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Abstract Spin sum rules depend on the choice of a pivot,
i.e. the point about which the angular momentum is defined,
usually identified with the center of the nucleon. The latter
is however not unique in a relativistic theory and has led to
apparently contradictory results in the literature. Using the
recently developed phase-space approach, we compute for
the first time the contribution associated with the motion of
the center of the nucleon, and we derive a general spin sum
rule which reduces to established results after appropriate
choices for the pivot and the spin component.

1 Introduction

After more than three decades of intense study on both the-
oretical and experimental sides, the spin structure of the
nucleon remains one of the most vivid topics in hadronic
physics. Reviews about key developments and achievements
in this field can be found in Refs. [1–8]. A fundamental ques-
tion is the decomposition of the nucleon spin into its con-
stituents’ intrinsic and orbital angular momentum contribu-
tions. While longitudinal spin (or helicity) sum rules derived
long ago [9,10] are well-established, various transverse spin
sum rules have been discussed over the years and led to a
rather confused situation [11–22]. Deriving a transverse spin
sum rule is a delicate and subtle problem for the simple rea-
son that transverse rotations (unlike longitudinal rotations)
do not commute with longitudinal boosts. In the review [4],
a whole section has been devoted to discuss in detail these
spin sum rules and to clarify their status.

In a recent paper [23] a number of results about the trans-
verse angular momentum (AM) in a transversely polarized
nucleon are derived, and seem to contradict those obtained
earlier in Refs. [11,12]. The authors argue that the old results
are “incorrect” because they contain, in a moving frame, con-
tributions from the center of mass motion. To get rid of these

a e-mail: cedric.lorce@polytechnique.edu (corresponding author)

contributions, they observe that some terms in the expec-
tation value of the transverse AM do not contribute to the
Pauli-Lubański pseudovector, and accordingly remove them
by hand. This prescription appears however somewhat ad
hoc and requires rigorous justification. In particular, the con-
tribution from the center-of-mass motion is actually never
calculated.

In this paper, we show that the old [11,12] and the new [23]
results are in fact both correct. They just refer to different def-
initions for the “center” of the nucleon, and hence for what
is meant by “spin” or “internal AM”. The key role played
by this center was recognized long ago [11,13,14,24] and
motivated a recent discussion of the concept of relativistic
center of mass in the context of hadronic physics [25], which
clarified the leading-twist picture of AM in the light-front
formalism addressed in Refs. [13–16,26]. Here we adopt the
phase-space approach developed in Refs. [25,27,28] to iden-
tify and compute explicitly the contribution from the center-
of-mass motion. In the case of the transverse AM, we show
that adding this contribution is equivalent to the somewhat
ad hoc prescription used in Ref. [23]. We observe however
that this prescription applies only to the AM operators and
leads to incorrect results for the transverse boost operators.

The rest of this paper is organized as follows. In Sect. 2
we review the notion of spin in Quantum Field Theory and
the problem of defining the center of the nucleon. Then we
explain in Sect. 3 how to compute rigorously the expectation
values for operators of the form

∫
d3r r i O(r) and apply the

formalism to the Poincaré generators in Sect. 4, followed by a
derivation of the general spin sum rule and a comparison with
former results found in the literature. Finally, we summarize
our findings in Sect. 5.

2 What do we mean by “spin”?

An AM operator is usually understood as a generator of rota-
tions about some point, the pivot. In practice, once a Lorentz
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frame is fixed, the origin of the coordinate system is often
chosen to coincide with the pivot. But the choice of the pivot is
arbitrary. It is in general an abstract concept unless it is given
some physical meaning. For example, in the simplest non-
relativistic treatment of the hydrogen atom the pivot is placed
at the nucleus, which is taken to be an infinitely heavy point
charge, with the spinless electron moving in its Coulomb
potential.

Problems with understanding the magnetic moment in the
Stern–Gerlach experiment led to the introduction of “spin”
in Quantum Mechanics to represent some new intrinsic prop-
erty of the electron, eventually recognized as a new type of
AM with no classical analog. The concept of spin was then
extended to composite systems and identified with the inter-
nal AM,1 defined as

S = J − R × P, (1)

where J is the total AM about the origin, R is the “position”
of the system with respect to that origin, and P is its total
momentum.

If one requires S to generate internal rotations, i.e. rota-
tions about the position of the system, then the external AM
operator L = R × P must generate external rotations about
the origin, i.e. it must satisfy the following commutation rela-
tions
[
Ri , L j

]
= iεi jk Rk,

[
Pi , L j

]
= iεi jk Pk, (2)

and hence [Li , L j ] = iεi jk Lk . The necessary and sufficient
conditions for these to hold are that the operators R and P
obey the standard canonical commutation relations
[
Ri , R j

]
= 0,

[
Pi , P j

]
= 0,

[
Ri , P j

]
= iδi j . (3)

They imply in particular
[
Ri , S j

]
= 0,

[
Pi , S j

]
= 0,

[
Si , S j

]
= iεi jk Sk . (4)

In other words, the internal AM operator S satisfies the usual
su(2) algebra and is independent of the position and the total
momentum of the system, and therefore of the external AM
operator L.

The question of interest is: what point defines the position
of the system? In non-relativistic quantum mechanics, it is
defined by the center-of-mass position operator

R := RNR = 1

m

N∑

n=1

mnRn, (5)

where m = ∑
n mn is the mass of a system made of

N particles with masses mn . Since the particles’ position
and momentum operators satisfy by definition [Ri

n, P
j
n′ ] =

1 Generally the internal AM will contain a mixture of contributions
from both orbital motion and intrinsic AM of the constituents.

iδi jδnn′ with [Ri
n, R

j
n′ ] = 0 and [Pi

n , P
j
n′ ] = 0, one sees that

the non-relativistic spin operator SNR = J − RNR × P is
the generator of internal rotations. If the system consists of
a single structureless particle, then the non-relativistic spin
operator simply coincides with the intrinsic AM operator.

In a relativistic theory, the situation is more complicated
for two reasons:

• There exist different expressions for the AM operators in
terms of the fields associated with the particles. The two
principal versions are the Canonical and the Belinfante
(or symmetrized) forms, which differ by a spatial integral
over fields evaluated at infinity. As explained in Section
2.6.3 of Ref. [4], it would be impossible to construct a
consistent theory if one could not ignore such terms in
the matrix elements of these AM operators taken between
normalizable states. Hence we may choose which ver-
sion to use, and in this paper, as is done in the papers
we are commenting on, we shall only use the Belinfante
versions.

• In particle physics it is often adequate to describe the
motion of a particle as being in a momentum eigenstate,
i.e. a plane wave, but clearly in that case the density in
coordinate space is constant so that the particle is totally
delocalized. So, to discuss internal AM some form of
localized wave packet is essential. In addition, even when
dealing with a localized system, there still exist several
possibilities for the definition of the position of the sys-
tem, which are identical in the rest frame of the system,
but generally differ in other frames. The main three def-
initions are given by the so-called relativistic centers of
energy (or inertia), mass, and spin [25,29–32], which we
briefly review in the following.

