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Abstract The present work deals with Cosmological model
of a three-form field, minimally coupled to gravity and
interacting with cold dark matter in the background of flat
FLRW space-time. By suitable choice of the dimension-
less variables, the evolution equations are converted to an
autonomous system and cosmological study is done by
dynamical system analysis. The critical points are determined
and the stability of the (non-hyperbolic) equilibrium points
are examined by center manifold Theory. Possible bifurca-
tion scenarios have been examined by the Poincaré index the-
ory to identify possible cosmological phase transition. Also
stabilities of the critical points have been analyzed globally
using geometric features.

1 Introduction

The series of observations for more than last two decades
strongly confirm that our universe is currently going through
a phase of accelerated expansion [1] preceding a smooth tran-
sition from decelerated era in recent past. There is a differ-
ence in opinion about the cause of this transition among the
cosmologists. One group has preferred modification of the
gravity theory while others are in favour of Einstein gravity
with introduction of some exotic matter having large −ve
pressure (known as dark energy (DE)). Observational evi-
dences show that the cosmic fluid consists of 69% DE, 26%
dark matter (DM) and rest is in the form of baryonic matter
and radiation [2]. Although, the cosmological constant is the
simplest choice for the DE candidate and is observationally
most favourable one, still cosmologists search for dynami-
cal DE models due to two severe drawbacks namely cosmo-
logical constant problem and cosmic coincidence problem
of cosmological constant [3]. Initially, Cosmologists have
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chosen the dynamic DE in the form of perfect fluid with
variable equation of state parameter of various forms (viz;
quintessence, tachyon, phantom [4] and chameleon [5,6]
etc). Subsequently, some complicated fields namely spinors
[7], vectors [8], and even higher order spin fields are chosen
as DE candidate. A three-form field has been shown in Ref.
[9,10] as a possible DE candidate and the dynamical sys-
tem analysis of the corresponding cosmological model has
been studied in Ref. [11]. It has been shown that the dual of
the three form fields is a scalar field and for non-quadratic
potential, the kinetic term of the scalar field is non-canonical
to have an equivalence with K-inflation model [12]. Further,
a non-quadratic dependence on the three-form Faraday term
is responsible for self-coupling nature of the scalar field [9].
For non-minimal coupling of the three form, the dual scalar
field character of the three-form will no longer hold. There are
no observational/experimental evidences for the fundamen-
tal scalar particles. In fact, some higher form field are very
much likely to be a candidate for DE and from cosmologi-
cal point of view these field do not violet the cosmological
principle. The higher form fields are very common in String
theory. Hence, attempts have been made to use a vector field,
a one-form field the DE candidate [13–16]. However, most
of the vector field models (also two-form fields) are not sta-
ble in nature [17]. However, it is found that three-form field
models are very much stable [18,19]. Hence, it is interesting
to consider a three-form field as a candidate for DE. In recent
past, it has been shown [19] that a three-form field as a DE
candidate provides accelerating universe. The present work
deals with dynamical system analysis of the evolution equa-
tions of the Cosmological model with three form scalar field
as the choice of DE while interacting DM in the form of dust.
Although the choice of interaction is purely phenomenologi-
cal but still the interaction term may resolve the coincidence
problem as energy densities of DE and DM are comparable
at stable fixed points.
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Our present work has lots of differences with earlier works
in [11,20,21]. In Ref. [11] the autonomous system [19–21]
is identical to our autonomous system (22–24), but they have
determined few critical points and have analyzed only one
critical point by center manifold theory. On the other hand,
we have determined all possible critical points both for inter-
acting and non-interacting cases. For non-hyperbolic critical
points center manifold theory has been used and global sta-
bility has been discussed with reference to bifurcation anal-
ysis using Poincaré index. In another work [20] the authors
have similar autonomous system confined to a finite region.
They have also analyzed few critical points from cosmolog-
ical point of view. Some of our cosmic epochs are identical
to them but we have procured other significant cosmic eras.
They have not analyzed the critical points using center man-
ifold theory and have not discussed global stability (as we
have extensively done in our work), rather they have per-
formed cosmological perturbations. In Ref. [21] the authors
have 5D phase space as they have considered baryon and radi-
ation as matter field in addition to interacting DE (three-form
field) and DM. They have chosen various form of the inter-
action term and have analyzed some of the critical points in
cosmological context. They have not employed center mani-
fold theory nor have discussed global stability for any critical
point. Therefore, present work is rich in dynamical system
analysis and have studied various cosmic scenarios with ref-
erence to cosmic phase transition using bifurcation analysis
[22–24].

The paper is organized as follows: Basic equations for
interacting 3-form field with DM in the form of dust has
been formulated in Sect. 2. In Sect. 3 the above evolution
equations are converted into an autonomous system by suit-
able choice of the dimensionless variables and critical points
are determined. Also stability of the non-hyperbolic equi-
librium points are discussed by formulating center manifold
at the equilibrium points. Finally cosmological implications
and conclusions are presented in Sect. 4.

2 Basic equations for three-form field cosmological
model

The action of a three-form field Aμνρ , minimally coupled to
gravity is given by [11]

SA = −
∫

d4x
√−g

[
1

2κ2 R − F2

48
− V

(
A2

)]
, (1)

where R is the Ricci scalar and V (A2) is the potential of the
three-form field Aμνρ having field strength tensor

Fμνρσ = 4 �[μ Aνρσ ] (2)

By notation, the square bracket indicates anti-symmetrization
of the indices involved and A2 = Aμνρ Aμνρ . Now, variation
of the above action with respect to the metric tensor gives the
usual Einstein field equations: Gμν = κ2Tμν with

Tμν = 1

6
Fμαβγ F

αβγ
ν + 6V ′(A2)Aμαβ A

αβ
ν − gμν

×
(

1

48
FαβγρF

αβγρ + V
(
A2

))
(3)

while the equation of motion of the three form field is
obtained by varying the action (1) with respect to Aμγρ as

�α Fαμγρ = 12V ′(A2)Aμγρ (4)

with V ′(A2) = dV
d A2 . As in the present work, we are consider-

ing homogeneous and isotropic FLRW space-time geometry,
so the three-form field depends only on time. Hence, the evo-
lution equation (4) gives A0μν = 0 i.e; a zero component of
the three-form field is non-dynamical and spatial components
are given by

Ai jk = a3(t)εi jk X (t). (5)

The co-moving field X is related to the three field as A2 =
6X2 and the evolution equation (4) simplifies to

Ẍ = −3H Ẋ − 3Ḣ X − V,X (6)

where an over dot indicates differentiation with respect to the
cosmic time ’t’ and a comma in the suffix denotes differenti-
ation with respect to the corresponding variable. Further, the
energy–density and thermodynamic pressure of the effective
perfect fluid corresponding to the energy–momentum tensor
(3) of the three-form field are given by

ρA = −T 0
0 = 1

2

(
Ẋ + 3HX

)2 + V (X), (7)

pA = T i
i = −1

2

(
Ẋ + 3HX

)2 − V (X) + XV,X (8)

with equation of state

ωA = pA
ρA

= −1 + XV,X

ρA
. (9)

Now, in the context of series of recent observations the above
three-form field (chosen as dark energy), interacting with
dark matter (in the form of dust) is chosen as the matter con-
text in the universe. So, the explicit form of the Einstein field
equations in the background of homogeneous and isotropic
space-time model are

3H2 = κ2(ρA + ρDM ), (10)

2Ḣ = −κ2 [(ρA + pA) + ρDM ] (11)

with energy conservation equations

ρ̇DM + 3HρDM = Q, (12)

ρ̇A + 3H(ρA + pA) = −Q. (13)
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Here the two matter components are assumed to be interact-
ing and Q represents arbitrary coupling. As a result of this
coupling between the matter fields the evolution equation (6)
modifies to

Ẍ + 3H Ẋ + 3Ḣ X + dV

dX
= − Q

Ẋ + 3HX
. (14)

3 Autonomous system, critical points and stability
analysis

In the present work we shall consider interacting three-form
field with exponential potential as

V (X) = V0e
−μX , (15)

where μ is a dimensionless parameter and V0 > 0.
This type of potential is termed as runaway potential, i.e.,
lim
X→∞V (X) = 0 and dV

dX < 0 ∀ X . The runaway potential

will correspond to well-behaved evolution of the background
[21].

