A detailed discussion
can be also found in [39].

At the moment, we are still stack at the previous stage: an
explicit formulation of elliptic-trigonometric duality. Indeed,
though the P Q duality has been explicitly formulated both
at the classical [12–21] and quantum [40–42] levels for the
rational and trigonometric systems, and, in principle, it is
basically clear how it should be lifted to elliptic systems, any
explicit formulas has been lacking so far in the multi-particle
case. This paper is a big step towards a resolution of this
problem.

We will discuss solely the quantum duality, where the task
is to find a dual pair of functions (called mother functions)
of two sets of variables, x and y, and the two sets of Hamil-
tonians for which they are the eigenfunctions. Within the
Calogero–Sutherland–Ruijsenaars–Schneider family, one of
the sets of variables is usually considered as the Miwa trans-
form of the “time variables” {pk}, while the other set cor-
responds to an analytical continuation from lengths of the
Young diagram λ. The mother functions themselves are then
related to various symmetric polynomials Pλ{p} from the
Schur-Macdonald family. The Hamiltonians are well known
up to the eRS case, though their dual versions are not known.
However, using the P Q duality, we are still able to find
the eigenfunctions Eλ{pk} of these latter. In this paper, we
demonstrate that they are actually expressed through the
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elliptic Macdonald functions constructed recently in [43]. A
candidate for the dual Hamiltonian was proposed by P. Koro-
teev and Sh. Shakirov [35]1 (in fact, they proposed a dell ver-
sion of the Hamiltonians, which is, however, not self-dual)
but, as we explain in this paper, their eigenfunctions are not
exactly the same elliptic Macdonald polynomials Eλ{pk},
but rather their orthogonal complements. This sounds like
an innocent difference, but in fact orthogonality is a some-
what strange requirement within this context. In particular,
it is naturally defined in the space of time-variables {pk}, i.e.
requires a lift from symmetric polynomials to a larger space
(and thus has no immediate analogue for the y variables).
Even more important, this prevents the full KS Hamiltonians
from being explicitly self-dual so that, at least, one more step
is necessary to resolve the puzzle with the dell systems, and to
clarify the apparent difference between H K S and an explicit
N = 2 example from [28] as well as N > 2 examples of
[29–34].

It may seem straightforward to find a substitute of H K S

that act on variables x in explicitly known polynomials Eλ(x)

and leave them intact. However, one has to find as many such
Hamiltonians as there are x variables, and all these Hamil-
tonians have to commute. To put it differently, one has to
construct a generating function of Hamiltonians that depends
on an auxiliary spectral parameter u, and, for instance, in the
case of KS Hamiltonians, this spectral parameter would be
better to introduce in a tricky way [45]: H K S are made in
a non-local way from simpler auxiliary operators O trig(u)

depending already on the spectral parameter. As we demon-
strate in this paper, the drop-out of u-dependence is a corol-
lary of some θ -function identities. In other words, the eigen-
value equations for H K S have an additional hidden structure,
which is not explicit, and it is a question if and how it can be
preserved by the change of the eigenfunctions and Hamilto-
nians. All this remains for the future work.

To summarize, in this paper, in Sect. 2, we explain the
notion of duality, and, in Sect. 3, we define a bi-orthogonal
pair of elliptic polynomial systems, Pλ{pk} and Eλ{pk}. Fur-
ther, we demonstrate that

• Eλ{p} as functions of analytically continued λ −→ {y}
are the eigenfunctions of the eRS Hamiltonians (Sect. 4).

• Pλ(xi ) as functions of {xi } are the eigenfunctions of the
H K S when the coordinate torus is degenerate (Sect. 5).

• The independence of the spectral parameters, which
makes the latter problem self-consistent, follows from
a family of theta-function identities (Sect. 5).

• Similar identities also explain the equivalence to solu-
tions found previously in [46] (Sect. 5).

All these relations are summarized in the diagram of Sect. 6.

1 See also an earlier N = 2 version in [44].

• Eλ{p} furnish a “vertical” representation of elliptic Ding-
Iohara-Miki (eDIM) algebra, while the conjugate of
trigonometric degeneration of H K S corresponds to a
commuting subalgebra inside the eDIM algebra (Sect. 7).

We end with a short conclusion.
Notation The Pochhammer symbols are defined to be

(z; q)∞ :=
∞∏

n=0

(1 − zqn),

(z; q, w)∞ :=
∞∏

n,m=0

(1 − zqnwm) (1)

We need both the odd θ -function that we define as2

θω(z) := (z; q)∞(q/z; q)∞ (3)

and one of the even θ -functions

θ(e)
ω (z) :=

∑

k∈Z
zkωk2

(4)

The elliptic �-function is defined to be

�(z; q, w) := (qw/z;w, q)∞
(z;w, q)∞

= exp

[
∑

m

zm − (wq/z)m

(1 − qm)(1 − wm)m

]
(5)

The elliptic Pochhammer symbol is defined as

�(z; q, ω)n := �(qnz; q, ω)

�(z; q, ω)
(6)

We also use the notation

ψ(x) = θω

( q
t x

)
θω(t x)

θω(x)θω(qx)
, ζ(z) = θω(q2z)θω(t z)

θω(qtz)θω(qz)
(7)

In particular, ψ(x/q) = ψ(x−1) and ψ(t z) = ζ(z)
∣∣∣
q↔t

.

Throughout the paper, we denote symmetric functions of
variables xi as Mλ(xi ), Pλ(xi ), Eλ(xi ), while these polyno-
mials as functions of power sums pk := ∑

i xk
i are denoted as

Mλ{pk}, Pλ{pk}, Eλ{pk}. The elementary symmetric poly-
nomials [48] are denoted through ek , and monomial symmet-
ric polynomials [48], through mλ.

