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Abstract The MSSM is extended to the U (1)X SSM,
whose local gauge group is SU (3)C × SU (2)L × U (1)Y ×
U (1)X . To obtain the U (1)X SSM, we add the new super-
fields to the MSSM, namely: three Higgs singlets η̂, ˆ̄η, Ŝ
and right-handed neutrinos ν̂i . It can give light neutrino tiny
mass at the tree level through the seesaw mechanism. The
study of the contribution of the two-loop diagrams to the
MDM of muon under U (1)X SSM provides the possibility
for us to search for new physics. In the analytical calculation
of the loop diagrams (one-loop and two-loop diagrams), the
effective Lagrangian method is used to derive muon MDM.
Here, the considered two-loop diagrams include Barr-Zee
type diagrams and rainbow type two-loop diagrams, espe-
cially Z–Z rainbow two-loop diagram is taken into account.
The obtained numerical results can reach 7.4×10−10, which
can remedy the deviation between SM prediction and exper-
imental data to some extent.

1 Introduction

In the development of quantum field theory, the study of
lepton anomalous magnetic dipole moment (MDM) is very
important. The most accurate calculation of the lepton MDM
is helpful in finding new physics beyond the standard model
(SM) and Schwinger propose the electron magnetic dipole
moment (MDM) for the first time. It has been recognized
that the lepton MDMs can provide accurate testing of quan-
tum electrodynamics (QED) [1]. Therefore, it is of special
significance to study the MDM of lepton.

At present, the experimental accuracy of measuring the
MDM of the μ, aμ has reached 540ppb at the muon E821
anomalous magnetic moment measurement at Brookhaven
National Laboratory (BNL) [2]. And currently there are about
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3.7 σ [3,4] between SM prediction and experimental mea-
surement. In this precision, such measurements do more than
testing the leading QED contributions [5], meanwhile, the
influence of the weak interaction and strong interaction of
the SM of particle physics can be tested [6–9]. The discovery
of the Higgs made the SM a huge success [3,10]. Although
the contribution from QED [5] plays an important role in
lepton MDM, it is not the only factor. The hadronic con-
tributions [11,12] are also particularly important, and it is
modified by hadron vacuum polarization and light-by-light
[13–16] scattering contributions. Moreover, weak interaction
[17–19] also has a certain effect on MDMs [3,10]. As a result,
the MDM of lepton can be expressed as [3,10,20]:

aSMl = aQED
l + aEWl + aH AD

l . (1)

Due to the deficiency of MSSM which can not explain neu-
trino mass and solve μ problem, U(1) extension of MSSM
is carried out. There are two U(1) groups in U (1)X SSM:
U (1)Y and U (1)X , and we use SARAH software packages
[21–23] to studyU (1)X SSM. On the basis of the MSSM, the
superfields are added; then one obtains the additional Higgs,
neutrino and gauge fields, but also corresponding superpart-
ners that extend the neutralino and sfermion sectors. The
CP-even parts of the three Higgs singlet fields η, η, S mix
with the neutral CP-even parts of the two doublets Hd and Hu

to form a tree order 5 × 5 CP-even Higgs mass matrix. mh0

is the tree level mass of the lightest CP-even Higgs in U (1)X
SSM, and it can be greater than the corresponding mass at
tree order in MSSM. Therefore, the loop graph correction to
mh0 in U (1)X SSM needs not be very large. In U (1)X SSM,
there are an 8 × 8 mass matrix for neutralinos and a 6 × 6
mass matrix for scalar neutrinos [24]. Next, we calculate the
contribution of the two-loop diagrams to muon MDM under
the U (1)X SSM with the effective Lagrangian method. The
error between the experimental value and the predicted value
by SM is [4,10,25]

�aμ = aexpμ − aSMμ = (274 ± 73) × 10−11. (2)
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In BLMSSM, the one-loop corrections are similar to the
MSSM results [26–29] in analytic form [30]. The two-loop
Barr-Zee type diagrams with a closed scalar (Fermi) loop
between vector Boson and Higgs are studied in the frame
work of BLMSSM [30–32]. There are other works [33–35]
for the two-loop supersymmetric corrections [36–45] to the
lepton MDM.

In this paper, the new physics contributions at one loop
level are similar to the MSSM results in analytic form. The
differences are that the mass matrices of scalar leptons, scalar
neutrinos, neutrino, chargino and neutralino possess new
parameters gX , vη̄, vη and so on. The mass eigenstates of
neutralinos, scalar neutrinos, neutrinos are more than those
in the MSSM. Because the masses of those virtual fields
(W±, Z , Z ′ gauge bosons, neutral and charged Higgs, as well
as neutralinos and charginos) are much heavier than the muon
mass mμ, we can expand the denominator corresponding to
the ratio (external momentum to internal momentum) to sim-
plify the loop calculation [46]. We use the formula:

1

(k − p)2 − m2
s

= 1

k2 − m2
s

×
(

1 + 2k · p − p2

k2 − m2
s

+ 4(k · p)2

(k2 − m2
s )

2

)
+ · · · . (3)

Here, p is the external momentum ofmμ, and k is the internal
momentum at the order of mSUSY . So, mμ

mSUSY
� 1 and p

k �
1.

Our two-loop self energy diagrams contributing to the lep-
ton MDMs are shown in Fig. 2. The two-loop triangle dia-
grams for μ → μ + γ can be obtained from the two-loop
self energy diagrams by attaching a photon on the internal
lines in all possible ways. The sum of all the two-loop trian-
gle diagrams generated from a two-loop self energy diagram
satisfies Ward-identity.