2.1 The relativistic center of energy or inertia

The relativistic center of energy or inertia is the field theo-
retical version of Eq. (5), where the role of inertial mass is
played by the energy. Its position and time components are
defined, in any reference frame, by [33,34]

Rμ
E = 1

P0

∫
d3r rμ T 00(r), (6)

where the operator Tμν(r) is the energy momentum tensor
(EMT) and Pμ = ∫

d3r T 0μ(r) is the total four-momentum
operator. Acting on a four-momentum eigenstate with eigen-
value pμ, the operator 1/P0 simply means multiplication by
1/p0. Also, ambiguities in the ordering of Hermitian oper-
ators are resolved by considering implicitly symmetrized
products AB ≡ 1

2 (AB + BA) [29,34].
In a field theory, the AM operators J i = 1

2εi jkM jk and
the generators of boosts Ki = M0i are defined in terms of the
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generalized AM tensor, which reads in Belinfante form [35]

Mμν = −Mνμ =
∫

d3r
[
rμT 0ν(r) − rνT 0μ(r)

]
. (7)

It follows that the position operator for the relativistic center
of energy is directly related to the generators of boosts as
follows

RE = t
P
P0 − K

P0 . (8)

Clearly, Rμ
E does not transform as a Lorentz four-vector.

Using the following commutation relations
[
Ki , K j

]
= −iεi jk J k,

[
P0, Ki

]
= i Pi ,

[
Pi , K j

]
= iδi j P0, (9)

and the fact that J generates the rotations, one can check
that RE satisfies the canonical commutation relations
[Ri

E , P j ] = iδi j and [Ri
E , J j ] = iεi jk Rk

E , so that it quali-
fies to some extent as a position operator, albeit with mutually
non-commuting components. This last property implies that
RE × P will not satisfy the su(2) algebra and cannot be con-
sidered as a genuine orbital AM operator. Nonetheless, as is
customary, we shall continue to refer to it as the AM of the
center of energy about the origin.

The nearest one can get to a spin operator transforming as
a four-vector is the Pauli–Lubański pseudovector [36,37]

Wμ = 1

2
εμαβλMαβ Pλ, (10)

which satisfies the commutation relations
[
Wμ, Pν

] = 0,
[
Wμ,W ν

] = −εμναβWαPβ (11)

in the convention ε0123 = 1. For a momentum eigenstate with
p = 0, the action of W coincides with that of m J . Hence
one can define a relativistic spin operator by

SE = W
P0 = J + K × P

P0 = J − RE × P, (12)

showing that SE corresponds to the internal AM about the rel-
ativistic center of energy. Note however that, like the external
AM RE × P , the operator SE is not a genuine AM operator.
An explicit calculation gives indeed [29,34]

[
SiE , S j

E

]
= iεi jk

(

δkl − Pk Pl

(P0)2

)

SlE (13)

and shows that SE does not obey the su(2) algebra, except
when acting on a momentum eigenstate with p = 0.

2.2 The relativistic center of mass

As already mentioned, the relativistic center of energy RE

does not behave as the spatial part of a Lorentz four-vector.
This is not a fundamental issue since the center of a system

is just a representative point to which one can attach global
properties like mass, momentum and spin. It does not need
to behave as an actual physical point. As a result, different
observers will generally locate the center of energy at differ-
ent places inside the convex hull of the system [30,38]. One
may then wonder whether it is possible to define a natural
relativistic center whose coordinates would transform as part
of a Lorentz four-vector.

Clearly, the center of energy defined in the rest frame of
the system plays a special role. Since in that frame the energy
coincides with the mass of the system, we will refer to it as
the relativistic center of mass. At the classical level, if rμ

E |rest

represents the space-time coordinates of the relativistic center
of mass in the rest frame, its components in an arbitrary frame
will be defined by rμ

M = �μ
νrν

E |rest, where �μ
ν represents

the Lorentz transformation from the rest frame to the moving
frame, i.e. such that pμ = �μ

ν pν
rest with pμ

rest = (m, 0).
Transposing this construction to an operator level is not so
trivial. First, one needs to clarify what is meant by “a system
at rest” in a quantum theory. Since P is an operator, the rest
frame will simply mean the frame in which the expectation
value2 of the total momentum operator vanishes

〈P〉|rest = 0. (14)

Second, since Rμ
E involves symmetrized products of oper-

ators, the above classical requirements are transposed in a
quantum theory into requirements on the expectation values,
namely

〈Rμ
M 〉 = �μ

ν〈Rν
E 〉|rest, 〈Pμ〉 = �μ

ν〈Pν〉|rest. (15)

A manifestly covariant generalization of Eq. (8) is given
by [29,31]

Rμ
	 = τ

Pμ

M
− PνMνμ

M2 , (16)

where τ is the proper time, PνMνμ/M is the covariant form
of the boost generators defined by a comoving observer, and
M = √

P2 is the mass operator. In the rest frame, proper
time coincides with the time coordinate3 so that one has as
required 〈Rμ

	 〉|rest = 〈Rμ
E 〉|rest. The only problems are that

[Ri
	, P

j ] = i
(
δi j + Pi P j

M2

)
and R0

	 �= t , and have to do

with the fact that the operator R	 represents a position at a
fixed proper time τ and not at a fixed time coordinate t . The
solution is to use another operator [29,31]

Rμ
M =

(

t + P · K
M2

)
Pμ

P0 − PνMνμ

M2 (17)

that satisfies [Ri
M , P j ] = iδi j and R0

M = t . Despite its lack
of manifest covariance, it describes in any frame the same

2 The precise meaning of the expectation value will be given in Sect. 3.
3 Note that proper time is defined by τ = 〈Rμ

	 〉uμ with uμ = pμ/m,
whereas the time coordinate is defined by t = 〈R0

	 〉.
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world line as Rμ
	 , namely

{〈Rμ
M 〉 | t ∈ Reals

} = {〈Rμ
	 〉 | τ ∈ Reals

}
. (18)

In other words, the expectation value 〈Rμ
M 〉 transforms

as a Lorentz four-vector. Moreover, one has obviously
〈Rμ

M 〉|rest = 〈Rμ
E 〉|rest.

Combining Eqs. (8) and (17), one finds that the shift
between the relativistic centers of energy and mass is given
by

RE − RM = P × W
P0M2 . (19)

The internal AM operator about the relativistic center of mass
SM = J − RM × P can then be expressed in terms of the
Pauli-Lubański pseudovector as follows

SM = P0W − PW 0

M2 . (20)

Under Lorentz transformations, it behaves in the same way
as the total AM J , i.e. as the axial-vector part SiM =
1
2 εi jk S jk

M of a rank-two antisymmetric Lorentz tensor Sμν
M =

−εμνρσWρPσ /M2. Note however that, like RE , the compo-
nents of RM do not commute with each other. It is also easy
to check that SM does not satisfy the su(2) algebra [29]

[
SiM , S j

M

]
= iεi jk

(

δkl + Pk Pl

M2

)

SlM (21)

and cannot be considered as a genuine AM operator, except
when acting on a momentum eigenstate with p = 0.