Using the dimensionless variables (u, v, w, s) as defined
in [11], viz;

u : = 1√
6H

(Ẋ + 3HX), (16)

v : =
√
V√

3H
, (17)

w : = 2

π
tan−1 3X√

6
, (18)

s : =
√

ρDM√
3H

. (19)

The expression of equation of state parameter ωX =
pX/ρX and the total equations of state parameters ωtot can
be written as [11],

ωX = −1 + XV,X

ρX
= −1 − 1

u2 + v2

√
2

3
v2μ tan

[πw

2

]
,

(20)

ωtot = ptot
ρtot

= pX
ρX + ρDM

= −u2 − 1

3
v2

(
3 + √

6μ tan
[πw

2

])
. (21)

Thus the evolution equations in Sect. 2 can be converted
to an autonomous system as follows [11]

u′ = 3

2
u(1 − u2 − v2) +

√
3

2
v2μ

(
1 − u tan

[πw

2

])

−α

(
1 − u2 − v2

)

2u
(22)

v′ = 3

2
v(1 − u2 − v2) −

√
3

2
vμ

(
u + (−1 + v2) tan

[πw

2

])
(23)

w′ = 6

π
cos2

[πw

2

] (
u − tan

[πw

2

])
(24)

Table 1 The cosmological parameters, eigenvalues (λ1, λ2, λ3) and the
nature of critical points for this non-interacting model

Critical points λ1 λ2 λ3 ωX ωtot q Nature of critical points

P1 : (1, 0, 1
2 ) −3 0 −3 −1 −1 −1 Non-hyperbolic

P2 : (−1, 0,− 1
2 ) −3 0 −3 −1 −1 −1 Non-hyperbolic

P3 : (0, 0, 0) 3
2

3
2 −3 −1 0 1

2 Hyperbolic

where the interaction Q is chosen as Q = αρDMH [21]
and dash over a variable denotes differentiation with respect
to N = ln a. Hence, the first Friedmann equation gives
constraint on the variables as

u2 + v2 + s2 = 1 (25)

(as s is not independent so the dynamical system is of 3D
nature). The phase space is confined in a half cylinder of
height 2 where −1 � u � 1, 0 � v � 1, −1 � s �
1 and −1 � w � 1. Some non-hyperbolic critical points
are already analyzed in [11]. In the present work, on non-
hyperbolic critical points are studied with a view to analyze
bifurcation and Poincaré index. Cosmological evolutions are
also examined near these critical points.

3.1 Non interacting model: α = 0

Due to α = 0 the above autonomous system (22–24) simpli-
fies to

u′ = 3

2
u(1 − u2 − v2) +

√
3

2
v2μ

(
1 − u tan

[πw

2

])
,

(26)

v′ = 3

2
v(1 − u2 − v2) −

√
3

2
vμ

(
u + (−1 + v2) tan

[πw

2

])
, (27)

w′ = 6

π
cos2

[πw

2

] (
u − tan

[πw

2

])
. (28)

As the critical points of the above system are enclosed by a
half cylinder, so the only critical points are

P1

(
1, 0,

1

2

)
, P2

(
−1, 0,−1

2

)
and P3(0, 0, 0)

and these critical points are same as in Ref. [11]. But the
authors have analyzed only one critical point by using center
manifold theory. But in this context we analyze the stabil-
ity of all critical points by center manifold theory (for non-
hyperbolic case) and Hartman–Grobman theorem (for hyper-
bolic case) and also discuss global stability with reference to
bifurcation analysis using Poincaré index. The cosmological
parameters, eigenvalues and the nature of critical points are
presented in Table 1.
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All the three critical points of the above autonomous sys-
tem for non-interacting case has v = 0 which corresponds
to vanishing of the potential (as well as vanishing of the
potential slope for the present choice of V (X)). Thus the
three-form field behaves as a cosmological constant. Also
for the first two critical points, i.e., P1 and P2 there is no DM
so the cosmological scenario purely corresponds to de Sitter
phase [20,21]. For the third critical point P3, the evolution
corresponds to non-interacting three form field (behaves as
cosmological constant) with dark matter (DM) in the form
of dust. Here DM dominates (three-form field DE is sub-
dominant) the evolution and the resulting cosmic scenario
represents the matter dominated era of evolution. This type
of critical point is also obtained in [21] (see critical point (a)
in Table 1 of Ref. [21]).

Stability analysis
We now investigate the stability of above non-hyperbolic crit-
ical points corresponding to this non interacting model. Most
of the cases stability of non-hyperbolic critical points can be
determined by center manifold (CM) theory. For this we first
perform coordinate transformations so that the critical points
moves to the origin.

3.1.1 Critical point P1

First we shift the critical point P1 to the origin by using the
coordinate transformation u → U+1, v → V , w → W+ 1

2 ,
then the system of equations (26–28) changes to

U ′ = −3U − 9

2
U 2 − 3

2
U 3 − 3

2
V 2 − 3

2
UV 2 −

√
3

2
μUV 2

−
√

3

2
πμV 2W + higher order terms, (29)

V ′ = −
(

3 +
√

3

2
μ

)
UV − 3

2
U 2V −

(
3

2
+

√
3

2
μ

)
V 3

+
√

3

2
πμVW

+
√

3

2
√

2
π2μVW 2 + higher order terms, (30)

W ′ = −3W + 3

π
U − 3UW +

(
3 − 3π

2

)
W 2 + π2

2
W 3

+higher order terms. (31)

The Jacobian matrix at the origin for this autonomous system
can be written as

J (P1) =
⎡
⎣−3 0 0

0 0 0
3
π

0 −3

⎤
⎦ (32)

So, the eigenvalues of the above matrix are 0,−3,−3 and
[0, 1, 0]T and [0, 0, 1]T are the eigenvectors correspond-

ing to the eigenvalue 0 and −3 respectively. As Hartman–
Grobman Theorem can not be used to analyze the non-
hyperbolic critical point, we shall use center manifold theory
(CMT).

So, by center manifold theory there exist a continuously
differentiable function h:R→R

2 such that

h(V ) =
[
U
W

]
=

[
a1V 2 + a2V 3 + O (

V 4
)

b1V 2 + b2V 3 + O (
V 4

)
]

(33)

Differentiating both side with respect to N yields

U ′ = (2a1V + 3a2V
2)V ′ + higher order terms, (34)

W ′ = (2b1V + 3b2V
2)V ′ + higher order terms (35)

Comparing coefficients corresponding to power of V we get,
a1 = − 1

2 and a2 = 0; b1 = − 1
2π

and b2 = 0, i.e, the
expression of center manifold can be written as

U = −1

2
V 2 + O

(
V 4

)
, (36)

W = − 1

2π
V 2 + O

(
V 4

)
. (37)

The flow on the CM near the origin is determined by :

dV

dN
= −

√
3

2
μV 3 + O

(
V 4

)
. (38)

Here the stability of the vector field depends on the sign
of μ. If μ > 0 then V ′ < 0 for V > 0 and V ′ > 0 for V < 0.
So, for μ > 0 the origin is a stable node. The vector field
in UV -plane is shown in Fig. 1 and the vector field near the
origin in WV -plane is also same as. If μ < 0 then V ′ > 0
for V > 0 and V ′ < 0 for V < 0. So, for μ < 0 the origin
is a saddle node, i.e; unstable in nature. The vector field in
UV -plane near the origin is shown as in Fig. 2 and the vector-
+-+-+-+- field near the origin in WV -plane is also same as
Fig. 2.