The researched two-loop self energy diagrams include
Barr-Zee type diagrams and rainbow type diagrams with
Fermion sub-loop. Here, we suppose the scalar leptons and
scalar quarks are very heavy, whose contributions from the
studied two-loop diagrams can be neglected. In the works
[2,30–35], the two-loop rainbow diagrams with two vector
bosons Z–Z are not considered. However, in our work [47]
the order analysis of two-loop SUSY corrections [44,45] to
lepton MDM shows that the contributions from two-loop
rainbow diagrams with Z–Z are at the same order of the
contributions from two-loop rainbow diagrams with W–W .
Therefore, we take into account the Z–Z rainbow diagrams.

In the following, we introduce the specific form of U (1)X
SSM and its superfields. The analytic results of the one-loop
corrections and two-loop corrections in the U (1)X SSM are
deduced in the Sect. 3. Section 4 is used for the numerical cal-
culation and discussion. In the last section, we have a special

summary and discussion. Some mass matrix and Feynman
rules are collected in the Appendix.

2 The U(1)X SSM

The gauge group of the U (1)X SSM is SU (3)C ⊗ SU (2)L ⊗
U (1)Y ⊗ U (1)X . To obtain the U (1)X SSM, the MSSM is
added with three Higgs singlets η̂, ˆ̄η, Ŝ and right-handed
neutrinos ν̂i . It can give light neutrino mass at the tree level
through the seesaw mechanism. The neutral CP-even parts
of Hu, Hd , η, η̄ and S mix together, forming 5 × 5 mass
squared matrix. Because of the right handed neutrinos, the
mass matrix of neutrino is expended to 6 × 6. At the same
time, the squared mass matrix of scalar neutrinos turns to
6 × 6 too. For details of the mass matrix of particles, please
see the Appendix.

The superpotential for this model reads as:

W = lW Ŝ + μĤu Ĥd + MS ŜŜ − Yd d̂q̂ Ĥd − Yeêl̂ Ĥd + λH Ŝ Ĥu Ĥd

+λC Ŝη̂ ˆ̄η + κ

3
Ŝ Ŝ Ŝ + Yuûq̂ Ĥu + YX ν̂ ˆ̄ην̂ + Yν ν̂l̂ Ĥu . (4)

There are two Higgs doublets and three Higgs singlets.
Their specific forms are shown below,

Hu =
(

H+
u

1√
2

(
vu + H0

u + i P0
u

)
)

,

Hd =
(

1√
2

(
vd + H0

d + i P0
d

)
H−
d

)
,

η = 1√
2

(
vη + φ0

η + i P0
η

)
,

η̄ = 1√
2

(
vη̄ + φ0

η̄ + i P0
η̄

)
,

S = 1√
2

(
vS + φ0

S + i P0
S

)
, (5)

vu, vd , vη, vη̄ and vS are the corresponding VEVs of the
Higgs superfields Hu , Hd , η, η̄ and S. Here, we define tan β =
vu/vd and tan βη = vη̄/vη. The definition of ν̃L and ν̃R is

ν̃L = 1√
2
φl + i√

2
σl ,

ν̃R = 1√
2
φR + i√

2
σR . (6)

The soft SUSY breaking terms are

Lso f t = LMSSM
sof t − BSS

2 − LSS

−Tκ

3
S3 − TλC Sηη̄ + εi j TλH SH

i
d H

j
u − T I J

X η̄ν̃∗I
R ν̃∗J

R

+εi j T
I J
ν Hi

u ν̃
I∗
R l̃ Jj − m2

η|η|2 − m2
η̄|η̄|2

−m2
S S

2 − (m2
ν̃R

)I J ν̃ I∗
R ν̃ J

R
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−1

2

(
MSλ

2
X̃

+ 2MBB′λB̃λX̃

)
+ h.c. (7)

With the singlet superfield Ŝ coupling to heavy fields in
the most general way, radiative corrections can induce very
large terms in the effective action. These terms are linear
in Ŝ in the superpotential or linear in S in Lso f t , and they
are called tadpole terms [48]. If they are too large, a tadpole
problem appears in the model. In the case of gauge medi-
ated supersymmetry breaking (GMSB) [49], the messenger
fields ϕ̂ with SM gauge quantum numbers and supersym-
metric mass terms (Mmess) are the source of supersymmetry
breaking. The real and imaginary scalar components of the
messenger fields have different masses, and they are split
by a scale m̂. This kind of supersymmetry breaking can be
denoted as F-type splitting and represented by a F component
of a spurion superfield coupling to the messenger fields ϕ̂.
Then, we obtain lW ∼ CSm̂2 and LS ∼ CSm̂4/Mmess with
the simplest coupling CS Ŝϕ̂ϕ̂. Here, CS is the small Yukawa
coupling. There is not tadpole problem with Mmess and the F-
type splitting m̂ not much larger than the weak scale [50,51].
If these scales are larger than the weak scale, small Yukawa
couplings can suppress the tadpole diagrams.

There is conflict between domain wall and tadpole prob-
lems, whose solutions are studied by Refs. [52,53]. One
can impose constraints on Z3-symmetry breaking non-
renormalisable interactions or hidden sectors in the form of
various additional symmetries [54–56]. As the tadpole terms,
Z3-symmetry breaking renormalisable terms are generated
radiatively and have very small coefficients. Z3-symmetry
breaking terms can solve the domain wall problem.