2.3 The relativistic center of spin

As stressed above, neither the components of RE nor those of
RM commute with each other [29–31,34]. The correspond-
ing spin operators SE and SM do not satisfy the su(2) alge-
bra of AM operators, and hence cannot be considered as
generators of rotations. Remarkably, it has been observed
that a position operator with commuting components can be
obtained by an appropriate weighted average of Rμ

E and Rμ
M

[29,30,39]

Rμ
c = P0Rμ

E + MRμ
M

P0 + M
, (22)

proved to be unique by Newton and Wigner [40]. Clearly, like
RE and RM , the operator Rc satisfies the commutations rela-
tions [Ri

c, P
j ] = iδi j and [Ri

c, J
j ] = iεi jk Rk

c , and therefore
qualifies as a position operator.

The corresponding internal AM operator Sc = J−Rc×P
reads [29,30,32,39,41]

Sc = P0SE + MSM

P0 + M
= W

M
− PW 0

M
(
P0 + M

) . (23)

It satisfies the familiar commutation relations
[
Sic, S

j
c

]
= iεi jk Skc ,

[
Sic, R

j
c

]
= 0,

[
Sic, P

j
]

= 0, (24)

and can therefore be interpreted as the generator of internal
rotations. For these reasons, the point located at 〈Rc〉 has
been called the relativistic center of spin in Refs. [31,42] and
the canonical reference point in Ref. [25].

Since P · W = 0, the canonical spin operator can be put
in the form [43]

Sμ
c =

(
L−1
c (P)

)μ

ν

W ν

M
(25)

with S0
c = 0. The operator

(
L−1
c (P)

)μ

ν

= δμ
ν −

(
Pμ + Mδ

μ
0

) (
Pν + Mδ0

ν

)

M(P0 + M)
+ 2

δ
μ
0 Pν

M
(26)

satisfies the properties

(
L−1
c (P)

)μ

ν P
ν = Mδ

μ
0 ,

Pν = Mδ0
μ

(
L−1
c (P)

)μ

ν

= (Lc(P))ν
μMδ0

μ, (27)

and can be understood as the operator analog of (L−1
c (p))μν ,

the canonical (rotationless) four-vector boost from the mov-
ing frame to the rest frame [44,45]. Sandwiching Eq. (25)
between momentum eigenstates, one gets

〈p|Sic|p〉 = 1

m

(
L−1
c (p)

)i
ν〈p|W ν |p〉

= 1

m

〈

p

∣
∣
∣
∣U

−1
(
L−1
c (p)

)
WiU

(
L−1
c (p)

) ∣
∣
∣
∣p

〉

= 〈prest
∣
∣J i

∣
∣prest〉. (28)

Since momentum eigenstates are covariantly normalized, one
can write 〈p|p〉 = 〈prest|prest〉 and therefore conclude that
the expectation value of canonical spin in an arbitrary frame
gives the same value as the rest-frame AM

〈p|Sic|p〉
〈p|p〉 = 〈prest|J i |prest〉

〈prest|prest〉 . (29)

In particular, a spin-1/2 momentum eigenstate with canoni-
cal polarization described by the unit vector s is an eigenstate
of the canonical spin component along s

s · Sc|p, s〉 = −SμWμ

m
|p, s〉 = 1

2 |p, s〉, (30)
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where the (canonical) covariant polarization vector is defined
as

Sμ(p, s) = (Lc(p))
μ

νSν
rest =

(
p · s
m

, s + p( p · s)
m

(
p0 + m

)

)

(31)

with Sμ
rest = (0, s).

As a final remark, it is interesting to express the generators
of boosts in terms of the canonical position and spin operators

K = P t − P0Rc − P × Sc
P0 + M

. (32)

This relation clearly shows that the operators K generate
not only boosts of the system (first two terms), but also
rotations in internal or spin space (last term) known as the
Wigner rotations [46,47], which are responsible for the non-
commutativity of the components of K .

3 Expectation values

Now that the notion of spin and the question of the pivot
have been reviewed, we turn our attention to the computation
of the expectation values of the Lorentz generators. They
require particular care because matrix elements of the type4

〈p, s| ∫ d3r r i O(r)|p, s〉 are usually ill-defined, being either
infinite or, by symmetry, zero. We present in the following
the two approaches designed to deal with this problem.

We will always work with covariantly normalized momen-
tum eigenstates 〈p f , s|pi , s〉 = (2π)3 2p0

i δ(3)( p f − pi ),
so that the completeness relation (resolution of the identity)
becomes

I =
∑

σ=±

∫
d3 p

(2π)32p0
|p, σ s〉〈p, σ s|. (33)

For later convenience, we introduce the average four-
momentum and four-momentum transfer variables

p̄ = 1
2 (p f + pi ), � = p f − pi (34)

which obey the constraints

p̄ · � = 0, p̄2 = m2 − �2

4
(35)

owing to the onshell relations p2
i = p2

f = m2.

3.1 Standard approach

The standard approach is a prescription which consists in
considering first the matrix element with nonzero momentum

4 The operator O(r) is required not to involve any explicit factor of r i .

transfer �, and then taking the forward limit � → 0 at the
end of the calculation [4,9,11,48–51]
〈

p, s

∣
∣
∣
∣

∫
d3r r i O(r)

∣
∣
∣
∣p, s

〉

≡ lim
�→0

〈

p̄ + �
2 , s

∣
∣
∣
∣

∫
d3r r i O(r)

∣
∣
∣
∣ p̄ − �

2 , s
〉

. (36)

Note that p̄ is kept fixed so that p̄ = p, and from Eq. (35)

p̄0 = 1

2

(√(
p + �

2

)2 + m2 +
√(

p − �
2

)2 + m2

)

(37)

whereas p0 = √
p2 + m2.