If μ = 0, the expression of center manifold is same as
of Eqs. (36) and (37) and the flow on the center manifold is
determined by

dV

dN
= −3

8
V 5 + O

(
V 6

)
. (39)

So the origin is a stable node and the flow near the origin is
same as for μ > 0 case (Fig. 1).

3.1.2 Critical point P2

First we shift the critical point P2 to the origin by using the
coordinate transformation u → U −1,v → V ,w → W − 1

2 .
The calculation change the system of equations (26–28) due
to this coordinate transformation is shown in Appendix A.

The Jacobian matrix for this autonomous system is same
as J (P1). So the set of eigenvalues and the eigenvectors cor-
responding to each eigenvalue of the Jacobian matrix are

123



Eur. Phys. J. C (2021) 81 :439 Page 5 of 18 439

Fig. 1 Vector field near the origin for the critical point P1 inUV -plane
(μ > 0)

Fig. 2 Vector field near the origin for the critical point P1 inUV -plane
(μ < 0)

also same. So, by center manifold theory there exist a con-
tinuously differentiable function h : R → R

2 such that

h(V ) =
[
U
W

]
=

[
a1V 2 + a2V 3 + O (

V 4
)

b1V 2 + b2V 3 + O (
V 4

)
]

(40)

Differentiating both side with respect to N yields

U ′ = (2a1V + 3a2V
2)V ′ + higher order terms, (41)

W ′ = (2b1V + 3b2V
2)V ′ + higher order terms. (42)

Comparing coefficients corresponding to different power of
V , we have a1 = 1

2 and a2 = 0, b1 = 1
2π

and b2 = 0. Then
the center manifold is given by

U = 1

2
V 2 + O

(
V 3

)
, (43)

W = 1

2π
V 2 + O

(
V 3

)
. (44)

The flow on the CM near the origin is determined by :

V ′ =
√

3

2
μV 3 + O

(
V 4

)
. (45)

Here the stability of the vector field depends on the sign of
μ. If μ > 0 then the origin is a saddle node,i.e., unstable in
nature and the vector field near the origin is shown as (Fig. 3a)
and the flow on the center manifold in the WV -plane is also
same as in (Fig. 3a). If μ < 0 then the origin is a stable node
and the vector field near the origin is shown as in (Fig. 3b) and
the flow on the CM in WV -plane is also same as (Fig. 3b).
If μ = 0 then the center manifold is same as of Eqs. (43)
and (44) and the flow on the center manifold is same as of
Eq. (39), that is., the plot of the vector field near the origin is
same as for μ < 0 case (Fig. 3b).

3.1.3 Critical point P3

The Jacobian matrix at P3 for the autonomous system (26–
28) can be put as

J (P3) =
⎡
⎣

3
2 0 0
0 3

2 0
6
π

0 −3

⎤
⎦ (46)

The eigenvalues of the above Jacobian matrix are 3
2 , 3

2 and
−3. [ 3π

4 , 0, 1]T and [0, 1, 0]T are the eigenvectors corre-
sponding to the eigenvalue 3

2 and [0, 0, 1]T be the eigenvector
corresponding to the eigenvalue −3. Since the critical point
P3 is hyperbolic in nature, so we can analyze the stability of
this critical point by Hartman–Grobman theorem. Since two
eigenvalues are positive and one is negative, so the origin is a
saddle node and the phase portrait near the origin is unstable
in nature (Fig. 4).

Poincaré index and bifurcation analysis
The index of an isolated critical point of a vector field is
defined by the winding number of a small counter-clockwise
oriented circle with center at that point. If we restrict our-
selves on VW -plane, P1 is stable node in nature for μ � 0
and the index of P1|VW is 1. On the other hand, P1 is saddle
for μ < 0 and index of P1|VW is −1. We get identical nature
of P1 restricted on theUV -plane. OnUW -plane, P1 is stable
node for all μ and the index is 1. Thus at μ = 0 the system
is structurally unstable in nature and bifurcation occurs.

If we restrict ourselves on VW -plane, P2 is saddle in
nature for μ > 0 and the index of P2|VW is −1. On the other
hand, P2 is stable node for μ � 0 and index of P2|VW is −1.
We get identical nature of P2 restricted on the UV -plane.
On UW-plane, P2 is stable node for all μ and the index is 1.
Thus at μ = 0 the system is structurally unstable in nature
and bifurcation occurs.

The index of P3 restricted on any plane is independent of
μ. So in this case there is no bifurcation value.
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Fig. 3 Vector field near the origin in UV -plane for the critical point P2. L.H.S. figure is for (μ > 0) and R.H.S. figure is for (μ < 0)

Fig. 4 3 dimensional phase plot for the critical point P3

Thus P1 is stable for μ � 0 and the universe undergoes
an exponential de-sitter expansion near P1. For μ < 0, the
universe goes away from P1 as time evolves. On the other
hand, P2 is unstable in nature for μ > 0 and sable for μ � 0.
So there may be a de-Sitter generic evolution of the universe
from the neighborhood of P2 towards P1 for μ > 0 and
reverses the trajectory for μ < 0. At μ = 0, there may be a
non-generic evolution from early time decelerating phase to
late time accelerating phase. So a non-generic evolution of
the universe may occur when μ passes through the bifurca-
tion value.

3.2 Interaction model: α �= 0

Now we shall study the stability analysis for interacting
model with α as arbitrary parameter. For this case we con-

sider the primary autonomous system (22–24). The critical
points for this autonomous system are:

P4

(
1, 0,

1

2

)
, P5

(
−1, 0,−1

2

)
,

P6

(√
α

3
, 0,

2

π
cos−1

[√
3

α + 3

])

and P7

(
−

√
α

3
, 0,− 2

π
cos−1

[√
3

α + 3

])

There is also a line of critical point: Plc

=
(
uc,

√
3(1−u2

c )

3+√
6ucμ

, 2
π

tan−1 uc

)
, where uc ∈ [−1, 0) ∪

(0, 1] and which exists only for α = 3. The cosmolog-
ical parameters corresponding to Plc are given by ωX =
−

(√
3+√

2μuc√
3+√

2μu3
c

)
, ωtot = −1 and q = −1. Note that except

line of critical points Plc all critical points are same as in Ref.
[11]. But the authors have analyzed only one critical point by
using center manifold theory. But in this context we analyze
the stability of all critical points by center manifold theory
(for non-hyperbolic case) and Hartman–Grobman theorem
(for hyperbolic case) for all possible values of the parame-
ters α and μ and also discuss global stability with reference
to bifurcation analysis using Poincaré index. The cosmolog-
ical parameters, eigenvalues and the nature of critical points
for this interacting model are presented in Table 2.