2 It differs by a factor from the standard odd θ-function [47]:

θ1(u; τ) = iw1/8 · (w; w)∞√
z

· θw(z)
∣∣∣
w=e2π iτ ,z=e2π iu

(2)
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2 Duality

2.1 The notion of quantum duality

The idea of P Q-duality of integrable many-body systems
was first proposed by S. Ruijsenaars [12] and was later dis-
cussed in [13–21] at the classical level and in [40–42] at the
quantum level. While the classical P Q-duality is realized
just in terms of Hamiltonians and their canonical transfor-
mations [19–21], the quantum duality requires the eigenvalue
problem, i.e. the Hamiltonians are accompanied by the eigen-
functions from the very beginning. That is, if the eigenvalue
problem for the Hamiltonian Ĥx , which is an operator acting
on the variable x , looks like

Ĥx · �(x; λ) = E(λ)�(x; λ) (8)

then the dual Hamiltonian acts on the variable λ:

Ĥ (D)
λ · �(D)(λ; x) = E (D)(x)�(D)(λ; x) (9)

so that �(D)(λ; x) = �(x; λ). Here E and E (D) are some
fixed functions of the variables x and λ accordingly. In the
case of many-body integrable system there are several coor-
dinates xi , i = 1, . . . , N and the corresponding λi are associ-
ated with the separated variables. Integrability implies that,
in this case, there are N commuting Hamiltonians and N
dual Hamiltonians. In this context, one naturally considers
the eigenfunction �λ(x) as a function of the two contin-
uous variables x and λ. In the case of Hamiltonians from
the Calogero–Sutherland–Ruijsenaars–Schneider family, the
most informative are the Hamiltonians of the Dell system,
which are elliptic both in the coordinates and in momenta,
and are self-dual, i.e. Ĥk = Ĥ (D)

k .

2.2 Duality in the trigonometric Ruijsenaars system

The simplest example is provided by the trigonometric Rui-
jsenaars system, which is self-dual. Its Hamiltonians are
explicitly given by

H (q,t)
k = t

k(k−1)
2

∑

I⊂{1,...,N }
|I |=k

∏

i∈I

⎡

⎣
∏

j∈{1,...,N }\I

(
1 − t yi

y j

)

(
1 − yi

y j

)

⎤

⎦
∏

i∈I

q yi ∂yi .

(10)

The eigenfunctions of these Ruijsenaars Hamiltonians are
the Macdonald polynomials:

H (q,t)
k Mλ(xi ) = E (k)

λ (q, t) · Mλ(xi ) (11)

where the eigenvalues are given by

E (k)
λ (q, t) = ek(q

λi t N−i ) (12)

Since this system is self-dual, i.e. the eigenfunction coin-
cides with its dual, one just needs the property �(λ; x) =

�(x; λ). This is guaranteed by the duality relation of the
Macdonald polynomials:

Mμ(qλi t−i )

Mμ(t−i )
= Mλ(qμi t−i )

Mλ(t−i )
(13)

In fact, the normalization coefficient Mλ(t−i ) can be chosen
in a different form, which we will need in further elliptic
generalization.

Consider the set of xi := t−i , i = 1, . . . , . . . , N and the
Young diagram such that lλ ≤ N . Then,

pk = 1

tk N

1 − tk N

1 − tk
(14)

and

Mλ(xi ) = tνλ
∏

i< j≤N

(qλi −λ j t j−i ; q)∞(t j−i+1; q)∞
(qλi −λ j t j−i+1; q)∞(t j−i ; q)∞

= tνλ
∏

i< j≤N

(qλi −λ j t j−i ; q)∞
(qλi −λ j t j−i+1; q)∞

·
N∏

i=1

(t i ; q)∞
(t; q)∞

∼ qDimλ(A = q N ) (15)

where qDimλ is the Macdonald dimension, and νλ := ∑
i (i−

1)λi . In particular, one may put N = ∞ (assuming that
|t | < 1).

3 Elliptic Macdonald polynomials

In this section, we define the two conjugate systems of sym-
metric polynomials that are the main players in the paper.
We call them elliptic Macdonald polynomials. They come as
a particular case of the generalized Noumi-Shiraishi (GNS)
polynomials [43] defined as a certain truncation of an explicit
series expression. These polynomials form a basis in the
space of symmetric functions. An essential property of both
these systems of polynomials is that their coefficients are
expressed not though separate θ -functions, but through their
peculiar combinations ζ(z) and ψ(z) differing by the permu-
tation of q and t .

3.1 Pλ{p} polynomials

The basic systems of polynomials, P(q,t,ω)
λ (xi )was defined in

[39,43,49] (in the latter reference, this system is obtained as a
particular case of the GNS polynomials when ξ(z) = θω(z)),
and can be described in the following way generalizing the
Noumi-Shiraishi representation of the Macdonald polynomi-
als [50]:
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P(q,t,ω)
λ (xi ) =

N∏

i=1

xλi
i ·

∑

mi j

Cλ
n (mi j |q, t)

∏

1≤i< j≤N

(
x j

xi

)mi j

(16)

where mi j = 0 for i ≥ j , mi j ∈ Z≥0, the number of lines in
the Young diagram λ does not exceed N , and

Cλ
n (mi j , |q, t) := ∏n

k=2
∏

1≤i< j≤k

�
(

qλ j −λi +∑
a>k (mia−m ja)t i− j+1; q, ω

)

mik

�
(

qλ j −λi +∑
a>k (mia−m ja)qti− j ; q, ω

)

mik

×

×∏n
k=2

∏
1≤i≤ j<k

�
(

qλ j −λi −m jk+∑
a>k (mia−m ja)qti− j−1; q, ω

)

mik

�
(

qλ j −λi −m jk+∑
a>k (mia−m ja)t i− j ; q, ω

)

mik

As it was explained in [39, sec.3], P(q,t,ω)
λ (xi ) are symmetric

polynomials, which is a consequence of a series of non-trivial
θ -function relations. They form a ring with the properties
described in [43]. The first few of these polynomials are

P(q,t,ω)
[1] {pk} = p1

P(q,t,ω)
[1,1] {pk} = p2

1 − p2

2

P(q,t,ω)
[2] {pk} = 2 − ζ(1)

2
p2 + ζ(1)

2
p2

1

P(q,t,ω)
[1,1,1] {pk} = p3

3
− p2 p1

2
+ p3

1

6

P(q,t,ω)
[2,1] {pk} = p2 p1 + ζ(1) + ζ(t) − 3

3
p3

− ζ(1) + ζ(t) − 2

2
p2 p1 + ζ(1) + ζ(t)

6
p3

1

P(q,t,ω)
[3] {pk} =

(
1 − ζ(q)ζ(1) + ζ(q)ζ(1)2

3

)
p3

+ ζ(q)ζ(1)

(
1 − ζ(1)

2

)
p2 p1

+ ζ(q)ζ(1)2

6
p3

1 (17)

More examples can be found in [43].