For convenience, we will also work at t = 0 in the fol-
lowing. One can write using translation symmetry and the
Leibniz rule5

〈

p̄ + �
2 , s

∣
∣
∣
∣

∫
d3r r i O(r)

∣
∣
∣
∣ p̄ − �

2 , s
〉

=
∫

d3r e−i�·rr i
〈

p̄ + �
2 , s

∣
∣
∣
∣O(0)

∣
∣
∣
∣ p̄ − �

2 , s
〉

=
[
(2π)3i∇ i δ(3)(�)

] 〈

p̄ + �
2 , s

∣
∣
∣
∣O(0)

∣
∣
∣
∣ p̄ − �

2 , s
〉

= i∇ i
[

(2π)3δ(3)(�)

〈

p̄ + �
2 , s

∣
∣
∣
∣O(0)

∣
∣
∣
∣ p̄ − �

2 , s
〉]

−
[

i∇ i
〈

p̄ + �
2 , s

∣
∣
∣
∣O(0)

∣
∣
∣
∣ p̄ − �

2 , s
〉]

(2π)3δ(3)(�)

=
〈

p, s

∣
∣
∣
∣O(0)

∣
∣
∣
∣p, s

〉

(2π)3i∇ i δ(3)(�)

+
[

−i∇ i
〈

p̄ + �
2 , s

∣
∣
∣
∣O(0)

∣
∣
∣
∣ p̄ − �

2 , s
〉]

�=0
(2π)3δ(3)(�),

(38)

where ∇ i = ∂
∂�i . One then finds for the expectation value

〈p, s| ∫ d3r r i O(r)|p, s〉
〈p, s|p, s〉

= 〈p, s|O(0)|p, s〉
〈p, s|p, s〉 (2π)3i∇ iδ(3)(0)

+ 1

2p0

[
−i∇ i 〈 p̄ + �

2 , s|O(0)| p̄ − �
2 , s〉

]

�=0
. (39)

Note that in the second term one should not forget that both
�0 and p̄0 are understood as functions of �, derived from
the onshell constraints (35).

In order to make sense of the highly divergent term in
Eq. (39), one has to work with normalizable states and hence
introduce some wave packet. Calculations with explicit forms
for the wave packets are pretty lengthy and cumbersome, but
they show that the highly divergent term corresponds actually
to the contribution from the center of the wave packet [9,11].
Since one is interested in the internal structure of the nucleon

5 Instead of the Leibniz rule, one can use directly the distributional
identity [52] f (x)∇δ(x) = f (0)∇δ(x) − [∇ f (x)]x=0 δ(x).
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and not in the details of the wave packet, this term is usually
discarded.

3.2 Phase-space approach

Discarding the highly divergent term in Eq. (39) is tanta-
mount to throwing the baby out with the bathwater. Indeed,
even though we are not interested in the details of the wave
packet, it is important to retain the information about the
position of its center. This can easily be achieved within the
phase-space approach developed in Refs. [25,27,28], and
used in Ref. [53] to elucidate the momentum dependence of
relativistic charge distributions.

In a quantum theory, states localized at the position r at
time t = 0 are defined as the following Fourier transform of
momentum eigenstates

|r〉 ≡
∫

d3 p

(2π)3
√

2p0
e−i p·r |p〉 (40)

and are normalized as 〈r f |r i 〉 = δ(3)(r f − r i ). Wave packets
associated with physical states normalized as 〈ψ |ψ〉 = 1 are
then defined by

ψ̃( p) ≡ 〈p|ψ〉
√

2p0

so that ψ(r) ≡ 〈r|ψ〉
=

∫
d3 p

(2π)3 ei p·r ψ̃( p). (41)

A physical state cannot be simultaneously in an eigenstate
of both position and momentum. But it was shown long ago
how to define a quantity, analogous to a density matrix, which
gives the quantum weight that a system in a definite state
|ψ〉 will be found to have average position R and average
momentum p. This quantum phase-space or Wigner distri-
bution is given by [54,55]

ρψ(R, p) ≡
∫

d3z e−i p·z ψ∗ (R − z
2

)
ψ

(R + z
2

)

=
∫

d3q

(2π)3 e−iq·R ψ̃∗ (
p + q

2

)
ψ̃

(
p − q

2

)
(42)

and is generally not positive-definite because of the Heisen-
berg uncertainty relations. It is thus a quasi-probabilistic den-
sity matrix. It can be seen that R is the average of the initial
and final position vectors and p is the average of the initial
and final momenta, respectively, in Eq. (42). One recovers a
probabilistic interpretation after integration over either aver-
age position or average momentum

∫
d3R ρψ(R, p) = |ψ̃( p)|2,

∫
d3 p

(2π)3 ρψ(R, p) = |ψ(R)|2. (43)

One can now express the expectation of any operator O as
a phase-space integral [54,55] over R and p of the Wigner
distribution times the expectation value of O in a state having
average position R and average momentum p, namely

〈ψ |O|ψ〉 =
∫

d3 p

(2π)3 d3R ρψ(R, p) 〈O〉R, p, (44)

where6

〈O〉R, p =
∫

d3�

(2π)3 ei�·R 〈 p̄ + �
2 |O| p̄ − �

2 〉
√

4
(
p̄0

)2 − (
�0

)2
with p̄ = p. (45)

Although originally developed in the non-relativistic con-
text, this formalism carries over to quantum field theory [56].
Requiring the localization7 of a system simultaneously in
the three spatial dimensions leads automatically to a position
operator with mutually commuting components, i.e. to Rc

which, as mentioned, is the only relativistic operator with
that property [29,40,57]. It has indeed been shown in Refs.
[40,58] that the states |r〉 defined by Eq. (40) are eigenstates
of the canonical position operator

Rc|r〉 = r|r〉. (46)

Since wave-packet details are encoded in ρψ(R, p) in
Eq. (44), one can interpret 〈O〉R, p as the part associated with
the internal structure of the system localized in the Wigner
sense around the (average) canonical position 〈Rc〉R, p = R
with (average) momentum 〈P〉R, p = p. As noted in Ref.
[25], the standard expectation value (36) corresponds sim-
ply to an average over R of the phase-space expectation
value (45)

∫
d3R

(2π)3δ(3)(0)
〈O〉R, p

=
∫

d3�δ(3)(�)
〈 p̄ + �

2 |O| p̄ − �
2 〉

(2π)32p0δ(3)(0)
= 〈p|O|p〉

〈p|p〉 . (47)

6 We note in passing that the covariant formulation of the phase-space
approach proposed in Ref. [28] is not totally rigorous in the imple-
mentation of the onshell constraints since δ(p2

f − m2) δ(p2
i − m2) �=

δ(2 p̄ ·�) δ( p̄2 + �2

4 −m2), leading to a factor 2 p̄0 in the denominator

of Eq. (45) instead of
√

2p0
f

√
2p0

i = √
4( p̄0)2 − (�0)2. In the context

of Ref. [28] this did not matter since the results were derived in Lorentz
frames where �0 = 0.
7 In quantum field theory, it is often stated that a particle cannot be
localized over distances smaller than the Compton wavelength. It does
not mean that one cannot define a position eigenstate |r〉 for a system, but
it just expresses the limit of the single onshell particle picture. Note also
that if the average momentum is non-zero, then the bound is determined
by 1/〈p0〉 and not 1/m [59].
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Proceeding similarly to Eq. (38), one finds including now
polarization [25]

〈∫
d3r r i O(r)

〉

R, p,s
= Ri 〈p, s|O(0)|p, s〉

2p0

+ 1

2p0

[
−i∇ i 〈 p̄ + �

2 , s|O(0)| p̄ − �
2 , s

〉]