In the present interacting DE (in the form of three-form
field) and DM (in the form of dust) cosmological model, the
above autonomous system has four critical points of which
top two (i.e., P4 and P5)are identical in nature to the critical
points P1 and P2 for the non-interacting case. The other two
critical points namely P6 and P7 are quite interesting as they
may stand for various cosmological scenarios [20,21] with
different choices of the interaction coupling parameter ’α’.
Note that α should positive to have these critical points to be
real and as a consequence there is a flow of matter from DM to
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Table 2 Table shows the value of cosmological parameters, eigenvalues(λ1, λ2, λ3) corresponding to the critical points and the nature of the critical
points for this interaction model

Interaction Critical points ωX ωtot q λ1 λ2 λ3 Nature of critical
point

Q=α ρDM H
where α is an
arbitrary constant

P4 : (1, 0, 1
2 ) −1 −1 −1 −3 + α 0 −3 Always

non-hyperbolic

, , P5 : (−1, 0,− 1
2 ) −1 −1 −1 −3 + α 0 −3 Always

non-hyperbolic

, , P6 :
(√

α
3 , 0, 2

π
cos−1

[√
3

α+3

])
−1 − α

3
1
2 (1 − α) −α + 3 (−α+3)

2 −3 Non-hyperbolic
for α = 3 and
hyperbolic for
α �= 3

, , P7 :
(
−

√
α
3 , 0,− 2

π
cos−1

[√
3

α+3

])
−1 − α

3
1
2 (1 − α) −α + 3 (−α+3)

2 −3 Non-hyperbolic
for α = 3 and
hyperbolic for
α �= 3

DE (as speculated by recent observations for DE dominance).
If α is very small (i.e., close to zero) then the present model
has DM dominance and the cosmic scenario corresponds to
matter dominated era while DE (i.e., 3-form field as cos-
mological constant) will dominate the evolution for α > 1
and may be termed as LCDM model. In fact by adjusting
α (α ≈ 3), it is possible to match recent Plank observation
ω = −1.028 ± 0.031 [25]. Further there is a line of criti-

cal points given by Plc=

(
uc,

√
3(1−u2

c )

3+√
6ucμ

, 2
π

tan−1 uc

)
, with

uc ∈ [−1, 0)∪(0, 1] and it exists only for α = 3. For this line
of critical points the three form field behaves as a perfect fluid

with equation of state parameter ωX = −
(√

3+√
2μuc√

3+√
2μu3

c

)
<

−1, i.e., a phantom fluid. However, interacting with DM, the
resulting single fluid behaves as a cosmological constant. So
effectively this line of critical points correspond to de Sitter
era of evolution.

Stability analysis
We shall discuss the stability analysis of the critical point
(P4−P7) both for α = 3 and α �= 3. The stability analysis for
the line of critical point Plc is very complicated and laborious,
so here we will not present the stability of this critical point.

3.2.1 Critical point P4

Case 1: α=3
At first we put α = 3 in (22) and then shift the critical

point P4 to the origin by using the coordinate transformation
u → U + 1, v → V , w → W + 1

2 . Then the system of
equations (22–24) modifies to

U ′ = −6U 2 −
(

3 +
√

3

2
μ

)
UV 2 −

√
3

2
πμV 2W

+higher order terms, (47)

V ′ = −
(

3 +
√

3

2
μ

)
UV − 3

2
U 2V −

(
3

2
+

√
3

2
μ

)
V 3

+
√

3

2
πVWμ

+
√

3

2
√

2
π2μVW 2 + higher order terms, (48)

W ′ = −3W + 3

π
U − 3UW +

(
−3π

2
+ 3

)
W 2 + π2

2
W 3

+higher order terms. (49)

The Jacobian matrix at the origin corresponding to the above
autonomous system can be written as

J (P4)|α=3 =
⎡
⎣0 0 0

0 0 0
3
π

0 −3

⎤
⎦ (50)

So, the eigenvalues of the above matrix are 0, 0, −3 and
[1, 0, 1

π
]T and [0, 1, 0]T are the eigenvectors corresponding

to the eigenvalue 0 and [0, 0, 1]T be the eigenvector corre-
sponding to the eigenvalue −3. By computing the matrix of
eigenvectors of the stability matrix of the system in U, V,W
we introduce another set of new coordinates
⎡
⎣UT

VT
WT

⎤
⎦ =

⎡
⎣ 1 0 0

0 1 0
− 1

π
0 1

⎤
⎦

⎡
⎣U
V
W

⎤
⎦ (51)

In these coordinates the system of equations is now in the
correct form
⎡
⎣U ′

T
V ′
T

W ′
T

⎤
⎦ =

⎡
⎣0 0 0

0 0 0
0 0 −3

⎤
⎦

⎡
⎣UT

VT
WT

⎤
⎦ +

⎡
⎣ non

linear
terms

⎤
⎦ (52)
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So, by center manifold theory there exist a continuously
differentiable function h : R

2 →R such that WT =
h(UT , VT ) = aU 2

T +bUT VT + cV 2
T +higher order terms,

where a, b, c ∈ R. We only concern about the non-zero
coefficients of the lowest power terms in CMT as we analyze
arbitrary small neighborhood of the origin.

Now differentiating both side with respect to N yields

dWT

dN
= [

2aUT + bVT bUT + 2cVT
]
⎡
⎣

dUT
dN

dVT
dN

⎤
⎦ (53)

Comparing L.H.S. and R.H.S. of (53) we get, a = 3
2π

, b = 0
and c = 0 i.e; the expression of center manifold can be
written as

WT = 3

2π
U 2
T . (54)

The flow on the CM near the origin is determined by:

dUT

dN
= −6U 2

T − (3 + √
6μ)UT V

2
T + higher order terms,

(55)
dVT
dN

= −3UT VT +
(√

6μ − 3

2

)
U 2
T VT

+
(

3

2
+

√
3

2
μ

)
V 3
T + higher order terms. (56)

Now for analyzing the stability of this critical point, Dividing
both sides of (55) by 6 and dividing both sides of (56) by 3.
Since we divided both sides of these equation by positive
terms, so the direction of the vector field is unchanged. We
take r2 = U 2

T + V 2
T , then differentiating both sides with

respect to N and using (55) and (56) yields r ′ = −UT r . So
r ′ depends on the sign of UT . If UT > 0 then r ′ < 0 and
if UT < 0 then r ′ > 0. So, the origin is a saddle node and
hence the vector field near the origin is unstable in nature
(Fig. 5). Now we try to see the vector field near the origin

for μ = −
√

3
2 because for μ = −

√
3
2 the coefficient of V 3

in Eq. (48) vanishes. The vector field in VW -plane near the

origin for μ = −
√

3
2 is shown as in Fig. 6.

Case 2: α �=3
After shifting the critical point P4 to the origin and by

using same transformation as above the autonomous system
(22–24) changes to

U ′ = (−3 + α)U −
(

9 + α

2

)
U 2 +

(−3 + α

2

)
U 3

+
(−3 + α

2

)
V 2 +

(−3 + α

2

)
UV 2 −

√
3

2
μUV 2

−
√

3√
2
πμV 2W + higher order terms, (57)

Fig. 5 Projection of the vector field on (UTWT )-plane near the origin
for the critical point P4 (α = 3)

V ′ = −
(

3 +
√

3

2
μ

)
UV − 3

2
U 2V −

(
3

2
+

√
3

2
μ

)
V 3

+
√

3

2
πVWμ+

√
3

2
√

2
π2μVW 2+higher order terms,

(58)

W ′ = −3W + 3

π
U − 3UW +

(
−3π

2
+ 3

)
W 2 + π2

2
W 3

+higher order terms. (59)

The Jacobian matrix at the origin corresponding to the above
autonomous system can be written as

J (P4)|α �=3 =
⎡
⎣−3 + α 0 0

0 0 0
3
π

0 −3

⎤
⎦ (60)

So, the eigenvalues of the above matrix are −3 + α, 0,−3
and [πα

3 , 0, 1]T , [0, 1, 0]T , [0, 0, 1]T are the corresponding
eigenvectors respectively. Then by using similar arguments
which we have done for the critical point P1, the center man-
ifold can be expressed as

U = −1

2
V 2 + O

(
V 4

)
, (61)

W = − 1

2π
V 2 + O

(
V 4

)
. (62)

The flow on the center manifold near the origin is deter-
mined by

dV

dN
= −

√
3

2
μV 3 + O

(
V 4

)
. (63)

For α �= 3 we get four different phase diagram near the origin
depending on the values of α and μ. For μ > 0 there arises
two cases α > 3 and α < 3 and for μ < 0 there also arises
two cases α > 3 and α < 3.
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Fig. 6 Vector field near the
origin in VW plane for the
critical point P4

(α = 3, μ = −
√

3
2 )

Fig. 7 Vector field near the origin inUV -plane for the critical point P4. L.H.S. figure is for (α < 3, μ > 0) and R.H.S. figure is for (α > 3, μ > 0)

Case (i): μ > 0 For α < 3 the origin is a stable node, i.e.,
the vector field near the origin is stable in nature
(Fig. 7a). For α > 3 the origin is a saddle node,
i.e., the vector field near the origin is unstable in
nature (Fig. 7b).