We use YY for the U (1)Y charge and Y X for the U (1)X
charge. According to the textbook [57], the SM is anomaly
free. The anomalies of U (1)X SSM are more complicated
than those of SM [10]. In the end, this model is anomaly free.
The presence of two Abelian groups U (1)Y and U (1)X in
U (1)X SSM have a new effect absent in the MSSM with just
one Abelian gauge group U (1)Y : the gauge kinetic mixing.
This effect can also be induced through RGEs, even if it is
set to zero at MGUT . The covariant derivatives of this model
have the general form [58–60]

Dμ = ∂μ − i
(
Y, X

) (
gY , g′

Y X

g′
XY , g′

X

) (
A′Y

μ

A′X
μ

)
. (8)

Here, A′Y
μ and A′X

μ signify the gauge fields of U (1)Y
and U (1)X . We can do a basis conversion, because the two
Abelian gauge groups are unbroken. The following formula
can be obtained by using the appropriate matrix R [58,60]

(
gY , g′

Y X

g′
XY , g′

X

)
RT =

(
g1, gY X

0, gX

)
. (9)

We deduce sin2 θ ′
W as

sin2 θ ′
W = 1

2

− (g2
Y X − g2

1 − g2
2)v2 + 4g2

X ξ2

2
√

(g2
Y X + g2

1 + g2
2)2v4 + 8g2

X (g2
Y X − g2

1 − g2
2)v2ξ2 + 16g4

X ξ4
,

(10)

with ξ =
√

v2
η + v2

η̄ . The new mixing angle θ ′
W appears in

the couplings involving Z and Z ′.

3 Formulation

We use the effective Lagrangian method, and the Feynman
amplitude can be expressed by these dimension 6 operators
[46]. The higher order operators such as the dimension 8

operators are suppressed by additional factor
m2

μ

m2
SUSY

∼ (10−7,

10−8) comparing with the dimension 6 operators, which are
neglected.

O∓
1 = 1

(4π)2 l̄(iD/)3ω∓l,

O∓
2 = eQ f

(4π)2 (iDμl)γ
μF · σω∓l,

O∓
3 = eQ f

(4π)2 l̄ F · σγ μω∓(iDμl),

O∓
4 = eQ f

(4π)2 l̄(∂
μFμν)γ

νω∓l,

O∓
5 = ml

(4π)2 l̄(iD/)2ω∓l,

O∓
6 = eQ f ml

(4π)2 l̄ F · σω∓l, (11)

with Dμ = ∂μ + ieAμ and ω∓ = 1∓γ5
2 . Fμν is the electro-

magnetic field strength, andml is the lepton mass. Therefore,
the Wilson coefficients of the operators O∓

2,3,6 in the effec-
tive Lagrangian are of interest and their dimensions are −2.

The lepton MDM is the combination of the Wilson coeffi-
cientsC∓

2,3,6 and can be obtained from the following effective
Lagrangian

LMDM = e

4ml
al l̄σ

μνl Fμν. (12)

3.1 The one-loop corrections

In U (1)X SSM, the masses of the neutralinos, neutrinos,
scalar neutrinos and scalar charged leptons are all adopted
comparing with those in MSSM. The one loop new physics
contributions to muon MDM comes from the diagrams in
Fig. 1.

In U (1)X SSM, we find that our own results of the one-
loop corrections are similar to the MSSM results in ana-
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l l

L̃k

(a)
l l l l

ν̃k
I

(b)

ν̃k
R

χ±
i

(c)
χ0
i χ±

i

Fig. 1 The one-loop self energy diagrams affect lepton MDMs in the U (1)X SSM. The triangle diagrams can be obtained by attaching a photon
on the internal lines of the self energy diagrams in all possible ways

lytic form. However, the mass matrices of scalar, Fermion
and Majorana particles have relation with new parameters
gL , v̄L , vL and so on. The corrections to muon MDM from
neutralinos and scalar leptons are expressed as

aL̃χ0

l = −
8∑

i=1

6∑
j=1

⎡
⎣
(A∗

L AR)
√
xχ0

j
xμxL̃i

∂2B(xχ0
j
, xL̃i

)

∂x2
L̃i

+1

3
(|AL |2 + |AR |2)xL̃i

xμ

∂B1(xχ0
j
, xL̃i

)

∂xL̃i

]
, (13)

where xM = M2

�2 , M is the particle mass and � is the mass
scale. The couplings AR, AL are shown as

AR = 1√
2
g1N

∗
i1Z

E
k2 + 1√

2
g2N

∗
i2Z

E
k2

+ 1√
2
gY X N

∗
i5Z

E
k2 − N∗

i3YμZ
E
k5,

AL = − 1√
2
Z E
k5(2g1Ni1 + (2gY X + gX )Ni5) − Y ∗

μZ
E
k2Ni3.

(14)

The matrices Z E , N respectively diagonalize the mass
matrices of scalar lepton and neutralino. The concrete forms
of the functions B(x, y) and B1(x, y) are

B(x, y) = 1

16π2

(
x ln x

y − x
+ y ln y

x − y

)
,

B1(x, y) =
(

∂

∂y
+ y

2

∂2

∂y2

)
B(x, y). (15)

In a similar way, the corrections from chargino and CP-odd
scalar neutrino are also obtained.

aν̃χ±
l I =

2∑
j=1

6∑
k=1

[
− 2
(B∗

L BR)
√
xχ−

i
xμB1(x

k
ν̃I

, xχ−
i
)

+1

3
(|BL |2 + |BR |2)xμxχ−

i

∂B1(xkν̃I , xχ−
i
)

∂xχ−
i

]
. (16)

Here, the BL and BR is

BL = − 1√
2
U∗

j2Z
I∗
k2Yμ,

BR = 1√
2
g2Z

I∗
k2Vj1. (17)

l l

H0(H±)