�=0
. (48)

Comparing with Eq. (39), one observes that the highly diver-
gent term is replaced by a well-defined expression in the
phase-space approach, which confirms its interpretation as
the contribution associated with the center of the wave packet.
According to Eq. (47) one should recover Eq. (39) from
an average of Eq. (48) over R. Indeed, the second term in
Eq. (48) is independent of R and is therefore not affected by
the average overR. The first term however is linear inR and
gives the ambiguous contribution in Eq. (39), since one can
formally write

∫
d3RRi = lim�→0

∫
d3R e−i�·RRi =

(2π)3 i∇ iδ(3)(0).
As mentioned earlier, in the literature one is usually inter-

ested in the internal part and accordingly considers only the
second term in Eqs. (48) or (39) [4,9,11,48]. This can be
justified by choosing the (average) relativistic center of spin
as the origin of the coordinate system, i.e. by setting R = 0

〈∫
d3r r i O(r)

〉

0, p,s

= 1

2p0

[
−i∇ i 〈 p̄ + �

2 , s|O(0)| p̄ − �
2 , s

〉]

�=0
. (49)

The drawback is that when we change the Lorentz frame,
a shift of the origin is required for the new origin to coin-
cide with the relativistic center of spin in the new Lorentz
frame, because the coordinates of the latter do not transform
as part of a four-vector. In fact, we can obtain the internal
part independently of the choice for the origin as follows

〈∫
d3r (r i − Ri ) O(r)

〉

R, p,s

= 1

2p0

[
−i∇ i 〈 p̄ + �

2 , s|O(0)| p̄ − �
2 , s

〉]

�=0
(50)

using the relation 〈∫ d3r O(r)〉R, p,s = 〈p, s|O(0)|p, s〉/2p0.

4 AM sum rules

All the spin sum rules are based on a decomposition of the
QCD EMT into quark and gluon parts

Tμν(r) = Tμν
q (r) + Tμν

g (r). (51)

In the Belinfante form, they are given by

Tμν
q (r) = ψ(r)γ {μ i

2
↔
Dν}

ψ(r),

Tμν
g (r) = −Fμλ(r)Fν

λ(r) + 1

4
gμνFαβ(r)Fαβ(r)

(52)

with
↔
Dμ = →

∂μ − ←
∂μ − 2igAμ(r) the symmetric covariant

derivative, and a{μbν} = 1
2 (aμbν + aνbμ). The correspond-

ing decompositions of the other tensors follow automatically.
For a spin-1/2 state with mass m, the matrix elements

of the Belinfante EMT can be parametrized in general as
[10,60,61]

〈p f , s f |Tμν
a (0)|pi , si 〉

= u(p f , s f )�μν
a ( p̄,�)u(pi , si ), a = q, g (53a)

with

�μν
a ( p̄,�) = p̄{μγ ν}

m
Aa

(
�2) + p̄{μiσν}ρ�ρ

2m
Ba(�

2)

+ �μ�ν − gμν�2

m
Ca(�

2) + mgμνC̄a
(
�2) . (53b)

Here si (s f ) is the unit rest-frame polarization vector asso-
ciated with the initial (final) state. The EMT form factors
Aa, Ba,Ca, C̄a are Lorentz-invariant functions of �2, which
is the only independent Lorentz scalar formed with four-
momenta as indicated by the onshell constraints (35).

Using this parametrization, the standard expectation value
of the quark and gluon parts of the four-momentum operator
reads [62]

〈p, s|Pμ
a |p, s〉

〈p, s|p, s〉 = pμAa(0) + m2

p0 gμ0C̄a(0). (54)

The same expression is obtained using the phase-space
expectation value 〈Pμ

a 〉R, p,s, in agreement with Eq. (47).
Four-momentum conservation then implies two constraints

∑

a

Aa(0) = 1,
∑

a

C̄a(0) = 0. (55)

Note that the constraint for C̄ holds also when �2 �= 0 as a
consequence of the conservation of Tμν .

Even though |p, s〉 is in general not an eigenstate of the
AM operator,8 the expectation value understood in the sense

8 Surprisingly, it is stated in Refs. [8,23] that transverse AM does
not commute with the QCD Hamiltonian. This is obviously incor-
rect for otherwise the Hamiltonian would not be invariant under rota-
tions, breaking therefore Poincaré symmetry. The actual reason is that
transverse AM does not commute with the three-momentum operator
[Pi , J j ] = iεi jk Pk .
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of Eq. (48) is well-defined. Performing an expansion in � of
the parametrization (53) for the case s f = si = s, one gets
〈
p̄ + �

2 , s|Tμν
a (0)| p̄ − �

2 , s
〉

= 2
[
pμ pν Aa(0) + m2gμνC̄a(0)

]

+ i�λ

m

[
(
pμελναβ + pνελμαβ

) Aa(0) + Ba(0)

2

+ ε0λαβ pμ pν Aa(0) + m2gμνC̄a(0)

p0 + m

]

Sα pβ + O (
�2) ,

(56)

where we remind that pμ = (
√
p2 + m2, p) with p = p̄,

and Sμ(p, s) is the covariant polarization vector defined in
Eq. (31). We then obtain from Eq. (48) our master formula

〈∫
d3r r i Tμν

a (r)

〉

R, p,s

= Ri pμ pν Aa(0) + m2gμνC̄a(0)

p0

+
(
δiλ − δ0

λ
pi

p0

) p{μεν}λαβSα pβ

p0m

Aa(0) + Ba(0)

2

− ε0iαβSα pβ

2m(p0 + m)

pμ pν Aa(0) + m2gμνC̄a(0)

p0 . (57)

The first line corresponds to the contribution from the motion
of the center of the wave packet, the second line gives the
tensorial part of the canonical internal contribution, and the
last line gives the non-tensorial part arising due to the Wigner
rotation [11,63]. As stressed earlier, in deriving this formula
it is important to keep in mind that �0 = p̄ · �/ p̄0 when
differentiating w.r.t. �i .

4.1 Relativistic positions and spins

At t = 0, the Poincaré generators read

Ki = −
∫

d3r r i T 00(r), J i = εi jk
∫

d3r r j T 0k(r). (58)

Using our master formula (57) in the rest frame defined by
p = 0, we get

〈K 〉R,0,s = −mR
∑

a

[
Aa(0) + C̄a(0)

]
,

〈J〉R,0,s = s
2

∑

a

[Aa(0) + Ba(0)] . (59)

It then follows from the constraints (55) derived from four-
momentum conservation that 〈K 〉R,0,s = −mR. Moreover,
by definition of the rest-frame AM we must have 〈J〉R,0,s =
1
2 s, so that AM conservation implies the additional constraint
[11,60,62]
∑

a

[Aa(0) + Ba(0)] = 1, (60)

Table 1 Expectation values of the main three position operators and of
the corresponding spin operators

Relativistic center of 〈RX 〉 〈SX 〉 = 〈J〉 − 〈RX × P〉

Energy (X = E) R + p×s
2p0(p0+m)

m
2p0

(
s + p( p·s)

m(p0+m)

)

Mass (X = M) R − p×s
2m(p0+m)

p0

2m

(
s − p( p·s)

p0(p0+m)

)

Spin (X = c) R 1
2 s

and hence the absence of anomalous gravitomagnetic moment∑
a Ba(0) = 0 [64,65] when combined with Eq. (55).