3.2 Eλ{p} polynomials

3.2.1 Orthogonality and E polynomials

Let us define a conjugate system of polynomials in the fol-
lowing way. Denote χλ� the coefficients of the p-expansion
of the

P(q,t,ω)
λ {pk} =

∑

�

χλ�(q, t, ω) · p� (18)

Then, the set of polynomials

P(q,t,ω)⊥
λ {pk} =

∑

�

χ−1
�λ(q, t, ω) · p�

z�

(19)

with χ−1 being the inverse matrix, p� := ∏
i=1 �i and z�

being the standard symmetric factor of the Young diagram
(order of the automorphism) [51], is orthogonal,

〈
P(q,t,ω)

λ

∣∣∣P(q,t,ω)⊥
μ

〉
= δλμ (20)

w.r.t. to the measure
〈
p�

∣∣∣p�′
〉

= z�δ�,�′ (21)

Note that, in the Macdonald limit ω → 0,

P(q,t,ω→0)⊥
λ {pk} = P(t,q,ω→0)

λ∨ {(−1)k+1 pk} (22)

This suggests to define a system of symmetric polynomials

E (q,t,ω)
λ {pk} := P(t,q,ω)⊥

λ∨ {(−1)k+1 pk} (23)

such that

E (q,t,0)
λ {pk} = P(q,t,0)

λ {pk} = M (q,t)
λ {pk} (24)

The first few of E (q,t,ω)
λ (pn) polynomials are given by

E (q,t,ω)
[1] {pk} = p1 (25)

E (q,t,ω)
[1,1] {pk} = 1

2
(p2

1 − p2) (26)

E (q,t,ω)
[2] {pk} = 2 − ψ(t)

2
p2

1 + ψ(t)

2
p2, (27)

E (q,t,ω)
[1,1,1] {pk} = p3

3
− p2 p1

2
+ p3

1

6
(28)

E (q,t,ω)
[2,1] {pk} = 1

6
(3 − ψ(t)ψ(t2))p3

1 + 1

2
(ψ(t)ψ(t2) − 1)p1 p2

− 1

3
ψ(t)ψ(t2)p3 (29)

E (q,t,ω)
[3] {pk} =

(
1 − ψ(t)

2
− ψ(qt)

2
+ ψ(t)ψ(t2)ψ(qt)

6

)
p3

1

+ ψ(t) + ψ(qt) − ψ(t)ψ(t2)ψ(qt)

2
p1 p2

+ ψ(t)ψ(qt)ψ(t2)

3
p3 (30)
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3.2.2 Ring structure

The E (q,t,ω)
λ {pk} polynomials form a commutative ring (iso-

morphic to the ring of symmetric polynomials):

E (q,t,ω)
λ {pk}E (q,t,ω)

μ {pk} =
∑

ν

N ν
λμ(q, t, ω)E (q,t,ω)

ν {pk}.

(31)

The coefficients N ν
λμ(q, t, ω) have some nice properties:

1. They vanish whenever the corresponding Littlewood–
Richardson coefficient vanishes.

2. They are elliptizations of the (q, t)-Littlewood–Richardson
coefficients for Macdonald polynomials, and, when the
latter are factorized, they also factorize into products of
theta functions.

It is not hard to guess a formula for some classes of ring
coefficients. The important example is the Pieri rule:

E (q,t,ω)
[1] {pk}E (q,t,ω)

μ {pk} = p1 E (q,t,ω)
μ {pk}

=
l(μ)+1∑

i=1

i−1∏

j=1

ψ

(
qμi t1−i

qμ j t1− j

)
E (q,t,ω)

μ+1i
{pk}. (32)

where μ+1i denotes a diagram obtained from the diagram μ

by adding one box in column i . If μ + 1i is not a Young dia-
gram, the coefficient in front of E (q,t,ω)

μ {pk} vanishes auto-
matically.

4 Eλ{ p} as solutions to dual eRS system

The eRS Hamiltonians are manifestly given by

H (q,t,ω)
k = t

k(k−1)
2

∑

I⊂{1,...,N }
|I |=k

∏

i∈I

⎡

⎣
∏

j∈{1,...,N }\I

θω

(
t yi
y j

)

θω

(
yi
y j

)

⎤

⎦

×
∏

i∈I

q yi ∂yi . (33)

Their eigenfunctions �λ(yi )
eRS were conjectured in [52,

Eq.] (see also (66) below). In this section, we are going to
construct the dual of these eigenfunctions following the pat-
tern of Sect. 2. That is, we use the duality relation

�eRS
λ (yi )

∣∣∣
yi =qμi t−i

= �(D)
μ (xi )

∣∣∣
xi =qλi t−i

(34)

where the dual functions �
(D)
λ (xi ) are eigenfunctions of the

dual eRS Hamiltonians (yet to be evaluated). We demonstrate
below that

�(D)
μ (xi ) ∼ E (q,t,ω)

μ {pn} (35)

by checking that, upon a proper choice of the normaliza-
tion factor, it satisfies the eigenvalue equations with the
Hamiltonians (33) w.r.t. to the variables yi = qμi t−i . Here
pn = ∑

i xn
i .

4.1 eRS eigenfunctions

The first eRS Hamiltonian is given by

H (q,t,ω)
1 =

N∑

i=1

∏

j �=i

θω

(
t yi
y j

)

θω

(
yi
y j

) q yi ∂yi , (36)

where N is the number of particles.
The eRS Hamiltonian (36) is related to the Pieri’s rule (32).

