
Eur. Phys. J. C (2021) 81:435
https://doi.org/10.1140/epjc/s10052-021-09204-7

Special Article - Tools for Experiment and Theory

Speeding up MadGraph5_aMC@NLO

O. Mattelaer1,2,a, K. Ostrolenk1,3,b

1 Center for Cosmology, Particle Physics and Phenomenology (CP3), Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve,
Belgium

2 Centre de Calcul Intensif et de Stockage de Masse, Université Catholique de Louvain (UCLouvain), 1348 Louvain-la-Neuve, Belgium
3 University of Manchester, School of Physics and Astronomy, Schuster Building, Oxford Road, Manchester M13 9PL, UK

Received: 19 February 2021 / Accepted: 2 May 2021 / Published online: 20 May 2021
© The Author(s) 2021

Abstract In this paper we will describe two new optimi-
sations implemented in MadGraph5_aMC@NLO, both of
which are designed to speed-up the computation of leading-
order processes (for any model). First we implement a new
method to evaluate the squared matrix element, dubbed helic-
ity recycling, which results in factor of two speed-up. Sec-
ond, we have modified the multi-channel handling of the
phase-space integrator providing tremendous speed-up for
VBF-like processes (up to thousands times faster).

1 Introduction

While the LHC is still running, preparation is starting for the
High-Luminosity LHC. As part of this preparation, the CPU
efficiency of our Monte-Carlo generators is crucial due to the
sheer number of events that need to be generated. Given the
current constraints on the LHC IT budget this will not be pos-
sible without significant software improvement [1,2]. While
the full CPU time of the LHC experiment is not dominated
by event generation, it is still estimated to represent between
ten and twenty percent of it. Consequently, we have received
a specific request to speed-up that step by at least 20% and
ideally by a factor of two [1].

In addition to the High-Luminosity LHC, work is also
starting for future high-energy accelerators [3]. Going to the
high-energy regime will amplify multi-scale issues which in
turn can reduce the efficiency of event generation. This issue
is particularly striking within MadGraph5_aMC@NLO
[4,5] (MG5aMC) for VBF-like processes where the current
phase-space integration algorithm either fails to generate the

Supplementary Information The online version contains
supplementary material available at https://doi.org/10.1140/epjc/
s10052-021-09204-7.

a e-mail: olivier.mattelaer@uclouvain.be (corresponding author)
b e-mail: kiran.ostrolenk@manchester.ac.uk

requested number of events or takes an unreasonable time to
do so.

The different avenues for speeding up Monte-Carlo inte-
gration is a well covered topic. Such efforts can be classified
into four different categories. First one can optimise the eval-
uation of the function being integrated, which in our case
is the matrix element [6–9]. Second one can optimise the
integration method to minimise the number of times such
functions need to be evaluated [10–14]. Third, one can try
to use more efficiently the various types of hardware (e.g.
GPU, MPI, vectorization) [15–18] and finally one can play
with the weights of the sample to optimise/re-use information
[19–24].

In the context of this work, we will focus on optimising
MG5aMC, one of the main Monte-Carlo generators [25–27]
and we will combine two different methods to achieve our
goal, one optimising the time to evaluate the matrix element
and one optimising the phase-space integrator. The strategy
we employed was to keep the main design choices in place (in
particular the helicity amplitude method [28] and the single
diagram enhancement method [29]) and to deeply study them
to see how they could be further improved.

To reduce the time needed to evaluate a given squared
matrix element, we use a quite standard Memory/CPU trade-
off guided by physics considerations. We have identified parts
of the computation that can be stored in memory in order
to avoid their re-computation later. We dubbed this method
helicity recycling since the additional terms stored in mem-
ory correspond to identical sub-expressions shared between
different helicity configurations. This improvement will be
presented in Sect. 2. We start in Sect. 2.1 by presenting the
helicity formalism used in MG5aMC, then we continue in
Sect. 2.2 by explaining the main idea behind helicity recy-
cling. The details of the associated speed-up will be then
presented in Sect. 2.3.

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-021-09204-7&domain=pdf
https://doi.org/10.1140/epjc/s10052-021-09204-7
https://doi.org/10.1140/epjc/s10052-021-09204-7
mailto:olivier.mattelaer@uclouvain.be
mailto:kiran.ostrolenk@manchester.ac.uk

435 Page 2 of 17 Eur. Phys. J. C (2021) 81 :435

The second improvement that we have implemented
improves the phase-space integrator. Contrary to the first
method, it is more challenging to introduce an improvement
that acts positively on all processes. On the other hand, the
expected (and obtained) gain can be much more impressive
with this method. For this paper we will mainly focus on
the speed-up of VBF-like processes since they are the ones
where MG5aMC has some specific issues.

This will be covered in Sect. 3 where we start by review-
ing the current multi-channel strategy (the single diagram
enhancement method) in Sect. 3.1. We then explain in
Sect. 3.2 the methods used to have a better handling on the
integration of t-channel propagators. We then turn in Sect. 3.3
to the deeper changes we made to the multi-channel strategy
as well as the impact on some physical observables – which
are beyond LO accurate. Our speed-ups are then compared
to the older version of the code in section (3.4).