The same constraints can alternatively be obtained from the
requirement that J and K be the generators of Lorentz trans-
formations in any frame [11,49–51].

Expectation values in an arbitrary frame, where p �= 0,
will always be understood in the sense of Eq. (45). For con-
venience we will drop from now on the explicit phase-space
labels R, p, s. We find [25]

〈K 〉 = −p0R − p × s
2(p0 + m)

, 〈J〉 = R × p + 1
2 s, (61)

Since we work with four-momentum eigenstates and implic-
itly symmetrized products, we can write

〈PμK 〉 ≡ 〈 1
2 (PμK + K Pμ)〉 = 〈 p̄μK 〉 = pμ〈K 〉, (62)

and similarly for 〈Pμ J〉. We recover therefore the well-
known result that the expectation value of the Pauli–Lubański
pseudovector is proportional to the covariant polarization
vector defined in Eq. (31)

〈Wμ〉 = m

2
Sμ(p, s). (63)

Finally, we can express the external contribution for any
choice of position vector R as

〈R × P〉 = 〈R〉 × p = 〈R〉 × 〈P〉 = 〈〈R〉 × P〉. (64)

The expectation values of the three sets of position and of spin
operators discussed in Sect. 2 can then easily be computed.
The results are collected in Table 1 and the relative positions
of the three relativistic centers are represented in Fig. 1.

There are many interesting observations to make. First,
the explicit calculation confirms that the center of the wave
packet is nothing but the relativistic center of spin [25], which
lies on the segment joining the relativistic centers of mass and
energy. In the rest frame defined by p = 0, the three sets of
center and spin coincide. If we decompose three-vectors into
longitudinal and transverse components relative to p

V = (V · p̂) p̂ + V⊥ (65)
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Fig. 1 Illustration of the relative positions of the relativistic centers of
energy, mass and spin given in Table 1 inside a transversely polarized
nucleon. The spin vector points into the figure and the nucleon has non
vanishing momentum towards the right in the second and third pan-
els. Angular momentum in the Belinfante form being purely orbital,
the nucleon can be pictured as a rotating non-rigid body. The arrows

represent the velocity of the partons in the corresponding region of the
nucleon. For simplicity, Lorentz contraction effects are not represented.
In the rest frame of the nucleon, the three relativistic centers coincide.
In a general moving frame they all differ. In the infinite-momentum
frame, the relativistic centers of energy and spin merge and are found
half a Compton wavelength away from the relativistic center of mass

with p̂ = p/| p|, one sees that the longitudinal components
of position and spin (i.e. helicity) also coincide in any frame

〈RE 〉 · p̂ = 〈RM 〉 · p̂ = 〈Rc〉 · p̂ = R · p̂,
〈SE 〉 · p̂ = 〈SM 〉 · p̂ = 〈Sc〉 · p̂ = 1

2 s · p̂. (66)

Differences appear only in the corresponding transverse com-
ponents and illustrate why transverse spin is always more
complicated than longitudinal spin. In particular, there are
three different possible definitions of transverse spin:

• If one defines spin as the internal AM about the rela-
tivistic center of energy, then transverse spin is Lorentz
contracted

〈SE⊥〉 = γ −1 1
2 s⊥ (67)

with γ = p0/m the Lorentz boost factor.
• If one defines instead spin as the internal AM about

the relativistic center of mass, then transverse spin is
Lorentz dilated

〈SM⊥〉 = γ 1
2 s⊥ (68)

This is expected since in this case internal AM transforms
in the same way as total AM, i.e. as the axial-vector part
of an antisymmetric rank-two tensor, whose transverse
components are known to increase linearly with energy
[66].

• Finally, if one defines spin as the internal AM about the
relativistic center of spin, then transverse spin is invariant
under Lorentz boosts

〈Sc⊥〉 = 1
2 s⊥ (69)

just like longitudinal spin, which is in agreement with the
result found in Ref. [11].

It is seen that the different results for the expectation val-
ues of the three kinds of spin operators, in the case of trans-
verse spin, are simply due to the fact that they correspond
to different versions of what is meant by the internal AM or
“spin”.

Note that in the infinite-momentum frame | p| → ∞, the
relativistic center of spin merges with the relativistic center
of energy and is found half a Compton wavelength away from
the relativistic center of mass when the polarization is purely
transverse [13,14,25]

lim| p|→∞ (R − 〈RM 〉) = p̂ × s
2m

= p̂ × s
2

h̄

mc
. (70)

It may then seem surprising that in this limit 〈SE⊥〉 vanishes
whereas 〈Sc⊥〉 remains non-zero for a state with non-zero
transverse polarization. The reason is that the difference in
the definition of the internal AM is given by

〈Sc〉 − 〈SE 〉 = (〈RE 〉 − 〈Rc〉) × p = ( p × s) × p
2p0(p0 + m)

. (71)

In the infinite-momentum frame, the infinitely small trans-
verse shift is multiplied by an infinitely large momentum,
leading to a finite difference.

4.2 Spin sum rules

We are now ready to derive a generic spin sum rule. By this
we mean a decomposition of the expectation value of internal
AM into quark and gluon contributions

〈SX 〉 =
∑

a

〈SX,a〉, X = E, M, c, (72)
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where

SiX,a ≡
∫

d3r εi jk
(
r j − 〈R j

X 〉
)
T 0k
a (r) = J ia − εi jk〈R j

X 〉Pk
a . (73)

Note that even though SX,a is in general not conserved, its
expectation value is time independent [27,67]. Using our
master formula (57), we find that the expectation values of
the quark and gluon contributions to the total AM are given
by

〈Ja〉 =
(
R × p + s

2

)
Aa(0) + p0

2m

(

s − p( p · s)
p0(p0 + m)

)

Ba(0).

(74)

It follows then from Eqs. (54) and (73) that

〈SX,a〉 =
[
(R − 〈RX 〉) × p + s

2

]
Aa(0)

+ p0

2m

(

s − p( p · s)
p0(p0 + m)

)

Ba(0). (75)

Finally, using the results in Table 1 we obtain the key result
of this work

〈SX,a〉 = 〈SX 〉Aa(0) + 〈SM 〉Ba(0). (76)

Summing over the quark and gluon contributions, we recover
the constraints

∑
a Aa(0) = 1 and

∑
a Ba(0) = 0 arising

from Poincaré symmetry. We show in the following that var-
ious spin sum rules discussed in the literature simply corre-
spond to particular cases of this remarkable simple-looking
formula.