One can see this by conjugating H (q,t,ω)
1 with the function

F (q,t,ω)(y) =
∏

i< j

[
yβ

j ϒ(q,t,ω)

(
yi

y j

)]
(37)

where β = ln t
ln q and

ϒ(q,t,ω)(y) =
∏

n,m≥0

(1 − yωnqm)
(
1 − (t y)−1ωn+1qm+1

)

(1 − t yωnqm)
(
1 − y−1ωn+1qm+1

)

=
∏

i< j≤N

�(yt; q, ω)∞
�(y; q, ω)∞

(38)

Up to a constant factor, it is an immediate elliptization of
(15).

The function ϒ satisfies a simple difference equation

ϒ(q,t,ω)(qy)

ϒ(q,t,ω)(y)
= θω(t y)

θω(y)
, (39)

and thus

F (q,t,ω)(y)q yi ∂yi (F (q,t,ω)(y))−1

=
∏

j<i

⎡

⎣t−1
θω

(
t
q

y j
yi

)

θω

(
1
q

y j
yi

)

⎤

⎦
∏

j>i

⎡

⎣
θω

(
yi
y j

)

θω

(
t yi

y j

)

⎤

⎦ q yi ∂yi . (40)

From Eq. (40) we see that after conjugation half of the fac-
tors in

∏
i �= j in H (q,t,ω)

1 cancel, while the rest are “dou-
bled”. Finally, using the property of the Jacobi theta func-
tion θω(y−1) = −y−1θω(y) on the factors in the first square
brackets in Eq. (40), we get the conjugated Hamiltonian,
which is expressible through the function ψ(y) from Eq. (7):

H̃ (q,tω)
1

def= F (q,t,ω)(y)H (q,t,ω)
1 (F (q,t,ω)(y))−1

=
N∑

i=1

∏

j<i

θω

(
t yi
y j

)
θω

(
qyi
t y j

)

θω

(
yi
y j

)
θω

(
qyi
y j

) q yi ∂yi

=
N∑

i=1

∏

j<i

ψ

(
yi

y j

)
q yi ∂yi . (41)
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If we send N → ∞ and set the variables yi to discrete
values

yi = qμi t1−i (42)

for some Young diagram μ we notice that the action of
the conjugated Hamiltonian (41) coincides with the Pieri
rule (32). Therefore, with proper normalizing constant, ellip-
tic Macdonald polynomials are eigenfunctions of the eRS
model. More specifically, the function �(q,t,ω)(pn|yi ),

�(q,t,ω)(pk |yi )|yi =qμi t1−i = (F (q,t,ω)(qμi t−i ))−1

× E (q,t,ω)
μ {pk} (43)

satisfies

H (q,t,ω)
1 �(q,t,ω)(pk |yi ) = p1�

(q,t,ω)(pk |yi ). (44)

The variables yk are the mother-function arguments,
which substitute the Young diagram index μ in Eμ{p} and
Eμ(x).

4.2 Higher eRS Hamiltonians and more Pieri rules

The eigenfunction �(q,t,ω)(pn|yi ) is in fact an eigenfunction
of a whole infinite set of eRS Hamiltonians, of which H (q,t,ω)

1
is only the first member.

Conjugating this Hamiltonian with the function F (q,t,ω)(�y)

we get

H̃ (q,t,ω)
n = F (q,t,ω)(y)H (q,t,ω)

k (F (q,t,ω)(y))−1

=
∑

1≤i1<...<ik≤N

∏

j1<i1

ψ

(
yi1

y j1

) ∏

j2<i2
j2 �=i1

ψ

(
yi2

y j2

)

×
∏

j3<i3
j3 �=i1,i2

ψ

(
yi3

y j3

)
· · ·

×
∏

jk<ik
jk �=i1,...,ik−1

ψ

(
yik

y jk

)
q y1∂y1+···+yk∂yk . (45)

These Hamiltonians can also be understood as further Pieri
rules for elliptic Macdonald polynomials E (q,t,ω)

λ :

E (q,t,ω)
[1n ] (pk)E (q,t,ω)

μ (pk) = en(pk)E (q,t,ω)
μ {pk}

=
∑

i1<...<ik

∏

j1<i1

ψ

(
qμi1 t1−i1

qμ j1 t1− j1

) ∏

j2<i2
j2 �=i1

ψ

(
qμi2 t1−i2

qμ j2 t1− j2

)
· · ·

×
∏

jk<ik
jk �=i1,...,ik−1

ψ

(
qμik t1−ik

qμ jk t1− jk

)
E (q,t,ω)

μ+1i1+···+1ik
{pk}, (46)

where ek{pk} = s[1k ]{pk} are elementary symmetric func-
tions. Correspondingly, the eigenvalues of the higher Hamil-
tonians are given by elementary symmetric functions of pn

variables

H (q,t,ω)
k �(q,t,ω)(pk |yi ) = ek{pk}�(q,t,ω)(pk |yi ). (47)

5 Pλ(x) as the eigenfunctions of HKS in the
elliptic-trigonometric limit

The KS Hamiltonians are elliptic both in momenta and coor-
dinates. Here we consider the case when the coordinate
torus is degenerate so that the dependence on coordinates
is trigonometric, we call this as ell-trig case. If one considers
the trig-ell case instead, the KS Hamiltonians become the eRS
Hamiltonians. Since the KS Hamiltonians are not self-dual,
one should not expect that degenerating the coordinate torus
would lead to the dual eRS system. Indeed, how we explain in
this section, the corresponding eigenfunctions are the Pλ(x)

polynomials, which are conjugate to the wave functions of
the dual eRS system, E (q,t,ω)

λ w.r.t. to the Schur scalar prod-
uct. As it follows from this scalar product, the conjugation

can be realized with the substitutions pk → −1

k

∂

∂pk
, which

is not easy to realize on the subspace of finite number of the
Miwa variables xi .