Our conclusions will be presented in Sect. 4. We also pro-
vide two appendices. First, we will give a brief manual on
how to tune the optimisation parameters. Finally in Sect. 1,
we describe the modifications (and the associated conven-
tions) to the Aloha package [30], related to the helicity
recycling algorithm.

2 Helicity recycling within the helicity amplitude
method

2.1 Helicity Amplitudes and previous optimisations in
MG5aMC

When evaluating a matrix element one can identify two key
structures: the Lorentz structure of the matrix element and its
colour structure. Within MG5aMC, the evaluation of these
two structures factorises at the amplitude level [9]. Hence it
is possible to discuss one without the other. The helicity-
recycling optimisation only impacts the evaluation of the
Lorentz structure and in this section we will explain how
this evaluation is performed.

2.1.1 Helicity amplitude formalism

Matrix elements typically contain factors of spinors (from
the external fermions) and Lorentz vectors (from internal
propagators). When analytically evaluating the square of this
matrix element it is common to remove the dependence on
spinors via their on-shell condition:
∑

s=±1

us(p)ūs(p) = /p + m, (1)

where the sum is over helicity. The squared matrix element
can then be reduced to a series of scalar products between
Lorentz vectors. However, such a formalism is typically not

Fig. 1 S-channel e−e+ → μ−μ+ diagram with photon mediator. We
use p1, p2, p3 and p4 to label the external momenta

used by programs that perform numerical evaluations of
matrix elements. This is because such a formalism will cause
the computational complexity to grow quadratically with the
number of Feynman diagrams (due to the presence of inter-
ference terms).1

One solution is to use the helicity amplitude formalism
[32–34] where the summation over helicity is postponed.
Under this formalism the matrix element is reduced to a
series of spinor products, rather than Lorentz products.2

These spinors will depend on the specific helicities of the
external particles. The advantage of this formalism is that
its complexity grows linearly with the number of diagrams
(since interference terms can be handled by a simple sum
over amplitudes).3

An example will help illustrate the key principles here.
Following Ref. [37], let us work in the massless limit and
consider the unpolarised e−e+ → μ−μ+ s-channel matrix
element with a photon mediator. Let us use p1, p2 to label
the momenta of the electrons and p3, p4 for the muons. This
process is pictured in Fig. 1.4

In what follows it will also be helpful to use the standard
Mandelstam variables, defined as:

s = (p1 + p2)
2 = (p3 + p4)

2 (2)

t = (p1 − p3)
2 = (p4 − p2)

2 (3)

u = (p1 − p4)
2 = (p3 − p2)

2 (4)

Accordingly, this matrix element is written as:

iM = (−ie)2v̄(p2)γμu(p1)
−igμν

s
ū(p3)γνv(p4). (5)

1 This strategy is actually a winning one at low-multiplicity and is used
for example in CalcHEP [31].
2 This is in general possible because SU(2)×SU(2) is the double cover
of SO(1,3).
3 The recursion relation method [35,36] allows for an even faster eval-
uation of matrix elements but such a method is not compatible with the
phase-space integrator of MG5aMC.
4 The Feynman diagrams in this paper were generated using the Tikz–
Feynman package [38].

123

Eur. Phys. J. C (2021) 81 :435 Page 3 of 17 435

Remember that u(p) and v(p) are Dirac spinors and can
either be left- or right-handed. In the massless limit this corre-
sponds to them having +1 or −1 helicity eigenvalues respec-
tively. In what follows we will also use ψ to denote a general
Dirac spinor. The subscript L and R will be used to denote
left- and right-handedness respectively. It is common to use
the following notation when expressing helicity amplitudes,
for a spinor of momentum pn :

ψL = n〉, ψR = n], (6)

ψ̄L = 〈n, ψ̄R = [n. (7)

One can show that [nγ μm] = 〈nγ μm〉 = 0. Hence, for
the matrix element to be non-zero, the incoming fermions
must have opposite helicity and similarly for the outgoing.
Hence, for all the possible helicity combinations we could
construct, the only ones that give a non-zero matrix element
are:

1−2+3−4+, (8)

1+2−3+4−, (9)

1+2−3−4+, (10)

1−2+3+4−. (11)

Here, the notation nm means the fermion with momentum
pn has helicity m. The first helicity combination will give:

iM(1−2+3−4+) = (−ie)2〈2γμ1]−igμν

s
〈3γν4], (12)

= 2
ie2

s
[41]〈23〉. (13)

Using the relation [nm]〈mn〉 = 〈mn〉[nm] = pm · pn , one
finds the square to be:

∣∣M(1−2+3−4+)
∣∣2 = 4e4 u

2

s2 , (14)

By parity, the helicity combination 1+2−3+4− will give the
same result. The only remaining contributing helicity com-
binations are the same two but with 1 ↔ 2. By symmetry
arguments, one can see they will give the same result as in
Eq. (14) but with u → t . Hence the final result for this matrix
element becomes:

1

4

∑

helicity

|M|2 = 2e4 t
2 + u2

s2 . (15)

2.1.2 MadGraph implementation

The main points from the simple example looked at in section
(2.1.1) are:

1. Diagrams are evaluated at the amplitude level (before
squaring the matrix element).

2. To get the final result these diagrams must be summed
over helicity combinations.

3. Only some of these helicity combinations will actually
contribute.

MG5aMC follows the HELAS strategy [28] to compute
amplitudes. It starts by computing the spinorial representa-
tion of all external particles. These spinors are then iteratively
combined using some model specific functions (generated
thanks to the Aloha [30] package). In this way the full dia-
gram can be built up. This process is represented in Fig. 2.
In the helicity amplitude formalism one distinguishes three
types of functions:

– external wave function: function calculating the spino-
rial representation (e.g. u, v̄, εμ) of the external particles
evaluated for a given helicity.