Fig. 2 One-loop Higgs diagrams contributings to muon MDM in the
U (1)X SSM. It is suppressed by the square of the lepton Yukawa cou-
pling

The corrections from chargino and CP-even scalar neutrino
read as

aν̃χ±
l R =

2∑
j=1

6∑
k=1

[
− 2
(C∗

LCR)
√
xχ−

i
xμB1(x

k
ν̃R

, xχ−
i
)

+1

3
(|CL |2 + |CR |2)xμxχ−

i

∂B1(xkν̃R , xχ−
i
)

∂xχ−
i

]
. (18)

Here, the CL and CR are

CL = 1√
2
U∗

j2Z
R∗
k2 Yμ,

CR = − 1√
2
g2Z

R∗
k2 Vj1. (19)

Here, U, V are used to diagonalize the chargino mass
matrix, and the mass squared matrix of CP-even (CP-odd)
scalar neutrino is diagonalized by Z R (Z I ). The one-loop
Higgs contribution to muon MDM is shown by the Fig. 2,

which is suppressed by the factor
m2
l I

m2
W

∼ 10−6. In numerical

estimation, the correction from Higgs one-loop diagram is
around 10−13, and we can neglect it safely. So, the one-loop
corrections to lepton MDM can be expressed as

�aone−loop
l = aL̃χ0

l + aν̃χ±
l I + aν̃χ±

l R . (20)

3.2 The two-loop corrections

As discussed in Ref. [47], the Barr-Zee two-loop diagrams
(Fig. 3a–c) and rainbow two-loop diagrams (Fig. 3d, g) have
not small factors to muon MDM. That is to say, they have
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considerable contributions to muon MDM. The triangle dia-
grams can be obtained by attaching a photon on the internal
lines of the self energy diagrams in all possible ways. The sum
of all the triangle diagrams corresponding to one self energy
diagram satisfy the Ward-identity and the CTP invariance.

At first, we consider the corrections from Fig. 3a. Under
the assumption mF = mF1 = mF2 � mW , the results [61]
can be simplified as

aWH
l = GFmlm

2
WsW

128eπ4

∑
F1=χ±

∑
F2=χ0

HL
l̄Hν

mF

×
{[

21

4
− 5

18
QF1 +

(
3 + QF1

3

)
(lnm2

F1

−�1,1(m2
W ,m2

H±))

]

(HL

HF1F2
HL
WF1F2

+ HR
HF1F2

HR
WF1F2

)

+
[

19 − 20QF1

9
+ 2 − 4QF1

3
(lnm2

F1
− �1,1(m2

W ,m2
H±))

]

×
(HL
HF1F2

HR
WF1F2

+ HR
HF1F2

HL
WF1F2

)

+
[

− 16

9
− 2 + 6QF1

3
(lnm2

F1
− �1,1(m2

W ,m2
H±))

]

×
(HL
HF1F2

HL
WF1F2

− HR
HF1F2

HR
WF1F2

)

+
[

− 2QF1

9
− 6 − 2QF1

3
(lnm2

F1
− �1,1(m2

W ,m2
H±))

]

×
(HL
HF1F2

HR
WF1F2

− HR
HF1F2

HL
WF1F2

)

}
, (21)

where �1,1(x, y) = x ln x−y ln y
x−y . HL ,R

HF1F2
and HL ,R

WF1F2
repre-

sent the coupling coefficients of the corresponding vertices
with the presentation

LHF1F2 = i F̄1(H
L
HF1F2

PL + HR
HF1F2

PR)F2H
±,

LWF1F2 = i F̄1(H
L
WF1F2

γμPL + HR
WF1F2

γμPR)F2W
μ.

(22)

Their concrete forms are collected in the Appendix.
Then under the assumption mF = mF1 = mF2 � mh0 ,

the two-loop Barr-Zee type diagrams contributing to the lep-
ton MDMs corresponding to Fig. 3b, c can be simplified as

aγ h0
l = GFQ f QF1mlm2

Ws2
W

16π4

×
∑

F1=F2=χ±

1

mF1


(HL
h0F1F2

)

[
1 + ln

m2
F1

m2
h0

]
.

aZh0
l =

√
2ml

512π4

×
∑

F1=F2=χ±,χ0

Hh0ll̄

mF1

[
�1,1(m

2
Z ,m2

h0
) − lnm2

F1
− 1

]

×(HL
Zll − HR

Zll)
(HL
h0F1F2

HL
ZF1F2

+ HR
h0F1F2

HR
ZF1F2

).

(23)

Q f is the electric charge of the external lepton mμ. QF1 and
QF2 are the electric charges of the internal charginos.

Under the assumption mF = mF1 = mF2 � mW ∼
mZ , the two-loop rainbow type diagrams contributing to the
lepton MDMs corresponding to Fig. 3d–f can be simplified
as

aWW
l = GFm2

l

192
√

2π4

∑
F1=χ±

∑
F2=χ0

{
(18QF1 − 13)(|HL

WF1F2
|2 + |HR

WF1F2
|2)

+3(QF1 − 3)(|HL
WF1F2

|2 − |HR
WF1F2

|2) + 11
(HR∗
WF1F2

HL
WF1F2

)
}
.

aγ γ

l =
√

2e2GF Q2
F1
m2

l

180π4

∑
F1=F2=χ±

m2
W

m2
F1

.

aγ Z
l = QF1m

2
l e

2

256π4 (HR
Zll − HL

Zll )

×
∑

F1=F2=χ±

1

m2
F1


(HL
ZF1F2

− HR
ZF1F2

)

[
35 + ln

m2
F1

m2
Z

]
. (24)