4.2.1 Helicity sum rule

First, if we restrict ourselves to the longitudinal component,
we find the unique situation that we get a sum rule indepen-
dent of the choice of position vector, i.e. a sum rule with the
quark and gluon contributions given by

〈SX,a〉 · p̂ = s · p̂
2

[Aa(0) + Ba(0)] . (77)

For a longitudinally polarized nucleon, we have in particular
s · p̂ = 1. This is nothing else than the helicity sum rule
derived in Refs. [10,62]. Since the choices X = E, M, c all
give the same result, this explains why the question of the
center of the nucleon did not attract much attention in the
literature.

4.2.2 Canonical spin sum rule

If we choose to work with the canonical position 〈Rc〉 = R,
we simply have to set X = c in Eq. (76). The quark and
gluon contributions to the canonical spin are then given by

〈Sc,a〉 = s
2
Aa(0) + p0

2m

(

s − p( p · s)
p0(p0 + m)

)

Ba(0). (78)

This expression was derived for the first time in Ref. [12]
by setting the origin at the center of the wave packet (i.e. the
relativistic center of spin), and hence computing 〈Ja〉0, p,s =
〈Sc,a〉0, p,s from Eq. (49). Our phase-space approach gener-
alizes in a straightforward way the derivation to an arbitrary
choice of origin, i.e. to arbitrary R, thanks to Eq. (50).

4.2.3 Covariant spin sum rule

If we are interested in the internal AM about the relativistic
center of mass, it suffices to set X = M in Eq. (76). We then
find

〈SM,a〉 = p0

2m

(

s − p( p · s)
p0(p0 + m)

)

[Aa(0) + Ba(0)] . (79)

This is the only case where the contributions associated with
the Aa and Ba form factors have the same momentum depen-
dence. In particular, 〈SM,a〉 is proportional to 〈SM 〉 and hence
transforms in a covariant way since the form factors are
Lorentz invariant. This has to do with the fact that 〈Rμ

M 〉
transforms as a Lorentz four-vector.

Focusing on the transverse components, we get

〈SM⊥,a〉 = γ
s⊥
2

[Aa(0) + Ba(0)] (80)

with γ = p0/m. This result was derived recently in Ref. [23]
by computing 〈J ia〉0, p,s = εi jk〈∫ d3r r j T 0k

a (r)〉0, p,s from
Eq. (49) like in Ref. [12], but this time discarding terms pro-
portional to p j or pk in 〈∫ d3r r j T 0k

a (r)〉0, p,s. The authors
motivated the latter prescription by the fact that the Pauli-
Lubański pseudovector 〈Wμ〉 = 1

2 εμαβλ〈Mαβ〉pλ does not
receive any contribution from terms proportional to pα or
pβ in 〈Mαβ〉, which were accordingly interpreted as the
“contribution coming from the center-of-mass motion” of
the nucleon. Unfortunately, we did not find in Ref. [23] a
clear definition of the center of mass, nor a direct calcula-
tion of the contribution from its motion. Moreover, the pre-
scription applies only at the level of expectation values and
requires therefore a more rigorous justification from the oper-
ator level.

Our phase-space approach combined with the discussion
about the relativistic definition of the center of the nucleon
from Sect. 2 justifies and clarifies a posteriori the above ad
hoc prescription. Indeed, if we consider the expectation value
of spatial moments about the relativistic center of mass, we
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obtain from the master formula (57)
〈∫

d3r
(
r i − 〈Ri

M 〉
)
Tμν
a (r)

〉

=
(
Ri − 〈Ri

M 〉

− ε0iαβSα pβ

2m(p0 + m)

)
pμ pν Aa(0) + m2gμνC̄a(0)

p0

+
(
δiλ − δ0

λ
pi

p0

) p{μεν}λαβSα pβ

p0m

Aa(0) + Ba(0)

2
.

(81)

According to Table 1, we can write

Ri − 〈Ri
M 〉 = ( p × s)i

2m
(
p0 + m

) = ε0iαβSα pβ

2m
(
p0 + m

) (82)

showing that the contribution from the motion of the center
of the wave packet relative to the center of mass compensates
exactly the part associated with the Wigner rotation. The first
line in Eq. (81) then vanishes identically and we are left with
〈∫

d3r
(
r i − 〈Ri

M 〉
)
Tμν
a (r)

〉

=
(
δiλ − δ0

λ
pi

p0

) p{μεν}λαβSα pβ

p0m

Aa(0) + Ba(0)

2
. (83)

In particular, for the AM we have

εi jk
〈∫

d3r
(
r j − 〈R j

M 〉
)
T 0k
a (r)

〉

= εi jk

[
εk jαβSα pβ

2m

Aa(0) + Ba(0)

2

]

, (84)

where the expression inside the square brackets is effec-
tively what one obtains from applying the ad hoc prescription
to 〈∫ d3r r j T 0k

a (r)〉0, p,s, as was done in Refs. [23,68]. We
note however that applying naively the ad hoc prescription
to 〈Ka〉0, p,s would give a contribution from C̄a(0), while the
correct expression derived from Eq. (83) does not.

4.2.4 A new spin sum rule

For completeness, let us finally consider the internal AM
about the relativistic center of energy. Setting X = E in
Eq. (76), we get

〈SE,a〉 = m

2p0

(

s + p( p · s)
m

(
p0 + m

)

)

Aa(0)

+ p0

2m

(

s − p( p · s)
p0

(
p0 + m

)

)

Ba(0). (85)

To the best of our knowledge, this result is derived for the
first time.

Since SE = W/P0, one may wonder whether this new
spin sum rule is related to the sum rule based on the Pauli–

Lubański pseudovector proposed in Ref. [16]. Beside the fac-
tor of 1/P0, it appears that the decomposition into quark and
gluon contributions is in fact different. In Ref. [16] the Pauli-
Lubański pseudovector is decomposed as

Wμ =
∑

a

Wμ
a (86)

with the quark and gluon contributions defined as9

Wμ
a = 1

2
εμαβλ(Ma)αβ Pλ. (87)

In other words, one has

Wa

P0 = Ja + Ka × P
P0 (88)

whereas we defined

SE,a = Ja + 〈K 〉 × Pa

P0 (89)

as follows from Eqs. (64) and (73). Clearly, the quark and
gluon contributions to 〈SE 〉 are defined relative to the cen-
ter of energy of the whole system and hence involve 〈K 〉.
In contrast, 〈Wa〉 involves only 〈Ka〉 which is related to the
energy dipole moment arising from the quark or gluon sub-
system [25]. This explains in particular why C̄a(0) appears
in 〈W⊥,a〉 [4,19–21] and not in 〈SE⊥,a〉.