– internal wave function: function calculating the spino-
rial representation (see Eq. (16)) of an internal particle
(i.e. of a propagator) evaluated for a given helicity com-
bination.

– amplitude: function fully contracting all spinorial rep-
resentations and therefore returning the value for a given
helicity combination of the amplitude of the associated
Feynman diagram.

As depicted in Fig. 2, the evaluation of the matrix element
starts by evaluating all the external wave functions, before
combining them to get the internal wave functions associated
to the propagators. Finally it reaches the last vertex and at
that point returns an amplitude.

For example, consider again the e−e+ → μ−μ+ process.
After the computation of the spinors associated to the elec-
trons and muons (which depends only on their momenta and
helicity), the algorithm will call the routine for calculating
the internal photon wave function. The analytic expression
of this photon wave function φγ will be:

φμh3h4
γ = −ie

−igμν

s
ψ̄

h3
μ+γνψ

h4
μ− , (16)

where ψμ has been used to represent the muon spinors. As
already mentioned, these will be dependent on the helicity of
the muons, labelled h3 and h4. Note that the wave function
associated to this propagator is not unique since it depends
on which vertex is used to compute it.

In this example, we are already at the last vertex and all
that remains is to contract the various wave functions, taking
into account the Lorentz/spinor structure of the associated
vertex. Analytically, this is written as:

Mh1h2h3h4 =
(
−ieψ̄h2

e−γμψ
h1
e+

)
φμh3h4

γ , (17)

123

435 Page 4 of 17 Eur. Phys. J. C (2021) 81 :435

(a) (b) (c) (d)

Fig. 2 Iterative steps used to evaluate a given Feynman diagram in
the helicity amplitude formalism. In a the spinors of the external parti-
cles are evaluated. In b and c the algorithm works through each vertex

(circled), evaluating the wave function of the associated propagator (in
red). Finally in d the last vertex is reach at which point the algorithm
uses what it has calculated so far to evaluate the amplitude

= (−ie)2ψ̄
h2
e−γμψ

h1
e+

(−igμν

s
ψ̄

h3
μ+γνψ

h4
μ−

)
,

(18)

where, just as with the muons, ψe has been used to represent
the spinors of the electrons. This is the same as the expression
in (12) but without the specific choice of helicity combina-
tion.

MG5aMC generates a FORTRAN subroutine that carries
out the above process for a given matrix element and helic-
ity combination and then returns the squared amplitude.5

MG5aMC then performs a loop over all possible helicity
combinations, at each point calling this matrix-element sub-
routine. The results from this loop are then summed to pro-
duce the final matrix element. This can be represented, for
our e−e+ → μ−μ+ example, by the following pseudo-code:

1 result = 0
2 loop over helicity:
3 | # external wave functions
4 | ext_1 = get_spinor(p_1 , hel_1) # e-
5 | ext_2 = get_spinor(p_2 , hel_2) # e+
6 | ext_3 = get_spinor(p_3 , hel_3) # mu-
7 | ext_4 = get_spinor(p_4 , hel_4) # mu+
8 |
9 | # propagators / internal wave functions

10 | photon = Gamma_mu(ext_3 , ext_4) # Eq .(16)
11 |
12 | # amplitude/final vertex
13 | M_diag = Gamma_mu(ext_1 , ext_2 , photon)
14 | result += M_diag ^* M_diag

which can be generalised for any process as6:

1 result = 0
2 loop over helicity
3 | sumamp = 0
4 | loop over all Feynam Diagram
5 | | loop over external particles
6 | | | ext_i = get_spinor(p_i , hel_i)
7 | |
8 | | loop over propagators

5 Evaluation of the matrix element for a single phase-space point is also
possible in C++, CUDA and a python wrapper is also available.
6 This representation/meta-code is technically accurate only for colour-
less processes but the general idea is still valid for QCD processes since
MG5aMC is using the colour-flow formalism [9].

9 | | | propa_i = Vertex(ext_x ,
propa_y)

10 | |
11 | | # amplitude/ final vertex
12 | | sumamp += Vertex(ext_x , propa_y)
13 | result += sumamp^* sumamp

Obviously, MG5aMC has already implemented a cou-
ple of optimisations. First, none of the external wave func-
tions depend on the Feynman diagram representation and can
therefore be moved outside of the loop over diagrams. Fur-
thermore, the same propagator can appear in multiple Feyn-
man diagrams and in such a case it is also highly beneficial to
move it out of the Feynman diagram’s loop. Therefore a more
accurate representation of MG5aMC, prior to this paper, can
be written like:

1 result = 0
2 loop over CONTRIBUTING helicity
3 | loop over external particles
4 | | ext_i = get_spinor(p_i , hel_i)
5 |
6 | loop over all possible propagator
7 | | propa_i = Vertex(ext_x , propa_y)
8 |
9 | # amplitude/ final vertex