Case (ii): μ < 0 In this case the origin is a saddle node for
α < 3 (Fig. 8a) and an unstable node for α > 3
(Fig. 8b), i.e., for both of the cases the vector field
near the origin is unstable in nature .

Case (iii): μ = 0 If we calculate the center manifold for μ =
0 then the center manifold is same as of Eqs. (61)
and (62) and the flow on the center manifold is
determined by

dV

dN
= −3

8
V 5 + O

(
V 6

)
. (64)

For α > 3 the origin is a saddle node, i.e., unstable in nature
and for α < 3 the origin is a stable node, i.e., stable in nature
and the vector field near the origin is same as for μ > 0 case
(Fig. 7).

3.2.2 Critical point P5

Case 1: α = 3
Similarly as above after putting α = 3 in (22), we shift

the critical point P5 to the origin by using the coordinate
transformation u → U − 1, v → V , w → W − 1

2 . The
calculation change the system of equations (22–24) due to
this coordinate transformation is shown in Appendix B. The
Jacobian matrix at the origin for this autonomous system can
be written as

J (P5)|α=3 =
⎡
⎣0 0 0

0 0 0
3
π

0 −3

⎤
⎦ (65)

So the eigenvalues of the above matrix are 0, 0, −3 and
[1, 0, 1

π
]T and [0, 1, 0]T are the eigenvectors corresponding

to the eigenvalue 0 and [0, 0, 1]T be the eigenvector corre-
sponding to the eigenvalue −3. By computing the matrix of
eigenvectors of the Jacobian matrix of the system inU, V,W ;
we introduce another set of new coordinates (UT , VT ,WT )
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Fig. 8 Vector field near the origin inUV -plane for the critical point P4. L.H.S. figure is for (α < 3, μ < 0) and R.H.S. figure is for (α > 3, μ < 0)

in terms of (U, V,W ) as follows
⎡
⎣UT

VT
WT

⎤
⎦ =

⎡
⎣ 1 0 0

0 1 0
− 1

π
0 1

⎤
⎦

⎡
⎣U
V
W

⎤
⎦ (66)

In these coordinates the system of equations is now in the
correct form⎡
⎣U ′

T
V ′
T

W ′
T

⎤
⎦ =

⎡
⎣0 0 0

0 0 0
0 0 −3

⎤
⎦

⎡
⎣UT

VT
WT

⎤
⎦ +

⎡
⎣ non

linear
terms

⎤
⎦ (67)

Thus by center manifold theory there exist a continuously
differentiable function h : R

2 →R such that WT =
h(UT , VT ) = aU 2

T + bUT VT + cV 2
T +

higher order terms, where a, b, c ∈ R. We only concern
about the nonzero coefficients of the lowest power terms in
CMT as we analyze arbitrary small neighborhood of the ori-
gin.

Now differentiating both side with respect to N , we get

dWT

dN
= [

2aUT + bVT bUT + 2cVT
]
⎡
⎣

dUT
dN

dVT
dN

⎤
⎦ (68)

Comparing L.H.S. and R.H.S. of (68) we get, a = − 3
2π

,
b = 0 and c = 0, i.e., the center manifold can be written as

WT = − 3

2π
U 2
T . (69)

The flow on the center manifold near the origin is determined
by

dUT

dN
= 6U 2

T + (−3 + √
6μ)UT V

2
T + higher order terms,

(70)

dVT
dN

= 3UT VT −
(√

6μ + 3

2

)
U 2
T VT −

(
3

2
−

√
3

2
μ

)
V 3
T

+higher order terms. (71)

Fig. 9 Projection of vector field on the (UTWT )-plane near the origin
for the critical point P5 (α=3)

Similarly for analyzing the stability of this critical point,
first we divide both sides of (70) by 6 and divide both sides of
(71) by 3. Since we divided both sides of these equations by
positive terms, so the direction of vector field is unchanged.
We take r2 = U 2

T + V 2
T , then differentiating both sides with

respect to N and using (70) and (71) yields r ′ = UT r . So
r ′ depends on the sign of UT . If UT > 0 then r ′ > 0 and
if UT < 0 then r ′ < 0. So, the origin is a saddle node and
hence the vector field near the origin is unstable in nature
(Fig. 9). Now we try to see the vector field near the origin for

μ =
√

3
2 because for μ =

√
3
2 the coefficient of V 3 in R.H.S.

of the second equation of Appendix B vanishes. The vector

field in VW plane near the origin for μ =
√

3
2 is shown as

in Fig. 10.
Case 2: α �=3

After shifting the critical point P5 to the origin, the cal-
culation change the system of equations (22–24) due to this
coordinate transformation is shown as in Appendix C.
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Fig. 10 Vector field near the
origin in VW plane for the
critical point P5

(α = 3, μ =
√

3
2 )

Fig. 11 Vector field near the origin inUV plane for the critical point P5. L.H.S. figure is for (α < 3, μ > 0) and R.H.S. figure is for (α > 3, μ > 0)

By similar calculation we can easily see that the Jacobian
matrix for the above autonomous system is same as (60).
Hence, we have the same eigenvalues and corresponding
eigenvectors which already obtained for (60) and the cen-
ter manifold near the origin can be written as

U = 1

2
V 2 + O

(
V 4

)
, (72)

W = 1

2π
V 2 + O

(
V 4

)
. (73)

The flow on the center manifold near the origin is determined
by

dV

dN
=

√
3

2
μV 3 + O

(
V 4

)
. (74)

For α �= 3 we get four different phase diagram near the origin
depending on the values of α and μ. For μ > 0 there arises
two cases α > 3 and α < 3 and for μ < 0 there also arises
two cases α > 3 and α < 3.