Here, we focus on Z–Z two-loop rainbow diagram in the
Fig. 3g. In the references [31–35], the Z–Z two-loop diagram
has not been taken into account. But in this paper, we research
the Z–Z two-loop diagram and show the simplified result.
The triangle diagrams of the two-loop Z–Z rainbow self-
energy diagram can be divided into two parts: 1 the external
photon is attached on the virtual lepton between Z–Z , and
the corresponding counter term should be considered. After
the simplification, the contributions from this type two-loop
diagrams are tiny, and can be neglected safely. 2 the external
photon is attached on the charged fermion sub-loop. The
full two-loop results of this type triangle diagrams are very
tedious and can be found in Ref. [61]. With the assumption
mF = mF1 = mF2 � mW ∼ mZ , we simplify the tedious

two-loop results to the order
m2

μ

M2
Z

∼ 10−6 or
m2

μ

m2
SUSY

, and

obtain the concise form.

aZ Z
l = − QF1xl

1024π4

∑
F1=F2=χ±

{(
|HL

ZF1F2
|2 + |HR

ZF1F2
|2

)

×
(
|HL

Zll |2 + |HR
Zll |2

) [−12 log xF − 30

xZ

]

+
(
|HL

ZF1F2
|2 − |HR

ZF1F2
|2

)(
|HL

Zll |2 − |HR
Zll |2

)

×
[−3 log xZ + 3 log xF + 2

9xF

]

+
(HL
ZF1F2

HR
ZF1F2

)
(
|HL

Zll |2 + |HR
Zll |2

)

×
[−6 log xZ + 6 log xF + 4

9xF

]

+
(
|HL

ZF1F2
|2 + |HR

ZF1F2
|2

)
HL
Zll H

R
Zll

×
[

16
(log xF − log xZ )(log xF + 2) + 2

xZ

] }
. (25)
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Fig. 3 The two-loop Barr-Zee
and rainbow type diagrams
affect lepton MDMs in the
U (1)X SSM
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l

(f)

Z Z

l
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At two-loop level, the contributions to lepton MDMs can be
summarized as

�atwo−loop
l = �aone−loop

l + aWH
l + aγ h0

l

+aZh0
l + aWW

l + aγ γ

l + aγ Z
l + aZ Z

l . (26)

4 The numerical results

In this section, we will discuss the numerical results. The
lightest CP-even Higgs mass is considered as an input param-
eter, which is mh0 = 125.1 GeV [62,63]. The parameters
used in U (1)X SSM are given below:

gX = 0.3, gY X = 0.2, λC = −0.3, κ = 0.3, TλH = 1.8 TeV,

Tκ = 1.6 TeV, Bμ = 1 TeV2,

TλC = MBL = M1 = 1 TeV, vη = 15.5 × cos βη TeV,

vη̄ = 15.5 × sin βη TeV, tan βη = 1,

mSF = 2 TeV2, μx = 500 GeV, MBB′ = 0.4 TeV,

tanβ = 11, TE11 = TE22 = TE33 = 1 TeV,

Tν33 = 1600 GeV, Mν11 = Mν22 = 0.5 TeV2,

Mν33 = 2502 GeV2, YX11 = YX22 = 0.5,

ML11 = ME11 = ML22 = ME22 = ML33 = ME33 = 2.4 TeV2,

TX11 = TX22 = −1 TeV,

TX33 = −2 TeV, YX33 = 0.4, BS = 1 TeV2,

λH = 0.1, lW = 5 TeV2. (27)

To simplify the discussion, the parameters YX , TX , Tν , TE ,
ML , ME and Mν are supposed as diagonal matrices. In the
follow, the remaining tunable parameters are M2, MS , μ, vS ,
ME11 = ME22 = ME33 = ME . Next, we will analyze the
effects of these parameters on the contributions to the muon
MDM.

With the parameters MS = 1200 GeV, μ = 300 GeV,
ME = 1 TeV2, we plot aμ versus vS in the Fig. 4. vS is VEV
of the Higgs singlet S, which affects the particle masses.
So, it is expected that vS gives influence on aμ. The dashed
curve corresponds to M2 = 1200 GeV, and the solid line
corresponds to M2 = 1000 GeV. The both curves vary gently
with vS in the region (3000−4500) GeV. The dashed curve
is a little larger than the solid curve. In the whole, the both

Fig. 4 aμ versus vS . The solid (dashed) line corresponds to the result
with M2 = 1000 (1200) GeV

Fig. 5 aμ versus MS . The dashed (solid) line denotes the result with
M2 = 1200 (800) GeV

curves are around the order 5.0 × 10−10. These corrections
are considerable.

MS is the mass of the new gaugino, and it appears in
the mass matrix of neutralino. Therefore, the one loop and
two loop corrections relating with neutralino are affected by
MS . Supposing μ = 300 GeV, vS = 4500 GeV, ME =
1TeV2, we show aμ varying with MS by the solid curve
(M2 = 800 GeV) and dashed curve (M2 = 1200 GeV)
in the Fig. 5. During the region (1000 ∼ 1500) GeV, the
solid curve is almost an increasing function. As MS is near
750 GeV, the biggest value of the dashed line can reach 5.4×
10−10. As MS is larger than 1200 GeV, the dashed line is

123



Eur. Phys. J. C (2021) 81 :433 Page 7 of 11 433

Fig. 6 The relationship between aμ and ME11 = ME22 = ME33 =
ME . The dashed line expresses M2 = 1000 GeV, and the solid line
expresses M2 = 800 GeV

almost horizontal and about 5.0 × 10−10. The smallest value
of the dashed line is about 4.8 × 10−10. Generally speaking,
MS is a sensitive parameter and influence aμ obviously. The
biggest value of the dashed line is about 0.3 × 10−10 larger
than the horizon. The change in MS has an effect on the
two mass eigenvalues of neutralino χ0. The mass matrix of
neutralino affects the contributions from the W–H two-loop
diagram, the Z–h0 two-loop diagram, the W–W two-loop
diagram, the Z–Z two-loop diagram, like Fig. 3a, c, d, g.
Among them, the influence on W–W two-loop Fig. 3d is
greater. The contributions of these two-loop diagrams add up
to the large bump. The condition of the solid line is similar
as that of the dashed line.