10 | sumamp = 0
11 | loop over all Feynam Diagram
12 | | sumamp += Vertex(ext_x , propa_y)
13 |
14 | # squaring the sum of amplitudes
15 | result += sumamp^* sumamp

Secondly, recall the point made at the start of this sec-
tion that only a subset of helicity combinations contributes.
Hence, another optimisation already included in the above
meta-code exploits this fact and makes sure the loop over
helicity combinations only includes “contributing” ones. We
shall refer to this optimisation as ‘helicity filtering’.7

The matrix routine discussed in this section is called by the
madevent binary. This binary is also responsible for gen-
erating phase-space points, evaluating the PDFs and writing
the events (amongst other things). We can evaluate the com-
putational cost of the matrix routine by comparing the num-

7 This filtering is done numerically after the numerical evaluations of
a couple of phase-space points.

123

Eur. Phys. J. C (2021) 81 :435 Page 5 of 17 435

Table 1 Here we present the number of instructions evaluated by the
matrix routine (matrix1) and the total number of instructions eval-
uated by madevent. In brackets we also present these numbers as a
percentage of themadevent total. These results are presented for three
processes: gg → t t̄ , gg → t t̄ gg and gg → t t̄ ggg. We have also broken
down the matrix routine into the number of instructions (again along-
side their percentage of the total) evaluated by calls to functions that
evaluate external spinors (ext), internal wavefunctions (int) and ampli-
tudes (amp). The data in this table was obtained using a combination of
Valgrind [39] and KCachegrind [40]

gg → t t̄ gg → t t̄ gg gg → t t̄ ggg

madevent 13 G 470 G 11 T

matrix1 3.1 G (23%) 450 G (96%) 11 T (>99%)

ext 450 M (3.4%) 3.3 G (<1%) 7.3 G (<1%)

int 1.9 G (14%) 160 G (35%) 2 T (19%)

amp 530 M (4.0%) 210 G (44%) 5.5 T (51%)

ber of instructions it executes to the total number executed
by madevent. This is presented in Table 1 for top-quark
pair production plus gluons. The diagrams for t t̄ are simpler
and fewer in number than those of t t̄ gg and even more so
than those of t t̄ ggg. Hence the total number of madevent
instructions executed by madevent increases across these
processes. Furthermore, this means the matrix routine is also
responsible for an increasing percentage of the instructions:
23% → 96% → ∼100%.

We also see that for t t̄ gg and t t̄ ggg (the more complex
processes) the amplitude routines account for 44% and 51%
of the computation, making it the dominant contribution to
the matrix element calculation. This is again due to the higher
number of diagrams and since the number of unique propaga-
tors does not scale as fast as the diagram multiplicity. Hence
it is important that any future optimisation targets not just
wave-function routines but also the amplitude routines.

Finally, one can also see from the table that the wave-
function and amplitude routines do not add up to the number
of matrix routine instructions. This is because the routine has
other things to evaluate, most noticeably the colour factors for
the relevant amplitudes. Such computation is even the second
hot-spot for the three gluon multiplicity case and therefore
will limit the potential impact of our optimisation.

2.2 Helicity recycling

In general, when summing over helicity combinations, the
same spinor with the same helicity can appear multiple times.
For example, in the combinations (8)–(11) each helicity
spinor (such as 1+) appears twice. Hence when MG5aMC
loops over the combinations it will calculate the same wave
function for these spinors multiple times (see the above meta-
code). This is a waste of computation time (even if in this sim-

ple case the external wave functions are cheap to evaluate). It
would be more efficient to only calculate the wave functions
once, save their values and reuse it when appropriate.

The same principle also applies to the wave function of
internal particles. Such routines take other wave functions
as input, therefore for a subset of helicity combinations the
same input will be given and the code will waste time by
re-computing the same quantity. For example, when look-
ing at the internal (photon) wave function given in Eq. (16)
the helicity combination (8) and (10) will give exactly the
same result. Hence, the computational efficiency can again
be improved by only calculating such internal wave functions
once and then re-using the value when necessary.

This technique of calling the wave-function routines only
once is what we refer to as “helicity recycling” and can be
written in terms of pseudo-code as:

1 loop over external particles
2 | loop over helicity
3 | | ext_ij = get_spinor(p_i , hel_j)
4

5 loop over all possible propagator
6 | loop over helicity combination
7 | | propa_kl = Vertex(ext_ij , propa_xy)
8

9 result = 0
10 loop over all helicity combination
11 | sumamp = 0
12 | loop over all Feynam Diagram
13 | | sumamp += Vertex(ext_xy ,...)
14 | # squaring the sum of amplitudes
15 | result += sumamp ^* sumamp

Here you can note that all stored variables have an addi-
tional index indicating which helicity combination was used
to compute them.

While such an optimisation sounds natural, it has two
potential issues. First, the amount of RAM needed for the
computation will increase. However the RAM is currently
dominated by meta-data related to the phase-space integra-
tor and not to the amount of RAM used in the matrix element.
The increase of memory needed by the helicity recycling is
actually shadowed by such meta-data and hence we did not
observe a sizeable increase and certainly not faced any issues
with RAM assignment even for the most complex processes.