Case (i):μ > 0 The origin is a saddle node if α <3 (Fig. 11a)
and an unstable node if α >3 (Fig. 11b), i.e., the vector field
near the origin is unstable in nature for both of the cases.
Case (ii): μ < 0 For α < 3 the origin is a stable node, i.e.,
the vector field near the origin is stable in nature (Fig. 12a).
The origin is a saddle node if α >3, i.e., the vector field near
the origin is unstable in nature (Fig. 12b).
Case (iii): μ = 0 If we calculate the center manifold for
μ = 0 then the expression of center manifold is same as of
Eqs. (72) and (73) and the flow on the center manifold is
determined by

dV

dN
= −3

8
V 5 + O

(
V 6

)
. (75)

For α >3 the origin is a saddle node, i.e., unstable in nature
and for α < 3 the origin is a stable node,i.e., stable in nature
and the flow near the origin is same as the flow near the origin
for μ < 0 case (Fig. 12).
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Fig. 12 Vector field near the origin inUV plane for the critical point P5. L.H.S. figure is for (α < 3, μ < 0) and R.H.S. figure is for (α > 3, μ < 0)

Fig. 13 Phase potrait near the
origin for the critical point P6.
L.H.S. is for α > 3 (taking
α = 4) and R.H.S. is for α < 3
(taking α = 2)

3.2.3 Critical point P6

First we shift the critical point P6 to the origin by using
the coordinate transformation u → U + α

3 , v →V and w →
W+ 2

π
cos−1

[√
3

α+3

]
. Now the Jacobian matrix at the origin

for the transformed autonomous system can be written as

J (P6) =
⎡
⎣

3 − α 0 0
0 3−α

2 0
18

π(α+3)
0 −3

⎤
⎦ (76)

The eigenvalues of the above Jacobian matrix are (3 − α),
(3−α)

2 and −3. [1, 0, 18
π(3+α)(6−α)

]T , [0, 1, 0]T and [0, 0, 1]T
are the eigenvectors corresponding to the eigenvalues (3−α),
(3−α)

2 and −3 respectively. Since the Jacobian matrix have
nonzero real eigenvalues for α �= 3, so the critical point is
hyperbolic and so we can analyze the stability of the crit-
ical point by Hartman–Grobman theorem [26]. For α > 3
all eigenvalues are negative and hence the origin is a stable

node and the phase portrait near the origin is stable in nature
(Fig. 13a). For α < 3 two eigenvalues are positive and one is
negative and hence the origin is a saddle node and the phase
portrait near the origin is unstable in nature (Fig. 13b).

3.2.4 Critical point P7

If we determine the Jacobian matrix corresponding to the
autonomous system (22–24) at the critical point P7, then we
will get the same Jacobian matrix as (76) and hence we have
the same eigenvalues and corresponding eigenvectors. Since,
the eigenvalues are nonzero, so we analyze the stability of
this critical point by Hartman–Grobman theorem. The phase
portrait near the origin is Fig. 13.

For α = 3 the critical points P6 and P7 are non-hyperbolic.
For this case the stability analysis of those critical points are
same as Case 1 of the critical points P4 and P5 respectively.
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Poincaré index and bifurcation analysis
For α < 3 four critical points (P4-P7) appear to exist but at

α = 3 two critical points (P6 and P7) disappear. Again they
appear for α > 3. If we restrict ourselves on UW -plane, P4

and P5 are stable node in nature for α < 3 and index of each
P4, P5|UW is 1. On the UV -plane, for μ > 0, P4 is stable
node for α < 3 with index 1 and saddle for α > 3 with index
−1. For μ = 0, the index of P4|UV is 0 as the neighborhood
has two hyperbolic sectors. On the VW -plane, for α �= 3, the
index of P4|VW is 1 for μ > 0 and −1 for μ � 0. For α = 3,

index of P4|VW is −1 for μ � −
√

3
2 and 1 for μ < −

√
3
2 .

Similarly on the UV -plane, for μ > 0, P5 is saddle for
α < 3 with index −1 and stable node for α > 3 with index
1. For μ = 0, the index of P5|UV is 0 as the neighborhood
has two hyperbolic sectors. For μ < 0, P5 is stable node for
α < 3 with index 1 and saddle for α > 3 with index −1. For
μ = 0, the index of P5|UV is 0 as the neighborhood has two
hyperbolic sectors.On the VW -plane, for α �= 3, the index
of P5|VW is −1 for μ � 0 and 1 for μ < 0. For α = 3, index

of P4|VW is 1 for μ >

√
3
2 and −1 for μ �

√
3
2 . Again P6

and P7 are saddle for α < 3 and stable node for α > 3. So at

α = 3 and μ = 0,±
√

3
2 the system is structurally unstable.

For α < 3 and μ > 0, P4 is a stable node and P5 is a
saddle in nature. So generic de-Sitter evolution can be found
from P5 of index −1 plane to P4 of index 1 plane. For μ <

0, the generic evolution reverses its direction. At α < 3
and μ = 0 there may occur a non-generic evolution from
P6 or P7 to P4 or P5 and the universe changes its phase
from decelerating matter dominated era to phantom barrier.
A similar non-generic evolution also can be found for α > 3.
At α = 3 a de-Sitter generic evolution can be found from the
plane of index −1 of P5 to the plane of index 1 of P4 for

μ < −
√

3
2 and the direction reverses for μ >

√
3
2 .

3.3 Interaction model: Q = 2uρDMH

For this interaction the autonomous system (26–28) modifies
to

u̇ =
(

3

2
u − 1

)
(1 − u2 − v2) +

√
3

2
v2μ

(
1 − u tan

[πw

2

])
(77)

v̇ = 3

2
v(1 − u2 − v2) −

√
3

2
vμ

(
u + (−1 + v2) tan

[πw

2

])
(78)

ẇ = 6

π
cos2

[πw

2

] (
u − tan

[πw

2

])
(79)

The above autonomous system has the following three critical
points:

P8

(
1, 0,

1

2

)
, P9

(
−1, 0,− 1

2

)
and P10

(
2

3
, 0,

2

π
tan−1

[
2

3

])

Note that in Ref. [11] the authors have not analyzed this
model. So all critical points are new and here we analyze each

critical points by center manifold theory (for non-hyperbolic
case) and Hartman–Grobman theorem (for hyperbolic case)
and also discuss global stability with reference to bifurcation
analysis using Poincaré index. The cosmological parameters,
eigenvalues and the nature of critical points are presented in
Table 3.

The three critical points P8 − P10 for the second choice
of the interaction are very similar to the previous ones. The
critical points P8 and P9 are exactly identical to P1 and P2 (or
P4 and P5). The critical point P10 represent a DE dominated
era of evolution. Due to interaction of the three form field (i.e.,
cosmological constant in the present context) with DM (in the
form of dust) the resulting single fluid is in the quintessence
era not closed to phantom divide line. This critical point may
be termed as LCDM model.

Stability analysis

3.3.1 Critical point P8

First we shift the critical point P8 to the origin by using the
coordinate transformation u → U +1,v → V ,w → W + 1

2 .
The calculation change the system of equations (77–79) due
to this coordinate transformation is shown in Appendix D.

If we determine the Jacobian matrix at the origin for the
autonomous system Appendix D, we have the eigenvalues
−1, 0 and −3 and [1, 0, 3

2π
]T , [0, 1, 0]T and [0, 0, 1]T are the

corresponding eigenvectors respectively. Since, the critical
point is non hyperbolic so we use center Manifold theory
for analyzing the stability of the critical point. Proceeding in
similar way for determining the center manifold, the center
manifold can be expressed as

U = −1

2
V 2 + O

(
V 3

)
(80)

W = − 1

2π
V 2 + O

(
V 3

)
(81)

The flow on the CM near the origin is determined by

V ′ = −
√

3

2
μV 3 + O

(
V 4

)
. (82)

Here the stability of the center manifold depends on the sign
of μ. If μ > 0 then the origin is a stable node and if μ < 0
then the origin is a saddle node, i.e., unstable in nature.