5 Conclusions

A spin sum rule is usually understood as a decomposition of
the angular momentum about the center of the nucleon into
quark and gluon contributions. While the longitudinal spin
or helicity sum rule is well established, different transverse
spin sum rules have been proposed in the literature. In this
paper we show that there is no contradiction between the pub-
lished results, since they correspond to different definitions of
what constitutes the center of the nucleon. Transverse angu-
lar momentum is always more complicated in a relativistic
theory because, unlike longitudinal angular momentum, it
commutes neither with longitudinal boosts nor momentum.

In the literature, spin sum rules are often obtained from
the expectation value of the angular momentum operator.
The latter has to be treated with care since a naive calculation
using momentum eigenstates leads to ambiguous or divergent
results. Some papers also make use of the Pauli–Lubański
pseudovector but have trouble with providing a physical
meaning to the contribution coming from the boost gener-
ators, and discard terms asserted to arise from the motion of
the center of mass without a clear definition of the latter.

9 Note that Wμ
a is not the Pauli–Lubański pseudovector of the quark

subsystem since the latter would involve Pμ
a instead of Pμ.
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In this work, we stress the importance of defining clearly
the center of the nucleon. We review the various possibili-
ties offered in the relativistic context (namely the relativistic
centers of energy, mass and spin), and remind in passing that
boost generators provide the information about the position
of the center of energy. We then define expectation values
from a phase-space perspective. This allows us to avoid ambi-
guities encountered in the standard approach, and to compute
for the first time the contribution from the motion of the cen-
ter of the nucleon.

Our key result is found in Eq. (76) which, together with
Table 1, gives the generic expression for the quark and gluon
contributions to the nucleon spin, based on the three pos-
sible definitions of the center of the nucleon. Projecting on
particular spin components with particular choices for the
center of the nucleon, we reproduce several spin sum rules
reported in the literature. In particular, we show that the new
sum rule obtained by Ji and Yuan [23] is not in contradiction
with the older sum rule derived by Leader [12], but simply
relies on a different definition for what is meant by internal
angular momentum or spin. Namely, if one requires spin to
generate rotations about the center of the nucleon, then one
is forced to work with the canonical spin operator, leading to
the Leader sum rule. If one requires instead spin to transform
in a covariant way, then one is forced to work with the angu-
lar momentum about the relativistic center of mass, leading
to the Ji and Yuan sum rule. We note that a third sum rule
can be obtained based on the angular momentum about the
relativistic center of energy or inertia, which has the simplest
expression in terms of the Poincaré generators.
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36. J.K. Lubański, Physica (in French) 9(3), 310–324 (1942)
37. J.K. Lubański, Physica (in French) 9(3), 325–338 (1942)
38. C. Møller, Ann. Inst. Henri Poincaré 11, 251–278 (1949)
39. M.H.L. Pryce, Proc. R. Soc. Lond. A 150(869), 166–172 (1935)
40. T. Newton, E.P. Wigner, Rev. Mod. Phys. 21, 400–406 (1949)
41. N.N. Bogolyubov, A.A. Logunov, I.T. Todorov, Introduction to

Axiomatic Quantum Field Theory (Benjamin, Reading, 1975)
42. P.K. Schwartz, D. Giulini, Int. J. Geom. Methods Mod. Phys.

17(12), 2050176 (2020)
43. B.D. Keister, W.N. Polyzou, Adv. Nucl. Phys. 20, 225–479 (1991)
44. J. Krause, J. Math. Phys. 18, 889–893 (1977)
45. D.E. Fahnline, Am. J. Phys. 50, 818 (1982)
46. E.P. Wigner, Ann. Math. 40, 149–204 (1939)
47. W.N. Polyzou, W. Glöckle, H. Witala, Few Body Syst. 54, 1667–

1704 (2013)
48. G.M. Shore, B.E. White, Nucl. Phys. B 581, 409–431 (2000)
49. P. Lowdon, K.Y.J. Chiu, S.J. Brodsky, Phys. Lett. B 774, 1–6 (2017)
50. S. Cotogno, C. Lorcé, P. Lowdon, Phys. Rev. D 100(4), 045003

(2019)
51. C. Lorcé, P. Lowdon, Eur. Phys. J. C 80(3), 207 (2020)
52. R.S. Strichartz, AGuide to Distribution Theory and Fourier Trans-

forms (CRC Press, Boca Raton, 1994), p. 213
53. C. Lorcé, Phys. Rev. Lett. 125(23), 232002 (2020)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C (2021) 81 :413 Page 13 of 13 413

54. E.P. Wigner, Phys. Rev. 40, 749 (1932)
55. M. Hillery, R.F. O’Connell, M.O. Scully, E.P. Wigner, Phys. Rep.

106, 121 (1984)
56. I. Bialynicki-Birula, P. Gornicki, J. Rafelski, Phys. Rev. D 44,

1825–1835 (1991)
57. L.L. Foldy, S.A. Wouthuysen, Phys. Rev. 78, 29–36 (1950)
58. M. Pavsic, Adv. Appl. Clifford Algebras 28(5), 89 (2018)
59. M. Burkardt, Phys. Rev. D 62, 071503 (2000). [Erratum: Phys. Rev.

D 66, 119903 (2002)]
60. I.Y. Kobzarev, L.B. Okun, Zh. Eksp. Teor. Fiz. 43, 1904–1909

(1962)
61. H. Pagels, Phys. Rev. 144, 1250–1260 (1966)

62. X.D. Ji, Phys. Rev. D 58, 056003 (1998)
63. C. Lorcé, Phys. Rev. D 97(1), 016005 (2018)
64. O.V. Teryaev, Spin structure of nucleon and equivalence principle.

arXiv:hep-ph/9904376
65. S.J. Brodsky, D.S. Hwang, B.Q. Ma, I. Schmidt, Nucl. Phys. B 593,

311–335 (2001)
66. L. Landau, E. Lifshitz, Classical Theory of Fields (Addison-

Wesley, Reading, 1951)
67. E. Leader, Phys. Rev. D 83, 096012 (2011). [Erratum: Phys. Rev.

D 85, 039905 (2012)]
68. Y. Guo, X. Ji, K. Shiells, arXiv:2101.05243 [hep-ph]

123

http://arxiv.org/abs/hep-ph/9904376
http://arxiv.org/abs/2101.05243

	Relativistic spin sum rules and the role of the pivot
	Abstract 
	1 Introduction
	2 What do we mean by ``spin''?
	2.1 The relativistic center of energy or inertia
	2.2 The relativistic center of mass
	2.3 The relativistic center of spin

	3 Expectation values
	3.1 Standard approach
	3.2 Phase-space approach

	4 AM sum rules
	4.1 Relativistic positions and spins
	4.2 Spin sum rules
	4.2.1 Helicity sum rule
	4.2.2 Canonical spin sum rule
	4.2.3 Covariant spin sum rule
	4.2.4 A new spin sum rule


	5 Conclusions
	Acknowledgements
	References