Second, while the previous strategy was allowing helicity
filtering at run time, this method requires us to know which
helicity combinations do not contribute when creating the
code. In order to numerically determine the null-helicities,
we have designed the code’s work-flow in the following way:

1. We first allow MG5aMC to create the matrix-element sub-
routine as it normally would.

2. We then sample a couple of events in order to determine
which helicity combinations and amplitudes do not con-
tribute.

123

435 Page 6 of 17 Eur. Phys. J. C (2021) 81 :435

3. Next, the matrix-element subroutine is rewritten in the
new paradigm.

The conversion of the code is done by using a directed
acyclic graph to represent how the various wave-function
and amplitude routines depend on one another. Having estab-
lished this graph, the program is then able to easily evalu-
ate which wave-function routines are needed to calculate a
given diagram. This allows us to avoid duplicate calls to these
routines when unrolling the helicity loop. It also allows us
to prune efficiently any wave-function (and amplitude) calls
that are only associated with vanishing amplitudes.8 Com-
pared to the helicity filtering discussed in Sect. 2.1.2, this
new algorithm is more efficient since it can identify any non-
contributing component of the computation, like an ampli-
tude that is vanishing only for one particular helicity combi-
nation.

So far we have discussed how helicity recycling is used to
minimise calls to external and internal wave functions. How-
ever the impact of such an optimisation is at best quite limited
since the computation is actually dominated by the amplitude
routines. Thankfully, this implementation also allows us to
optimise these routines by a significant factor.

For the sake of example (and without any lack of gener-
ality) let us assume that the final vertex of a given Feynman
diagram is a Standard Model fermion–fermion–vector ver-
tex. This corresponds to (see Eq. (17)):

Mh1h2hφ = ψ̄
h1
1 γμ ψ

h2
2 φ

μ
hφ

. (19)

Where we have explicitly added indices representing the
associated helicity (or helicity combination for internal
wave functions) of each component. Now, when computing
Mh1h2hφ and Mh1h2h̃φ

, the factor ψ̄
h1
1 γμ ψ

h2
2 will be identi-

cal and can therefore be re-used multiple times. Therefore we
have been able to optimise the code further by implementing
a recycling of this factor. However, a similar factor can also
be recycled between Mh1h2hφ and Mh̃1h2hφ

. Therefore it is
advantageous to compare (for each Feynman diagram) which
one of the following expressions:

ψ̄
h1
1 γμ ψ

h2
2 , (20)

γμ ψ
h2
2 φ

μ
hφ

, (21)

ψ̄
h1
1 γμ φ

μ
hφ

, (22)

can be re-used at a higher frequency and use the most optimal
recycling strategy. This optimisation requires us to define a
new type of helicity routine and the details of this implemen-
tation into Aloha are presented in Sect. 1.

8 These vanishing terms are determined during the initial sampling of
the matrix element.

2.3 Result

In this section we will quantify the speed-up resulting from
using the improvements detailed in Sect. 2.2.

2.3.1 Matrix routine breakdown

First we reproduce Table 1 with helicity recycling switched
on. This is shown in Table 2. One can see that for all processes
the total number of evaluated instructions has reduced:

– from 13G to 11G for t t̄ (15% reduction)
– from 470 to 180G for t t̄ gg (62% reduction)
– from 11T to 5T for t t̄ ggg (55% reduction)

The latter reductions are much larger because evaluating the
matrix element represents a larger percentage of the overall
computation for those processes. This is because the dia-
grams are more complex and numerous for t t̄ gg and t t̄ ggg.

Looking at Table 2, we observe that both external and
internal wave-function routines represent, after helicity recy-
cling, a relatively insignificant computational cost. Firstly,
they were not that significant before the optimisation and
secondly they have been highly reduced by the helicity recy-
cling (by at least 10× factor). The final speed-up is actually
more dependent on the reduction in calls to amplitude rou-
tines. Focusing on the t t̄ gg process, one can see the amplitude
routines have seen a large reduction in the number of associ-
ated instructions (by a factor of two) but still represent 42%
of the overall computation. Although not shown in this table,
roughly half of this computation (19% of the total) is spent
evaluating simply scalar products (the contraction of Eqs.
(20–22) with the remaining wave function) which strongly
limit the hope of further optimisation.

For the three gluon final state the situation is similar, even
if the reduction of amplitude routine instructions is closer to
a factor of 4. However, for this process the limiting factor is
now the computation of the colour factor (taking around 60%
of the computation). We have also investigated how that step
could be optimised and introduced two simple improvements
of the code. First we use a common sub-expression reduction
algorithm [41] on that segment of the code. Second we merge
the numerator and denominator of the colour-matrix into a
single matrix, reducing the number of operations and allow-
ing for a better memory pattern. Combined together those
modifications lead to a speed-up of around 20%.9

9 One should note that the remaining contribution of the colour-matrix
is auto-vectorisable and it is therefore advantageous to compile with
hardware specific flag (giving an additional speed-up of around 10%)
(See how to do that in Sect. 1).