5.1 Pλ(x) as eigenfunctions of the ell-trig KS Hamiltonians

One of the possibilities to proceed with the ell-trig KS Hamil-
tonians is to notice directly that their wave functions con-
structed in [46, Eqs. (72)–(73)] are nothing but the Pλ(x)

polynomials. In order to see this, one has to use rather tricky
relations between the odd and even θ -functions, the simplest
of which is

θ
(e)
ω (q2t−1)θ

(e)
ω (q2tω−1) − tθ(e)

ω (q2t)θ(e)
ω (q2t−1ω−1)

θ
(e)
ω (q2tω−1)θ

(e)
ω (t) − qθ

(e)
ω (tω−1)θ

(e)
ω (q2t)

= θω(q2)θω(t)

θω(qt)θω(q)
(48)

The formulas in [43] actually used brute force calculations.
A smarter approach is to use the generating function of the
KS Hamiltonians in the determinant form [45], which can be
written, in the ell-trig case, as
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Otrig(u) = 1

�(x)
det

1≤i, j≤N

(
x N− j

i θω(ut N− j qxi ∂xi )
)

. (49)

This matrix is triangular in the basis of monomial symmetric
polynomials mλ(x). The currentOtrig(u) can be diagonalized
with eigenvalues

κλ(u) =
N∏

i=1

θω(uqλi t N−i ). (50)

However, since Otrig(u) for different values of u do not com-
mute, the eigenfunctions in general depend on u. The excep-
tions here are the eigenfunctions correspond to λ = [1k],
m[1k ](x) = s[1k ](x).

Otrig(v)

(
m[1,1]
m[2]

)
=

(
θω(qtv)θω(qv) 0

θω(q2tv)θω(v) − θω(q2v)θω(tv) θω(v)θω(q2tv)

) (
m[1,1]
m[2]

)
(51)

To get commuting Hamiltonians one should take the ratio
of the generating functions Otrig(u) at two different values
of u:

H(v, u) = Otrig(v)(Otrig(u))−1. (52)

Let us compute the first nontrivial eigenfunction of H(v, u),
which should not depend on u and v. The matrix of the oper-
ator H(v, u) in the basis of mλ on the second level reads

H(v, u)

(
m[1,1]
m[2]

)
=

(
θω(qtv)θω(qv)
θω(qtu)θω(qu)

0
θω(q2u)θω(tu)θω(v)θω(q2tv)

θω(u)θω(qu)θω(qtu)θω(q2tu)
− θω(q2v)θω(tv)

θω(qu)θω(qtu)
θω(v)θω(q2tv)

θω(u)θω(q2tu)

)(
m[1,1]
m[2]

)
(53)

We need left eigenfunctions, at the second level they are

�[1,1] = m[1,1]

�[2] = m[2] + θω(q2)θω(t)

θω(q)θω(qt)
· m[1,1] = m[2] + ζ(1) · m[1,1]

(54)

The eigenfunctions indeed are independent of u and v. This
depends on the following identity:

θω(u)θω(q2tu)θω(q2v)θω(tv) − θω(q2u)θω(tu)θω(v)θω(q2tv)

θω(u)θω(q2tu)θω(qv)θω(qtv) − θω(qu)θω(qtu)θω(v)θω(q2tv)
= θω(q2)θω(t)

θω(q)θω(qt)
= ζ(1) (55)

We notice that the eigenfunctions (54), Eq. (54) are precisely
the Pλ{pk} polynomials.

Likewise, at the next level the left eigenfunctions are

�[1,1,1] = m[1,1,1]
�[2,1] = m[2,1] +

(
ζ(1) + ζ(t)

)
· m[1,1,1]

�[3] = m[3] + ζ(1)ζ(q) · m[2,1] + ζ(1)2ζ(q) · m[1,1,1]
(56)

and

�[1,1,1,1] = m[1,1,1,1]
�[2,1,1] = m[2,1,1] +

(
ζ(1) + ζ(t) + ζ(t2)

)
· m[1,1,1,1]

�[2,2] = m[2,2] + ζ(1)
(
ζ(1) + ζ(t)

)

·m[2,1,1] + ζ(t) · m[1,1,1,1]

�[3,1] = m[3,1] + ζ(1) · m[2,2]
+ζ(1)

(
ζ(q) + ζ(qt)

)
· m[2,1,1]

+ζ(1)
(
ζ(1)ζ(q) + ζ(1)ζ(qt)

+ζ(t)ζ(qt)
)

· m[1,1,1,1]

�[4] = m[4] + ζ(1)ζ(q)ζ(q2) · m[3,1]
+ζ(1)ζ(q)2ζ(q2) · m[2,2]
+ζ(1)2ζ(q)2ζ(q2) · m[2,1,1]
+ζ(1)3ζ(q)2ζ(q2) · m[1,1,1,1]

which are exactly the Pλ{pk} polynomials. We conjecture
that this statement is true at all levelsso that
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Ĥ(v, u) P(q,t,ω)
λ (x) =

N∏

i=1

θω(vqλi t N−i )

θω(uqλi t N−i )
· P(q,t,ω)

λ (x)

(57)

Note that counterparts of (55) behind (57) are more involved,
the simplest one being

θω(tmu)θω(tm+1qm+2u)θω(tmqm+2v)θω(tm+1v) − θω(tmqm+2u)θω(tm+1u)θω(tmv)θω(tm+1qm+2v)

θω(tmu)θω(tm+1qm+2u)θω(tmqv)θω(tm+1qm+1v) − θω(tmqu)θω(tm+1qm+1u)θω(tmv)θω(tm+1qm+2v)
=

m∏

i=0

ζ(qi )

(58)

The reason is that an elliptic function with two given poles is
fully defined by one of its zeroes and the overall scale. This is
also behind the identities like (48). There are plenty of other
relations associated with multiple poles.