3.3.2 Critical point P9

We shift the critical point P9 to the origin by the coordi-
nate transformation u → U − 1,v → V ,w → W − 1

2 .
The calculation change the system of equations (77–79) due
to this coordinate transformation is shown in Appendix E.
If we determine the Jacobian matrix at the origin for this
autonomous system we have the eigenvalues −5, 0 and −3
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Table 3 Table shows the value of cosmological parameters, eigenvalues ( λ1, λ2, λ3) and the nature of the critical points for this interaction model

Interaction Critical points ωX ωtot q λ1 λ2 λ3 Nature of critical point

Q=α ρc H where α = 2u P8 : (1, 0, 1
2 ) −1 −1 −1 −1 0 −3 Always non-hyperbolic

„ P9 : (−1, 0,− 1
2 ) −1 −1 −1 −5 0 −3 Always non-hyperbolic

„ P10 : ( 2
3 , 0, 2

π
tan−1

[ 2
3

]) −1 − 4
9 − 1

6
5
6

5
6 − 33

13 Always hyperbolic

and [1, 0,− 3
2π

]T , [0, 1, 0]T and [0, 0, 1]T are the corre-
sponding eigenvectors respectively. Since, the critical point
is non-hyperbolic so we shall use center Manifold theory
for analyzing the stability of the critical point. Proceeding in
similar way for determining center manifold, the expression
of center manifold can be written as

U = 1

2
V 2 + O

(
V 3

)
, (83)

W = 1

2π
V 2 + O

(
V 3

)
. (84)

The flow on the center manifold near the origin is determined
by:

V ′ =
√

3

2
μV 3 + O

(
V 4

)
. (85)

The stability of the manifold depends on the sign of μ. If μ >

0 then the origin is a saddle node, i.e., unstable in nature and
if μ < 0 then the origin is a stable node, i.e., stable in nature.

3.3.3 Critical point P10

We shift the critical point P9 to the origin by using the
coordinate transformation u → U + 2

3 , v → V , w →
W + 2

π
tan−1

[ 2
3

]
. Now the Jacobian matrix at the origin for

the transformed autonomous system can be written as

J (P10) =
⎡
⎣

5
6 0 0
0 5

6 0
54

13π
0 − 33

13

⎤
⎦ (86)

The eigenvalues of the above Jacobian matrix are 5
6 , 5

6 , − 33
13

and [1, 0, 324
263 ]T and [0, 1, 0]T are the eigenvectors corre-

sponding to the eigenvalue 5
6 and [0, 0, 1]T is the eigenvec-

tor corresponding to the eigenvalue − 33
13 . Since, the critical

point is hyperbolic in nature, so by Hartman–Grobman the-
orem we can analyze the stability of this critical point. Since
two eigenvalues are positive and one is negative, so the ori-
gin is a saddle node and the phase portrait near the origin is
unstable in nature (Fig. 14).

Poincaré index and bifurcation analysis
Critical points P8 and P9 are sink (sum of index is 2) in

nature when restricted on UW -plane. On the other hand, P8

and P9 swap their stability and indices (1 to −1 or −1 to

Fig. 14 3 Dimensional phase plot for the critical point P10

1) when the parameter μ passes through zero. Similar phe-
nomenon can be found on the VW -plane. Despite each of P8

and P9 changes its stability at μ = 0, they together produce
topological equivalent phase space for all μ. Since the phase
space in confined in a finite region of space, there is a tra-
jectory of non-generic evolution between P8 and P9 on UV
or VW -plane. As there is no μ in the eigenvalues of (86),
so qualitative behavior near P10 does not depend on μ. The
Poincaré index of P10 restricted on uv-eigenplane is 1 and
each on the two other plans is −1 and is independent of the
sign of μ . But in cosmological point of view, near the critical
point P10, for μ > 0, the comoving field behaves as a phan-
tom field with runaway potential, whereas the field behaves
as non-phantom with non-runaway potential when crosses
the phantom barrier at μ = 0 from positive to negative.

Now we consider a power-law potential as

V (X) = V1X
−λ

where λ is a dimensionless parameter and V1 > 0. Then by
using similar dimensionless variables (16–19) we have the
following autonomus system

u′ = 3

2
u(1 − u2 − v2) + 3

2
λv2

(
cot

[πw

2

]
− u

)
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Table 4 Table shows the set of critical points corresponding to the autonomous system (87–89) and the value of cosmological parameters
corresponding to each critical pointss

Interaction Criticalpoints ωX ωtot q

Q = 0 R1
(
1, 0, 1

2

)
R2

(−1, 0,− 1
2

) −1 −1 −1 −1 −1 −1

Q = αρDM H
where α is
nonzero arbi-
trary constant

R3
(
1, 0, 1

2

)
R4

(−1, 0,− 1
2

)
R5

(√
α
3 , 0, 2

π
cos−1

[√
3

α+3

])

R6

(
−

√
α
3 , 0,− 2

π
cos−1

[√
3

α+3

]) −1 −1 −1 −1 −1 −1 − α
3 − α

3 −1 −1 1
2 (1 − α) 1

2 (1 − α)

Q =
2uρDM H

R7
(
1, 0, 1

2

)
R8

(−1, 0,− 1
2

)
R9

( 2
3 , 0, 2

π
tan−1

[ 2
3

]) −1 −1 −1 −1 −1 − 4
9 −1 −1 − 1

6

− α

2u
(1 − u2 − v2), (87)

v′ = 3

2
v(1 − u2 − v2) − 3

2
λv

(
u cot

[πw

2

]
+ v2 − 1

)
,

(88)

w′ = 6

π
cos2

[πw

2

] (
u − tan

[πw

2

])
(89)

We have two non-hyperbolic critical points R1 and R2

similar as P1 and P2 respectively corresponding to the non-
interacting case, four non-hyperbolic critical points R3, R4,
R5 and R6 similar as P4, P5, P6 and P7 respectively corre-
sponding to the interacting case when α �= 0. Note that R5

and R6 are hyperbolic for α �= 3. Lastly, for α = 2u we
have two non-hyperbolic critical points R7 and R8 similar
as P8 and P9 respectively and one hyperbolic critical points
R10 similar as P10 ωX = pX/ρX and the total equations
of state parameters ωtot corresponding to this model can be
expressed as

ωX = −1 − λv2

u2 + v2 , (90)

ωtot = −u2 − (λ + 1)v2. (91)

To avoid similar calculations we only state the stability
of every critical points, value of Poincaré index and bifurca-
tion value on the α − λ plane corresponding to each critical
points in tabular form (Table 5) and the value of cosmological
parameters corresponding to each critical points are shown
as in Table 4.

4 Cosmological implications and conclusions

The present work deals with a cosmological model where
the matter field in the context of recent observations is cho-
sen as DE and DM interacting/non-interacting in nature. The
three-form field acts as DE, interacting with CDM (Table 5).
Due to very complicated form of the evolution equations the
present cosmological model has been studied by dynamical
system analysis, forming the autonomous system from the
evolution equations by transformation with suitable dimen-

sionless variables. There are two hyperbolic critical points
(namely P3 and P10) and remaining eight critical points in
P1 − P10 are non-hyperbolic in nature. Also there is a line of
critical points Plc for the first choice of the interacting term
and only for these critical points the three-form field behaves
as perfect fluid with variable equation of state in phantom
era. In the present work, non-hyperbolic critical points are
mainly studied using center manifold theory and global sta-
bility has been examined through bifurcation scenarios using
Poincaré index.