123

Eur. Phys. J. C (2021) 81 :435 Page 7 of 17 435

Table 2 The same as Table 1 but this time with helicity recycling enabled. We also present the percentage reduction between the two tables

gg → t t̄ gg → t t̄ gg gg → t t̄ ggg

Instructions Reduction (%) Instructions Reduction (%) Instructions Reduction (%)

madevent 11 G 15 180 G 62 5 T 55

matrix1 1 G (9.3%) 68 160 G (90%) 64 4.9 T (98%) 55

ext 76 M (<1%) 83 100 M (<1%) 97 110 M (<1%) 98

int 540 M (4.8%) 72 16 G (8.9%) 90 180 G (3.6%) 91

amp 280 M (2.6%) 47 77 G (42%) 63 1.7 T (33%) 69

2.3.2 Overall speed-up

Having looked at how the computational cost of madevent
breaks down into different functions, we now present its over-
all factor speed increase. This is shown for a range of pro-
cesses in Table 3. If twith and twithout are the times it takes to
run madevent with and without helicity recycling respec-
tively then the speed-up is represented as

speed-up = twithout

twith
.

As has already been alluded to in Tables 1 and 2, the speed-up
we gain from helicity recycling is highly process dependent.
Helicity recycling reduces the number of times we must cal-
culate wave functions and amplitudes and so processes with
more complicated diagrams and with a higher number of
total diagrams see the biggest boost. For example, consider
the gg → t t̄ results shown in Table 3a. As more gluons are
added to the final state the gain increases, with the t t̄ gg final
state seeing a dramatic 2.27× speed increase.

In contrast to this large increase the similar process
qq → t t̄qq (where q ∈ {u, d, c, s}) sees a noticeably lower
speed increase of 1.27×. This is because processes involving
fermions have a higher number of non-contributing helic-
ity combinations and so helicity filtering will have a big-
ger effect. Hence, there will be fewer wave functions/ampli-
tudes to evaluate and so helicity recycling will have a smaller
impact.

One can see that the other processes presented in Table 3
also follow these general principles regarding diagram com-
plexity and fermion multiplicity. W bosons allow for mini-
mal helicity filtering and so Table 3b displays a large speed
increase, whereas electrons – being fermions – suppress the
speed-up in Table 3c.

In Table 4 we present these results for a wider range of
processes and with a more detailed breakdown. In the ‘hel’
column we present how many helicity combinations are eval-
uated per phase-space point. In this column we use a ‘→’ to
indicate that the maximum value across the various matrix
elements is being shown. The columns “survey” and “refine”
present the timing of the two main phases of the phase-space

Table 3 The factor speed-up of madevent as a result of using helicity
recycling for a selection of SM processes. Here q ∈ {u, d, c, s}. One
can see two general principles at play. Firstly, the more diagrams a
process has and the more complicated those diagrams are, the bigger
the speed increase. For example, see the effect of adding more gluons in
(a). Secondly, the more helicity combinations we filter away, the lower
the speed increase. This is why processes with more fermions see a
lower speed-up

Process Speed-up

(a) A selection of t t̄ processes

gg → t t̄ 1.36×
gg → t t̄ g 1.43×
gg → t t̄ gg 2.27×
qq → t t̄qq 1.27×

(b) pp → W+W− j j processes

qq → W+W−qq 1.67×
qq → W+W−gg 1.89×
gg → W+W−qq 1.89×
gq → W+W−gq 2.13×

(c) A selection of e+e− processes

qq → e+e− 1.02×
qq → e+e−g 1.03×
gg → e+e−qq 1.09×

integration/event generation for a single run. The “survey”
is designed to get a first (un-precise) estimate of the cross
section and to know the relative importance of each contri-
bution. The amount of time spent in the “survey” is therefore
independent of the number of requested events. The “refine”
stage aims to generate the number of requested events and
therefore scales linearly with the number of events.10 In both
cases, the timing is the time to solution observed on a i7-
7700HQ CPU (2016 macbook pro laptop) using up to 8
threads in the standard multi-core mode of the code when

10 The scaling is not perfectly linear due to various thresholds in the
method of integration. For this table (and similar ones) we always
request the code to generate ten thousand un-weighted events.

123

435 Page 8 of 17 Eur. Phys. J. C (2021) 81 :435

Table 4 Integration timing (time to solution) on a mac-book pro (quad-core 2016) to generate 10k events. Comparing the impact with and without
helicity recycling

Process Hel 2.9.0 nohel 2.9.0 Speed-up

VBF-like processes Survey Refine Survey Refine

pp → W+W+ j j [gS = 0] 9 21s 10 m 52 s 14 s 7 m 28 s 1.5×
pp → W+W− j j,W → lvl[gS = 0,13 TeV] → 6 10 m 0 s 2 m 5 s 7 m 0 s 1 m 29 s 1.4×
pp → W+W− j j,W → lvl[gS = 0,100 TeV] → 6 7 m 0 s 22 m 14 s 5 m 0 s 16 m 25 s 1.4×
ud̄ → W+

L W−
L ud̄[gS = 0] 4 17 s 2 m 29 s 11 s 1 m 36 s 1.6×

ud̄ → W+
L W−

L ud̄,W+ → dū,W− → τ+ντ [gS = 0] 8 1 m 0 s 8 m 19 s 1 m 0 s 4 m 27 s 1.7×
ud̄ → W+