Then, we analyze the effects of the parameters ME on the
results and try to find their reasonable ranges. The parameters
ME are the diagonal elements of the mass squared matrix of
the charged slepton, and they are major factors for slepton
mass. Based on MS = 1200 GeV, μ = 300 GeV, vS =
3000 GeV, the numerical results are shown by the dashed
curve and solid curve corresponding to M2 = 1000 GeV and
M2 = 800 GeV respectively. In the Fig. 6, aμ varies with
ME in the range from 2.0 TeV2 to 4.0 TeV2. The both curves
possess similar behavior, and the dashed curve is above the
solid curve. In the ME region (2.0 TeV2 to 2.5 TeV2), the
both curves are slowly increasing functions. As 2.5 TeV2 <

ME < 4.0 TeV2, they hardly changes at all.
The SU(2) gaugino mass M2 is the diagonal element of

chargino and neutralino, so M2 gives influence to the masses
of chargino and neutralino. Certainly, the corrections to aμ

are affected by M2. From the Figs. 4, 5, 6, one can find that
M2 is a sensitive parameter. Adopting MS = 1200 GeV, μ =
300 GeV, ME = 1 TeV2, we plot the results by the dashed
curve (vS = 3800 GeV) and solid curve (vS = 4300 GeV)
in the Fig. 7. The both curves are similar and almost overlap,
which increase obviously with the enlarging M2. When M2 is
near 5000 GeV, the both curves can reach 7.4 × 10−10 about
one σ deviation between experiment data and SM prediction.

8.

7.5

7.

Fig. 7 The effect of M2 on the results. The dashed line expresses vS =
3800 GeV, and the solid line expresses vS = 4300 GeV

7.

Fig. 8 The influence of μ on aμ. The dashed line expresses M2 =
800 GeV, and the solid line expresses M2 = 1000 GeV

To see how μ affects the muon MDM, we suppose MS =
1200 GeV, vS = 3000 GeV, ME = 1 TeV2 and plot the
results versus μ. The solid (dashed) curve corresponds to the
results obtained with M2 = 1000(800) GeV, which is shown
in the Fig. 8. It is obvious that, μ affects aμ strongly. Their
smallest value is about 4.7×10−10 and largest value is about
6.8×10−10. When μ ia larger than 800 GeV, the both curves
decrease. The dashed line expresses the result with M2 =
800 GeV, and it comes up the large bump (aμ = 6.01×10−10)
around μ = 630 GeV. The change in μ affects the mass
matrices of chargino and neutralino. Their mass eigenvalues
and turning matrices can influence the contributions of all the
studied two-loop diagrams in the Fig. 3. So the effect from
μ is larger than that of MS . μ is a sensitive parameter and
affects the result obviously in the Fig. 8.

5 Discussion and conclusion

U (1)X SSM is theU (1)X extension of MSSM, and it has new
superfields. Using the effective Lagrangian method, we cal-
culate and analyze the contributions from the one-loop and
two-loop diagrams to muon MDM in U (1)X SSM. The con-
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straint from the lightest CP-even Higgs with the top-scalar-
top loop correction is taken into account. As introduced in
the Sect. 2, these new particles lead to new corrections to
aμ. The studied contributions are composed of one-loop dia-
grams, two-loop Barr-Zee type diagrams and two-loop rain-
bow diagrams

�atwo−loop
l = �aone−loop

l + aWH
l + aγ h0

l

+aZh0
l + aWW

l + aγ γ

l + aγ Z
l + aZ Z

l . (28)

The two-loop rainbow diagrams with two Z bosons are
not considered in the works [2,31–35]. In our numerical cal-
culation, the contributions from two-loop rainbow diagrams
with two Z bosons are at the same order of the contributions
from the two-loop rainbow diagrams with two W bosons.
This result is consistent with the two-loop order analysis in
our previous work [47]. Therefore, the contributions from
the two-loop rainbow diagrams with two Z bosons are not
small, and they should be taken into account.

The numerical results show that the parameters μ, M2,
MS , vS , ME11 = ME22 = ME33 are all influential to aμ.
M2 is a sensitive parameter, and the largest value of aμ in
our used parameter space can reach 7.4 × 10−10. In the large
part of the parameter space, the contributions from these loop
diagrams are about 5.0×10−10. These corrections can make
up the deviation between experimental data and SM predic-
tion to about one quarter. As we all know, there are a lot of
two-loop diagrams contributing to muon MDM. Some non-
studied two-loop diagrams can also give important correc-
tions to muon MDM, which can improve theoretical value
more. Because the calculation of the two-loop diagrams are
very tedious, we will study other two-loop diagrams in the
future work.
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Appendix

The mass matrix for slepton with the basis (ẽL , ẽR)

m2
ẽ =

(
mẽL ẽ∗

L

1
2 (

√
2vdT

†
e − vu(λHχ S + √

2μ)Y †
e )