6 ELS-functions [39], dualities and conjugation

In [39], there was introduced and discussed the ELS-function
defined in the following way:

PN (xi ; p|yi ; s|q, t, ω)

:=
∑

λ

N∏

i, j=1

N ( j−i)
λ(i),λ( j) (t y j /yi |q, s, ω)

N ( j−i)
λ(i),λ( j) (y j /yi |q, s, ω)

N∏

β=1

∏

α≥1

(
pxα+β

t xα+β−1

)λ
(β)
α

,

(59)

where

N (k)
λ,μ(u|q, s, ω)

:=
∏

j≥i≥1
j−i≡k (mod n)

�(uq−μi +λ j+1 s−i+ j ; q, ω)λ j −λ j+1

×
∏

j≥i≥1
j−i≡−k−1 (mod n)

�(uqλi −μ j si− j−1; q, ω)μ j −μ j+1 .

(60)

and p is another elliptic parameter.
This function is a lift of the P(q,t,ω)

λ (x) polynomial with
the Shiraishi functor [43] and is conjectured to play an essen-
tial role in description of the double elliptic systems. Here
we note that various trig-ell and ell-trig limits of the ELS-
function are related by dualities. Indeed, the P(q,t,ω)

λ (x) poly-
nomial is obtained fromPN (pN−i xi ; p|s N−i yi ; s|q, t, ω) in
the p → 0 limit. Indeed, consider the limit

FN (xi |yi |q, t, ω) := lim
p→0

PN (pN−i xi ; p|s N−i yi ; s|q, t, ω)

(61)

Then,

P(q,t,ω)
λ (xi ) =

N∏

i=1

xλi
i · FN

(
xi |qλi t N−i |q,

q

t
, ω

)
(62)

At the same time, this is related to the ω → 0 limit of the
ELS-function, [52]

EN (xi ; p|yi ; s|q, t) := lim
ω→0

PN (xi ; p|yi ; s|q, t, ω) (63)

via the formula [49]

FN (yi |xi |q, t, p) = N · EN (p−i/N xi ; p1/N |t i/N yi ; t−1/N |q, t)

(64)

with the normalization constant

N :=
(

(p; p)∞(pt; q, p)∞
(qp/t; q, p)∞

)N ∏

1≤i< j≤N

�(qxi/x j ; q, p)

�(t xi/x j ; q, p)

×
∏

1≤i< j≤N

(qxi/x j ; q)∞
(t xi/x j ; q)∞

(65)

Moreover, this mother function En(xi ; p|yi ; s|q, t) allows
one to construct also the eigenfunctions of the eRS Hamilto-
nians: as was conjectured in [52], the function

�eRS
μ (xi ; q, t, p)

:=
N∏

i=1

xμi
i · lim

s→1

EN (p
N−i

N xi ; p1/N |yi ; s|q,
q
t )

α(p|yi ; s|q,
q
t )

∣∣∣
yi =qμi t N−i

(66)

with α(p|yi ; s|q, t) being the constant term in the Shiraishi
function En(xi ; p|yi ; s|q, t), which does not depend on xi

(this normalization constant is necessary, since otherwise the
limit of s → 1 is singular), is an eigenfunction of the eRS
Hamiltonian:

H (q,t,ω)
1 �eRS

μ (xi ; q, t, p)=�μ(q, t, p) · �eRS
μ (xi ; q, t, p)

(67)

More discussion of this equation can be found in [53].
These formulas imply the conjecture that the eigenfunc-

tions of the full KS Hamiltonians can be obtained from the
limit s → 1 of the ELS-functions PN (xi ; p|yi ; s|q, t, ω):
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�K S
μ (xi ; q, t, p, ω) :=

N∏

i=1

xμi
i · lim

s→1

PN (p
N−i

N xi ; p1/N |yi ; s|q,
q
t , ω)

α f (p|yi ; s|q,
q
t , ω)

∣∣∣
yi =qμi t N−i

(68)

with some normalization constant α f (p|yi ; s|q,
q
t , ω) that

makes the expression non-singular in the s → 1 limit.
This should be the case, since the ELS-function describes
the Nekrasov function in the full �-background, while
s = e−2πε2 → 1 [39, Eq. (95)] describes its Nekrasov–
Shatashvili limit, and this the Nekrasov–Shatashvili limit that
describes the quantum integrable system. As usual, this limit
is singular and requires some accurate normalization. We
have checked this conjecture in the first terms of expansion
in the elliptic parameters p and ω.

Hence, we finally come to the diagram

PN (xi ; p|yi ; s|q, t, ω)

p→0↙ ↘ω→0

FN (xi |yi |q, t, ω)
(64)←→ EN (xi ; p|yi ; s|q, t)

(62) ↓ (66) ↓

P(q,t,ω)
λ (xi )

conj.←→ E (q,t,ω)
λ (xi )

duality←→ �eRS
μ (xi ; q, t, p) �

sec.5 ↑ sec.4 ↑ [52] ↑

ell-trig KS Hamiltonians dual eRS Hamiltonians eRS Hamiltonians
(unknown)

↑ ↑

−−−−−−−−−−−−−−−−−→
↖

full KS Hamiltonians self-dual dell Hamiltonians
(unknown)

The checked line was the point of our interest in this paper.
Its main drawback is the mysterious orthogonality relation
between the first two eigenfunctions and the lack of explicit
relation between the last two apart from (34). The top of the
table (the ELS-functions) is conjectured to provide solutions
to the full KS Hamiltonian eigenproblem via (68), which
implies the next, most interesting step to be done: since
(68) looks providing eigenfunctions of the non-self-dual KS
Hamiltonians, what are appropriate self-dual functions?

7 Elliptic DIM algebra and ell-trig KS Hamiltonians

7.1 New view on the vertical Fock representation of the
elliptic DIM algebra

Elliptic DIM algebra (eDIM) [54] is generated by currents
x±(z) and ψ±(z) satisfying commutation relations with an
elliptic structure function. To keep the presentation brief, we
do not give here these relations, which can be found e.g. in

[55]. It was also found in [55] that the eDIM algebra can be
rewritten as a direct sum of the trigonometric DIM algebra
and an additional Heisenberg subalgebra. We adopt this view
in this exposition.