T W−
T ud̄ ,W+ → dū,W− → τ+ντ [gS = 0] 8 40 s 2 m 16 s 33 s 2 m 6 s 1.1×

μ+μ− → hhhν̄μνe [14 TeV] 1 1 s 11 s 1 s 10 s 1.1×
μ+μ− → t t̄μ+μ− [13 TeV] 64 23 s 1 m 35 s 5 s 22 s 4.4×
μ+μ− → W+W−μ+μ− [4 TeV] 122 1 m 0 s 46 s 14 s 14 s 3.8×
Other processes Survey Refine Survey Refine

pp → W+[0 − 4] j → 48 37 m 0 s 3 s 11 m 0 s 3 s 3.4×
pp → t t̄[0 − 2] j → 64 1 m 0 s 49 s 27 s 22 s 2.2×
pp → 4 j → 50 3 m 0 s 28 m 31 s 1 m 0 s 14 m 17 s 2.1×
pp → t t̄3 j → 128 1 h 0 m 2 h 42 m 52 m 0 s 1 h 16 m 1.7×
pp → W+Z 9 1 s 3 s 1 s 2 s 1.3×
pp → t t̄h → 16 <1 s 3 s <1 s 2 s 1.5×
pp → t t̄h j → 32 4 s 7 s 3 s 4 s 1.6×
pp → t t̄ Z → 48 1 s 9 s 1 s 4 s 2.0×
pp → W+W− j j [QCD only] → 72 40 s 1 m 17 s 10 s 33 s 2.7×

requesting ten thousand events.11 The last column presents
the global speed-up (computed by comparing the sum of the
timings of the survey and of the refine) between the version
of the code including all the optimisations introduced in this
paper (2.9.0) and the same code without helicity recycling
(2.9.0 nohel). The optimisation related to the colour compu-
tation are present in both columns. A detailed description of
the cuts, scale choices and such are given as supplementary
material. There one can also find all the material required to
reproduce this (and sub-sequent) tables.

Again one can see the same principles at play: the biggest
speed increase is seen for complex processes dominated by
QCD and vector boson interactions as they have the most non-
vanishing helicity combinations and diagrams. The disparity
of the gain between “survey” and “refine” can be explained
due to different relative importances of the various matrix
elements in each of the steps.

Notice that helicity recycling’s tendency to more greatly
speed-up more intensive processes is very convenient. For
example, in a pp → 4 j simulation, the processes with j = g
will heavily dominate the calculation and so speeding those
up is the most effective way to speed-up the overall simu-

11 To first approximation, the precision on the cross section is directly
related to the number of events generated, which means all integrals are
estimated at the percent level.

lation. This is why the simulation sees an impressive 2.1×
speed-up in Table 4.

3 Phase-space integrator

3.1 Monte-Carlo integration and single diagram
enhancement

In addition to the speed of the matrix-element evaluation,
the efficiency of the phase-space integrator is another cru-
cial factor determining the speed of the computation since it
controls how many times we need to evaluate the matrix ele-
ment. Due to both the number of dimensions of integration
and also the requirement to generate uncorrelated events, the
only suitable method is Monte-Carlo integration. However,
the convergence of the method is quite slow (1/

√
N , where

N is the number of times the matrix element is evaluated).
In Monte-Carlo methods (see [42] for a nice review), one

evaluates the integrand for random values of the variable of
integration. The estimator of the integral (IN) is simply given
by the average of the function estimated across these random

123

Eur. Phys. J. C (2021) 81 :435 Page 9 of 17 435

points xi :

∫
f (x) ≈ IN = 1

N

N∑

i=1

f (xi). (23)

The statistical error (�IN) of this estimator In is controlled
by the variance of the integrand and can be estimated as

�IN = Var f√
N

≈ 1√
N

√√√√ 1

N

N∑

i=1

f 2(xi) − I 2
N . (24)

Since the convergence rate is fixed to 1√
N

, the vari-
ous avenues of optimisation consist in modifying the func-
tion being integrated to effectively reduce its variance. In
MG5aMC, we use the single diagram enhancement method
[29], which combines various importance sampling methods
– both analytical [42] and numerical [43,44] – on top of a
multi-channel strategy. The integral is decomposed as a sum
of various contributions:
∫

|M |2 =
∑

i

∫
|Mi |2 |M |2∑

j |Mj |2 , (25)

≡
∑

i

∫
αi |M |2, (26)

where the indices i and j range over individual (or potentially

a subset of) Feynman diagrams. The values αi ≡ |Mi |2∑
j |Mj |2

are called the channel weights, they do not modify the value
of the integral (as long as

∑
i αi = 1 for every phase-space

point) but do impact the variance of the integrand and there-
fore the speed of the computation.

While in general the value αi could be any arbitrary func-
tion, the single diagram enhancement method makes a spe-
cific choice a priori. This choice is particularly motivated
by the classical limit where interference terms between the
Feynman diagrams are small. In that case

|M |2∑
j |Mj |2 ≈ 1, (27)

and therefore we have
∫

|M |2 =
∑

i

∫
|Mi |2 |M |2∑

j |Mj |2 ≈
∑

i

∫
|Mi |2. (28)

In other words, with this choice the assumption is that each
of the terms of the sum – called channels of integration
– are mainly behaving as a single diagram squared from
which the poles are easily identifiable and importance sam-
pling is relatively easy to implement (see Sect. 3.2). The role
of machine learning algorithms (MG5aMC uses a modified
VEGAS algorithm [43]) is then mainly to catch the impact of

the |M|2∑
j |Mj |2 term as well as other sources of deviation from

the ideal case (like for example the impact of generation cuts
or the impact of the running of the strong coupling).