1
2 (

√
2vdTe − vuYe(

√
2μ∗ + χ Sλ∗

H )) mẽRẽ∗
R

)
, (29)

mẽL ẽ∗
L

= m2
l̃

+ 1

8

(
(g2

1 + g2
Y X + gY X gX − g2

2)(v2
d − v2

u)

+2gY X gX (v2
η − v2

η̄)
)

+ 1

2
v2
dY

†
e Ye,

mẽRẽ∗
R

= m2
e − 1

8

(
[2(g2

1 + gY X ) + 3gY X gX + g2
X ](v2

d − v2
u)

+(4gY X gX + 2g2
X )(v2

η − v2
η̄)

)
+ 1

2
v2
dYeY

†
e . (30)

The mass matrix for CP-even sneutrino (φl , φr ) reads

m2
ν̃R =

(
mφlφl mT

φrφl
mφlφr mφrφr

)
, (31)

mφlφl = 1

8

(
(g2

1 + g2
Y X + g2

2 + gY X gX )(v2
d − v2

u)

+gY X gX (2v2
η − 2v2

η̄)
)

+ 1

2
v2
uY

T
ν Yν + m2

L̃
, (32)

mφlφr = 1√
2
vuTν + vuvη̄YXYν − 1

2
vd (λHχ S + √

2μ)Yν,

(33)

mφrφr = 1

8

(
(gY X gX + g2

X )(v2
d − v2

u) + 2g2
X (v2

η − v2
η̄)

)

+vηχ SYXλC + m2
ν̃

+ 1

2
v2
u |Yν |2 + vη̄(2vη̄|YX |2 + √

2TX ).

(34)

The mass matrix for CP-odd sneutrino (σl , σr ) is also
deduced here

m2
ν̃ I =

(
mσlσl m

T
σrσl

mσlσr mσrσr

)
, (35)

mσlσl = 1

8

(
(g2

1 + g2
Y X + g2

2 + gY X gX )(v2
d − v2

u)

+2gY X gX (v2
η − v2

η̄)
)

+1

2
v2
uY

T
ν Yν + m2

L̃
, (36)
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mσlσr = 1√
2
vuTν − vuvη̄YXYν − 1

2
vd(λHχ S + √

2μ)Yν,

(37)

mσrσr = 1

8

(
(gY X gX + g2

X )(v2
d − v2

u)

+2g2
X (v2

η − v2
η̄)

)
− vηχ SYXλC

+m2
ν̃ + 1

2
v2
u |Yν |2 + vη̄(2vη̄YXYX − √

2TX ). (38)

Mass matrix for charginos in the basis: (W̃−, H̃−
d ), (W̃+,

H̃+
u )

mχ̃− =
(

M2
1√
2
g2vu

1√
2
g2vd

1√
2
λHχ S + μ

)
. (39)

The matrix is diagonalized by U and V

U∗mχ̃−V † = mdia
χ̃− . (40)

The mass matrix for charged Higgs in the basis: (H−
d , H+,∗

u ),
(H−,∗

d , H+
u )

m2
H− =

(
mH−

d H−,∗
d

m∗
H+,∗
u H−,∗

d

mH−
d H+

u
mH+,∗

u H+
u

)
, (41)

mH−
d H−,∗

d
= 1

8
((g2

2 + g2
X )v2

d + (−g2
X + g2

2)v2
u

+(g2
1 + g2

Y X )(−v2
u + v2

d) − 2g2
Xv2

η̄

+2(gY X gX (−v2
η̄ − v2

u + v2
d + v2

η) + g2
Xv2

η)

+1

2
(2 | μ |2 +2

√
2χ S
(μλ∗

H ) + χ S2 | λH |2, (42)

mH−
d H+

u
= 1

2
(2(λHl

∗
W + Bμ)

+λH (2
√

2χ SM∗
S − vdvuλ

∗
H

+vηvη̄λ
∗
C + √

2χ STλH )) + 1

4
g2

2vdvu, (43)

mH+,∗
u H+

u
= 1

8
((−g2

X + g2
2)v2

d + (g2
2 + g2

X )v2
u

+(g2
1 + g2

Y X )(−v2
d + v2

u) − 2g2
Xv2

η

+2(gY X gX (−v2
d − v2

η + v2
u + v2

η̄) + g2
Xv2

η̄))

+1

2
(2 | μ |2 +2

√
2χ S
(μλ∗

H ) + χ S2 | λH |2). (44)

The mass matrix for neutralino in the basis (λB̃ , W̃ 0, H̃0
d ,

H̃0
u , λX̃ , η̃, ˜̄η, s̃) is

mχ̃0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M1 0 − g1
2 vd

g1
2 vu MBB′ 0 0 0

0 M2
g2
2 vd − g2

2 vu 0 0 0 0

− g1
2 vd

g2
2 vd 0 mH̃0

u H̃
0
d

m
λX̄ H̃

0
d

0 0 −λH vu√
2

g1
2 vu − g2

2 vu mH̃0
d H̃

0
u

0 m
λX̄ H̃

0
u

0 0 −λH vd√
2

MBB′ 0 mH̃0
d λX̄

m H̃0
u λX̄

MBL −gXvη gXvη̄ 0

0 0 0 0 −gXvη 0 1√
2
λCvS

1√
2
λCvη̄

0 0 0 0 gXvη̄
1√
2
λCvS 0 1√

2
λCvη

0 0 − 1√
2
λHvu − 1√

2
λHvd 0 1√

2
λCvη̄

1√
2
λCvη ms̃s̃

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (45)

mH̃0
d H̃

0
u

= − 1√
2
λHvS − μ,

mH̃0
d λX̄

= −1

2
(gY X + gX )vd ,

mH̃0
u λX̄

= 1

2
(gY X + gX )vu, ms̃s̃ = 2Ms + √

2κvS .