The eDIM algebra is bi-graded with generators lying in
a Z

2 lattice, as shown in Fig. 1. Every node contains a sin-
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Fig. 1 The grading lattice of eDIM algebra. The generator at ver-
tex (n, m) is denoted by e(n,m). The generating currents are framed
in blue, x±(z) = ∑

n∈Z e(±1,n)z−n and ψ±(z) = exp
∑

n �=0 H±
n z−n =

exp
∑

n �=0 e±
(0,n)z

−n . Notice that the vertices on the vertical line unlike

the others contain two generators e±
(0,n). The red line denotes an example

of a Heisenberg subalgebra of slope 3
2

gle generator3 e(n,m), except for the nodes on the vertical
line which contain two e±

(0,m), which is marked by additional

small circles. The extra generators e+
(0,m) on the vertical axis

form a decoupled Heisenberg subalgebra commuting with
the rest of the DIM algebra.

There are two central charges C1,2 in the algebra, C2 asso-
ciated with the “elliptic” direction (vertical in Fig. 1), and C1

associated with the “trigonometric” one (horizontal in Fig. 1).
The central charges control the commutation relations in the
Heisenberg subalgebras of the eDIM algebra which corre-
spond to lines of rational slopes in theZ2 lattice. The Heisen-
berg subalgebra corresponding to the slope a

b is spanned by
the generators e(na,nb) (with an additional ± index in case of
the vertical subalgebra)

[e(na,nb), e(ma,mb)] ∼ (C−nb
1 Cna

2 − Cnb
1 C−na

2 )δn+m,0 (69)

Therefore, if, for a particular representation, the ratio ln C1
ln C2

is
rational, then there exists a commuting Heisenberg subalge-
bra inside the eDIM algebra of slope ln C1

ln C2
.

We are particularly interested in the vertical Fock rep-
resentation F (0,1)

q,t−1(u) of the eDIM algebra with C1 = 1,

C2 = √
t/q . In this representation, the both vertical subalge-

bras spanned by e±
(0,n) are commutative. The e+

(0,n) generators

3 (Elliptic) DIM algebra is defined as a deformation of the universal
enveloping algebra of the Lie algebra qW1+∞, hence it also contains
nonlinear combinations of generators like e2

(1,1) sitting at the same node
(2, 2) as e(2,2). When we say “one generator per node” we mean only
“primitive” generators not expressible as products of the lower ones.

turn out to be irrelevant in this representation: they commute
both between themselves and with the rest of the algebra. We
set them to zero. The rest of the generators can be expressed
through the horizontal Heisenberg subalgebra e(n,0), which
acts freely on the Fock space. The states of the representation
are labelled by Young diagrams, e.g. |μ, u〉.

In the vertical representation, the generating currents act
as follows [56,57]

x+(z)|μ, u〉 = 1

1 − q−1

l(μ)+1∑

i=1

δ

(
qμi t1−i u

z

)

×
∏

j<i

ψ

(
z

qμ j t1− j u

)
|μ + 1i , u〉, (70)

x−(z)|μ, u〉 = 1

1 − q

√
q

t

l(μ)∑

i=1

δ

(
qμi −1t1−i u

z

)

×
∏̃

j>i
ψ

(
qμ j −1t1− j u

z

)
|μ + 1i , u〉, (71)

ψ+(z)|μ, u〉 =
√

q

t

∏̃∞
j=1

ψ

(
qμ j t1− j u

z

)
|μ, u〉

=
√

q

t

θω

(
t
q

u
z

)

θω

(
u
z

)
∏

(i, j)∈μ

g(q j−1t1−i u/z))|μ, u〉, (72)

ψ−(z)|μ, u〉 =
√

t

q

∏̃∞
j=1

ψ

(
qz

qμ j t1− j u

)
|μ, u〉

=
√

t

q

θω

( q
t

z
u

)

θω

( z
u

)
∏

(i, j)∈μ

g(q1− j t i−1z/u))−1|μ, u〉. (73)

where g(x) = θω(q−1x)θω(t x)θω((q/t)x)

θω(qx)θω(t−1x)θω((t/q)x)
, and the tildes over the

infinite products indicate a regularization. One can immedi-
ately notice that the action of the zero mode x+

0 of the current
x+(z) coincides with the Pieri rule (32) for the elliptic sym-
metric functions E (q,t,ω)

λ {pn}. Indeed, we have

∮
dz

z
x+(z)|μ, u〉 = 1

1 − q−1

l(μ)+1∑

i=1

∮
dz

z
δ

(
qμi t1−i u

z

)

×
∏

j<i

ψ

(
qμi t1−i u

qμ j t1− j u

)
|μ + 1i , u〉

= 1

1 − q−1

l(μ)+1∑

i=1

∏

j<i

ψ

(
qμi t1−i u

qμ j t1− j u

)

×|μ + 1i , u〉. (74)

This observation suggests that the horizontal Heisenberg
subalgebra of the eDIM algebra spanned by e(n,0) acts on the
vertical Fock representation in the same way as the power
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sum variables pn and n ∂
∂pn

act on E (q,t,ω)
λ {pn}:

e(n,0)E (q,t,ω)
λ {pn} ∼

{
pn E (q,t,ω)

λ {pn}, n > 0,

|n| ∂
∂p|n| E (q,t,ω)

λ {pn}, n < 0.
(75)

It is natural to ask: how does the vertical Heisenberg sub-
algebra act on E (q,t,ω)

λ {pn}? The answer is given by the con-
jugates of the ell-trig KS Hamiltonians. As we have shown in
Sect. 5, the conjugates of E (q,t,ω)

λ {pn}, called P(q,t,ω)
λ {pn},

are eigenfunctions of the these Hamiltonians, so E (q,t,ω)
λ {pn}

themselves are eigenfunctions of hypothetical conjugate ell-
trig KS Hamiltonians.