For the critical points (P1, P2), (P4, P5) and (P8, P9), DM
is absent and the cosmic matter is only the three-form field
behaving as cosmological constant. So they represent the
early inflationary era or the de Sitter phase. For critical point
P3 the three form field (i.e., DE) is insignificant and cosmic
evolution represents dust era due to dominance of DM. Sim-
ilarly, for the critical point P10, the three form field (i.e., DE)
has an edge over DM and there is accelerated expansion in
the quintessence era and this can be termed as LCDM model.
The remaining two critical points P6 and P7 have the same
features-both of them represents the scaling cosmological
solution with ’α’ as the scaling parameter-for very small α

(i.e., α is positive but very close to zero) the present model
corresponds to matter dominated era while late time acceler-
ated era is represented for α > 1. For the power-law potential
V (X) = V1X−λ, the autonomous system (87–89) has nine
equilibrium points Ri (i = 1, 2, . . . , n), of which three are
hyperbolic (R5, R6 and R9) in nature while the remaining six
are non-hypernbolic type. These equilibrium points are sim-
ilar to the critical points Pi for the exponential potential form
discussed earlier. The equilibrium points R1, R2, R3, R4, R7

and R8 correspond to de Sitter era of cosmic evolution. Here
the universe is fully dominated by DE which behaves as cos-
mological constant. The remaining three equilibrium points
(R5, R6 and R9) represent cosmological scaling solution. R9

still has DE dominance and the universe is in accelerating
phase. The critical points R5 and R6 correspond to matter
dominated era of evolution for α < 1, while they will also
correspond to accelerated model of the universe for α > 1.
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Table 5 Table shows stability of every critical points corresponding to the autonomous system (87–89), value of Poincaré index and bifurcation
value on the α − λ plane corresponding to each critical points

Interaction CPs Stability Poincaré Index Bifurcation value
(on the α − λ

plane)

Q = 0 R1 R2 R1 is a stable node for λ > 0 and saddle node for
λ < 0. R2 is a stable node for λ < 0 and saddle
node for λ > 0.

R1 : 1 for λ > 0 and 0 for
λ < 0. R2 : 1 for λ < 0 and 0
for λ > 0.

For R1 : λ = 0.
For R2 : λ = 0.

Q = αρDM H
where α is
nonzero arbi-
trary constant

R3 R4 R5 R6 For α = 3, R3 is a saddle node for any value of λ.
If α �= 3, R3 is a saddle node for
(λ > 0, α > 3) and also for (λ < 0, α < 3).
Further for (α < 3, λ > 0), R3 is a stable node
and unstable node for (λ < 0, α > 3). For
α = 3, R4 is a saddle node for any value of λ. If
α �= 3, R4 is a saddle node for (λ > 0, α < 3)

and also for (λ < 0, α > 3). Further for
(α < 3, λ < 0) R4 is a stable node and unstable
node for (λ > 0, α > 3). For α = 3, R5 is a
stable node for λ > 0 and saddle node for
λ < 0. Further R5 is stable node α > 3 and for
any values of λ and saddle node for α < 3.For
α = 3, R6 is a stable node for λ < 0 and saddle
node for λ > 0. Further R6 is stable node for
α > 3 and for any values of λ and saddle node
for α < 3.

R3: 0 for α = 3 and any λ; 0
for λ > 0; α > 3 and λ < 0;
α < 3; 1 for α < 3; λ > 0
and α > 3, λ < 0. R4: 0 for
α = 3 and any λ; 0 for λ > 0,
α < 3 and λ < 0; α > 3; 1
for α < 3; λ < 0 and α > 3;
λ > 0. R5: 1 for α = 3 and
λ > 0; 0 for α = 3 and λ < 0;
1 for α > 3 and any λ; 0 for
α < 3 and any λ. R6: 1 for
α = 3 and λ < 0; 0 for α = 3
and λ > 0; 1 for α > 3 and
any λ; 0 for α < 3 and any λ.

For R3: λ = 0,
α = 3. For R4:
α = 3 line on
α − λ plane.
For R5: α = 3
line on α − λ

plane. For R6:
α = 3 line on
α − λ plane.

Q = 2uρDM H R7 R8 R9 R7 is a stable node for λ > 0 and saddle node for
λ < 0. R8 is a stable node for λ < 0 and saddle
node for λ > 0. R9 is always saddle node.

R7 : 1 for λ > 0 and 0 for
λ < 0. R8 : 1 for λ < 0 and 0
for λ > 0. R9 : 0 for any λ.

For R7: λ = 0.
For R8: λ = 0.
For R9:
Bifurcation
does not
appear.

As the phase space for the present model is confined to
a finite region (given in Eq. 25), so there should not be an
critical point at infinity. Thus the critical points correspond to
different cosmic scenarios (namely, inflationary era, matter
dominated epoch and present accelerated phase) and stabil-
ity analysis (using center manifold theory for non-hyperbolic
equilibrium points) has been presented with existence of pos-
sible bifurcation at cosmic transition.
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AppendixA:The shifted autonomous systemof equations
for the critical point P2

U ′ = −3U + 9

2
U 2 − 3

2
U 3 + 3

2
V 2 − 3

2
UV 2 +

√
3

2
μUV 2
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+
√

3√
2
πμV 2W + higher order terms, (A1)

V ′ =
(

3 −
√

3

2
μ

)
UV − 3

2
U 2V −

(
3

2
−

√
3

2
μ

)
V 3

+
√

3

2
πVWμ

−
√

3

2
√

2
π2μVW 2 + higher order terms, (A2)

W ′ = −3W + 3

π
U + 3UW +

(
3π

2
− 3

)
W 2 + π2

2
W 3

+higher order terms. (A3)

A Appendix B: The shifted autonomous system of
equations for the critical point P5 for α = 3

U ′ = 6U 2 −
(

3 −
√

3

2
μ

)
UV 2 +

√
3

2
πμV 2W

+higher order terms, (B1)

V ′ =
(

3 −
√

3

2
μ

)
UV − 3

2
U 2V −

(
3

2
−

√
3

2
μ

)
V 3

+
√

3

2
πVWμ

−
√

3

2
√

2
π2μVW 2 + higher order terms, (B2)

W ′ = −3W + 3

π
U + 3UW +

(
3π

2
− 3

)
W 2 + π2

2
W 3

+higher order terms. (B3)

B Appendix C: The shifted autonomous system of
equations for the critical point P5 for α �= 3

U ′ = (−3 + α)U +
(

9 + α

2

)
U 2 +

(−3 + α

2

)
U 3

+
(

3 − α

2

)
V 2 −

(
3 + α

2

)
UV 2 +

√
3

2
μUV 2

+
√

3√
2
πμV 2W + higher order terms, (C1)

V ′ =
(

3 −
√

3

2
μ

)
UV − 3

2
U 2V −

(
3

2
−

√
3

2
μ

)
V 3

+
√

3

2
πVWμ

−
√

3

2
√

2
π2μVW 2 + higher order terms, (C2)

W ′ = −3W + 3

π
U + 3UW +

(
3π

2
− 3

)
W 2 + π2

2
W 3

+higher order terms. (C3)

C Appendix D: The shifted autonomous system of
equations for the critical point P8

U ′ = −U −
(

7

2

)
U 2 −

(
3

2

)
U 3 −

(
1

2

)
V 2

−
(

3

2
+

√
3

2
μ

)
UV 2

−
√

3√
2
πμV 2W + higher order terms, (D1)

V ′ = −
(

3 +
√

3

2
μ

)
UV − 3

2
U 2V −

(
3

2
+

√
3

2
μ

)
V 3

+
√

3

2
πVWμ

+
√

3

2
√

2
π2μVW 2 + higher order terms, (D2)

W ′ = −3W + 3

π
U − 3UW +

(
−3π

2
+ 3

)
W 2 + π2

2
W 3

+higher order terms. (D3)

D Appendix E: The shifted autonomous system of
equations for the critical point P9

U ′ = −5U +
(

11

2

)
U 2 −

(
3

2

)
U 3 +

(
5

2

)
V 2

+
(

−3

2
+

√
3

2
μ

)
UV 2

+
√

3√
2
πμV 2W + higher order terms, (E1)

V ′ =
(

3 −
√

3

2
μ

)
UV − 3

2
U 2V −

(
−3

2
+

√
3

2
μ

)
V 3

+
√

3

2
πVWμ

−
√

3

2
√

2
π2μVW 2 + higher order terms, (E2)

W ′ = −3W + 3

π
U + 3UW +

(
3π

2
− 3

)
W 2 + π2

2
W 3

+higher order terms. (E3)
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