(46)

This matrix is diagonalized by ZN ,

ZN∗mχ̃0 ZN† = mdia
χ̃0 . (47)

Here are the coupling coefficients for these corresponding
vertices:

HL
Wχ±χ0 = − 1

2
g2(2U

∗
j1Ni2 + √

2U∗
j2Ni3),

HR
Wχ±χ0 = − 1

2
g2(2N

∗
i2Vj1 − √

2N∗
i4Vj2),

HL
Zll = 1

2
(−g1 cos θ ′

W sin θW + g2 cos θW cos θ ′
W + gY X sin θ ′

W ),

HR
Zll = − 1

2

(
2g1 cos θ ′

W sin θW − (2gY X + gX ) sin θ ′
W

)
,

HL
Zχ±χ± = 1

2

(
2g2U

∗
i1 cos θW cos θ ′

WUi1

+U∗
i2(−g1 cos θ ′

W sin θW + g2 cos θW cos θ ′
W

+(gY X + gX ) sin θ ′
W )Ui2

)
,

HR
Zχ±χ± = 1

2

(
2g2V

∗
i1 cos θW cos θ ′

W Vi1

+V ∗
i2(−g1 cos θ ′

W sin θW + g2 cos θW cos θ ′
W

+(gY X + gX ) sin θ ′
W )Vi2

)
,

HL
Hχ±χ0 = 1

2

(
− 2g2V

∗
i1N

∗
j4Z

+
k2

−V ∗
i2(2λH N∗

j8Z
+
k1 + √

2(g1N
∗
j1 + g2N

∗
j2

+(gY X + gX )N∗
j5)Z

+
k2)

)
,

HR
Hχ±χ0 = 1

2

(
− 2g2U

∗
i1N j3Z

+
k1 +Ui2(−2λ∗

H N j8Z
+
k2

+√
2(g1N j1 + g2N j2
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+(gY X + gX )N j5)Z
+
k1)

)
,

HL
h0χ±χ± = − 1√

2

(
g2U

∗
j1V

∗
j2Z

H
k2

+U∗
j2(g2V

∗
j1Z

H
k1 + λH V ∗

j2Z
H
k5)

)
,

HR
h0χ±χ± = − 1√

2

(
g2Uj1Vj2Z

H
k2

+Uj2(g2Vj1Z
H
k1 + λ∗

H Vj2Z
H
k5)

)
(48)

HL
Zχ0χ0 = − 1

2

(
N∗
i3(g1 cos θ ′

W sin θW + g2 cos θW cos θ ′
W

−(gY X + gX ) sin θ ′
W )Ni3

−N∗
i4(g1 cos θ ′

W sin θW + g2 cos θW cos θ ′
W

−(gY X + gX ) sin θ ′
W )

+2(−gX sin θ ′
W )(N∗

i6Ni6 − N∗
i7Ni7)

)
,

HR
Zχ0χ0 = 1

2

(
N∗
i3(g1 cos θ ′

W sin θW + g2 cos θW cos θ ′
W

−(gY X + gX ) sin θ ′
W )Ni3

−N∗
i4(g1 cos θ ′

W sin θW + g2 cos θW cos θ ′
W

−(gY X + gX ) sin θ ′
W )

+2(−gX sin θ ′
W )(N∗

i6Ni6 − N∗
i7Ni7)

)
,

HL
h0χ0χ0 = 1

2

(
ZH
k1[g1(Ni1Ni3 + Ni3Ni1) − g2(Ni2Ni3 + Ni3Ni2)

+(gY X + gX )(Ni5Ni3 + Ni3Ni5) + √
2λH (Ni4Ni8 + Ni8Ni4)]∗

+ZH
k2[−g1(Ni1Ni4 + Ni4Ni1)g2(Ni2Ni4 + Ni4Ni2)

−(gY X + gX )(Ni5Ni4 + Ni4Ni5) + √
2λH (Ni3Ni8 + Ni8Ni3)]∗

+ZH
k3[2gX (Ni5Ni6 + Ni6Ni5) − √

2λC (Ni7Ni8 + Ni8Ni7)]∗
+ZH

k4[−2gX (Ni5Ni7 + Ni7Ni5) − √
2λC (Ni6Ni8 + Ni8Ni6)]∗

+ZH
k5[

√
2λH (Ni3Ni4 + Ni4Ni3) − √

2λC (Ni7Ni6 + Ni6Ni7)

−2
√

2κNi8Ni8]∗
)
,

HR
h0χ0χ0 = 1

2

(
ZH
k1[g1(Ni1Ni3 + Ni3Ni1) − g2(Ni2Ni3 + Ni3Ni2)

+(gY X + gX )(Ni5Ni3 + Ni3Ni5) + √
2λH (Ni4Ni8 + Ni8Ni4)]

+ZH
k2[−g1(Ni1Ni4 + Ni4Ni1)g2(Ni2Ni4 + Ni4Ni2)

−(gY X + gX )(Ni5Ni4 + Ni4Ni5) + √
2λH (Ni3Ni8 + Ni8Ni3)]

+ZH
k3[2gX (Ni5Ni6 + Ni6Ni5) − √

2λC (Ni7Ni8 + Ni8Ni7)]
+ZH

k4[−2gX (Ni5Ni7 + Ni7Ni5) − √
2λC (Ni6Ni8 + Ni8Ni6)]∗

+ZH
k5[

√
2λH (Ni3Ni4 + Ni4Ni3) − √

2λC (Ni7Ni6 + Ni6Ni7)

−2
√

2κNi8Ni8]
)
. (49)
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