Let us note that the eigenvalues of the conjugate Hamilto-
nians coincide. The conjugation we mean here is with respect
to the standard Schur scalar product (21). Therefore, we can
equivalently consider the diagonal action of the KS Hamil-
tonians on P(t,q,ω)

λ∨ {(−1)n+1 pn} instead of the action of the

conjugate KS Hamiltonians on E (q,t,ω)
λ {pn}. To get the cor-

rect eigenvalues ψ±(z), we cook up the following combina-
tion of Hamiltonians (52):

χ⊥
N (z) =

√
q

t
H

(
t

t1−N u

z
,

t1−N u

z

)
H

(
q

t

t1−N u

z
, q

t1−N u

z

)
.

(76)

The operator χ(z) is diagonal in the basis of polynomials
P(t,q,ω)

λ∨ (x). Expressing χ(z) in terms of pn , taking the (reg-
ularized) limit N → ∞, and then conjugating with respect to
the standard scalar product, we get a (hypothetical) operator
χ(z), which is diagonal in the basis E (q,t,ω)

λ {pn}, and whose
eigenvalues are

χ(z)E (q,t,ω)
λ {pn} =

√
q

t

∏̃∞
j=1

ψ

(
qμ j t1− j u

z

)
E (q,t,ω)

λ {pn}.
(77)

This is the operator representing the action of ψ+(z) of the
DIM algebra in the vertical Fock representation.

7.2 Ell-trig KS eigenvalues vs trigonometric RS system

It is curious that there exists a Hamiltonian with the same
eigenvalues as χ(z), but with eigenfunctions being ordi-
nary Macodnald polynomials. Indeed, consider the gener-
ating function of the trigonometric RS Hamiltonians

�(q,t)(u) =
N∑

k=0

(−u)k H (q,t)
k , (78)

where H (q,t)
k is given by (10), the trigonometric limit of

Eq. (33).
The operators �(q,t)(u) (unlike Otrig(u) from Eq. (49))

commute for different z and therefore can be diagonalized in
a basis independent of u. This basis is given by the Macdonald

polynomials. The eigenvalues κ
(q,t)
λ (u) are

κ
(q,t)
λ (u) =

N∑

k=0

(−u)kek(q
λi t N−i ) =

N∏

i=1

(1 − uqλi t N−i ),

(79)

where ek = s[1k ] denote the elementary symmetric functions.

We also notice that M (q,t)
λ (x) are eigenfunctions of

H (q−1t−1)
k :

H (q−1t−1)
k M (q,t)

λ (x) = ek(q
−λi t i−N )M (q,t)

λ (x). (80)

Having the commuting operators �(q,t)(u) and �(q−1,t−1)

(u) we can cook up an operator with eigenvalues coinciding
with that of Otrig(u):

O′(u) = (ω;ω)∞
∏

k≥0

�(q,t)(ωku)�(q−1,t−1)

(
ωk+1

u

)
. (81)

By construction the operator O′(u) is diagonalized by Mac-
donald polynomials and the eigenfunctions are

O′(u)M (q,t)
λ (x) =

N∏

i=1

θω(uqλi t N−i )M (q,t)
λ (x). (82)

Of course, we can take a “ratio” of two operators O′(u) for
two different values of u to get the eigenvalues as in Eq. (52):

H ′(v, u) = O′(v)(O′(u))−1. (83)

Taking this idea one step further, we can write an operator
with the same eigenvalues as χ(z) from Eq. (77):

χ ′(z) =
√

q

t
H ′

(
t

t1−N u

z
,

t1−N u

z

)
H ′

(
q

t

t1−N u

z
, q

t1−N u

z

)
.

(84)

Its eigenfunctions, however, are still ordinary Macdonald
polynomials.

Thus, in this subsection we have obtained an operator
H ′(v, u), whose polynomial eigenfunctions are enumerated
by Young diagrams with the eigenvalues coinciding with
those of the ell-trig KS Hamiltonian. However, its eigenfunc-
tions are not elliptic Macdonald polynomials, but instead are
given by the ordinary Macdonald polynomials. This fits the
observation that the elliptic DIM algebra is in fact a non-
trivial rewriting of the ordinary trigonometric DIM algebra.
It would be nice to find an explicit transformation between
the KS Hamiltonians and the “untwisted” Hamiltonians (83).
This transformation might also explain why the elliptic Mac-
donald polynomials are not orthogonal with respect to the
Macdonald scalar product: the “twist” does not respect the
orthogonality, so, from the same set of orthogonal Macdonald
polynomials, one gets two sets of conjugate elliptic Macdon-
ald polynomials E (q,t,ω)

λ {pk} and P(q,t,ω)
λ {pk}.
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8 Conclusion

As we see from the diagram of Sect. 6, the choice of
E (q,t,ω)

λ {pk} and P(q,t,ω)
λ {pk} for elliptic Macdonald polyno-

mials looks rather elegant. It is encouraging that E (q,t,ω)
λ {pk}

are indeed distinguished as the eigenfunctions of the dual eRS
Hamiltonians, while P(q,t,ω)

λ {pk} as the eigenfunctions of
the ell-trig KS Hamiltonians. The main open question which
remains is what are the substitutes of the KS Hamiltonians
as functions of pk : having these at hands, one could imme-

diately make a conjugation pk → −1

k

∂

∂pk
in order to obtain

dual eRS Hamiltonians, and, probably, further to construct
similarly self-dual Hamiltonians.

The main point is that H K S have a nice formulation
in terms of auxiliary operators O trig(u), which depend on
an extra parameter u and are not straightforwardly seen
at the level of eigenfunctions themselves. Drop-out of u-
dependence follows from the theta-function identities, which
are not very convenient to deal with, which complicates a res-
olution of the problem. Still, our results in this paper makes
this problem very clear and transparent, giving a hope that it
will be finally resolved. This will open a way to the search of
explicitly self-dual formulation of the dell system. A first task
on this way is to clarify the conjecture of [46] that the gen-
eralized Shiraishi function (the ELS-function [39]) provides
appropriate eigenfunctions: either of H K S or of the truly self-
dual Hamiltonians. The H K S option extends the problem to
search for a self-dual version of the Shiraishi construction.
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