Fig. 3 Feynman diagram used to fix the convention in the variable

While this method works extremely well in general, it is
not the most suited approach for VBF-like processes, espe-
cially at high energy where large interference occurs due
to gauge symmetry. As a matter of fact, MG5aMC is much
slower than many other programs [45] (in particular VBF-
NLO [46]) for such types of generation.

3.2 t-channel strategy

When running MG5aMC, one can easily identify that the
slowest channels of integration are the ones with multiple
t-channel propagators. In MG5aMC, we handle t-channel
propagators with the following change of variable/phase-
space measure [47,48]:

d
2 = d3k1

(2π)32E1

d3k2

(2π)32E2
(2π)4δ(4)(p + q − k1 − k2),

(29)

= 1

16π2
√

λ(t1, q2, p2
1)

dt1dφ, (30)

where as in Fig. 3, p and q are the initial state momenta and
k1 and k2 the final state ones, E1 (respectively E2) is the
energy of k1 (respectively k2), S = (p + q)2 is the center
of mass energy of the collision, t1 is the virtuality of the
t-channel propagator given by t1 = (p − k1)

2 and where
λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc.

The integration over t1 is bounded by the following values:

t±1 = m2
p + m2

1 − 1

2S

(
(S + m2

p − m2
q)(S + m2

1 − m2
2)

∓λ
1
2 (S,m2

p,m
2
q)λ

1
2 (S,m2

1,m
2
2)

)
, (31)

123

435 Page 10 of 17 Eur. Phys. J. C (2021) 81 :435

In the presence of multiple t-channel propagators, MG5aMC
writes them as

t1 = (p − k1)
2

t2 = (p − k1 − k2)
2

. . .

tn−1 = (p − k1 − k2 − . . . − kn−1)
2 (32)

and performs the integration in the following (ordered) way

∫
dtn−1

∫
dtn−2 . . .

∫
dt1, (33)

meaning that we first integrate over t1, then t2 and continues
up to tn−1.

The combination of such an ordering with the boundary
condition of Eq. (31) creates correlations between the vari-
ables of integration. This correlation is problematic for any
type of VEGAS-like algorithm [42,43]. The importance of
the ordering can be seen in Fig. 4 where we compare various
orderings for a given channel of integration (the associated
diagram is displayed in the figure). We present both the un-
weighting efficiency and the estimated statistical uncertainty
after three and five iterations which gives a hint on the con-
vergence of the integration grid.

In this example, it is clear that the original ordering strat-
egy picked by MG5aMC is sub-optimal (between 3 and 6
times slower than the optimal strategy depending of the num-
ber of iterations). Not only is the best strategy more efficient
at generating events but also the associated grid seems to
need fewer iterations to converge.

While we hand-picked an example of channel of integra-
tion where the ordering was sub-optimal, it would not have
been difficult to also present cases where it was optimal (e.g.
just flip the initial state in the example). Indeed the optimal
ordering is deeply dependent on the channel of integration
under consideration.

On top of the old ordering, we have added support for three
additional orderings (see details in Sect. 1). Each channel of
integration is then associated to one of those orderings such
that the virtuality of the most singular t-channel propagator
is integrated first. In principle one could use the values of t+i
(Eq. 31) to choose such an ordering, but this is technically not
possible and we used a simple heuristic approach for such
determination.

Our resultant timings are presented in Table 5, which con-
tains the same type of information as Table 4. The compar-
ison is between the version of the code containing all the
optimisations of this paper (2.9.0) with the same version of
the code where the ordering strategy was forced to the old
one (Eq. 33). While in general the “survey” presents only a

small speed-up12 a more sizeable gain is achieved during the
“refine”. The actual speed-up will therefore slightly increase
when requesting more events. Additionally, one can note that
the biggest gain is achieved for the slowest processes.

One process (VBF with transverse polarised W boson)
shows a significant slow-down (1.6 times slower). Our inves-
tigation shows that the ordering picked in that case was cor-
rect but the convergence of the grid was actually slower than
what it was for the previous strategy leading to the slow-
down. Such an issue can only happen for relatively easy
channels of integration since most complex processes would
need more iterations and then this effect would disappear (as
observed on the VBF process at 100 TeV).

3.3 New Diagram enhancement strategy

A recent paper [49] pointed to the importance of the gauge
choice when generating events within MG5aMC. Even if the
amplitude is fully gauge invariant, the definition of the chan-
nel weights (αi) is not. The presence of large gauge cancella-
tions are related to large interference terms and therefore the
assumptions used by the phase-space integrator (Eq. (27))
will not hold anymore. Consequently, the αi associated with
Feynman diagrams with t-channel propagators will be arti-
ficially large at high-energy. This will increase the variance
of the function and reduce the efficiency of the method.

We propose here, a second strategy for the single diagram
enhancement method. Instead of using Eq. (25), we replace
the |Mi |2 by the product of the denominator (both s and t
channel) associated to the single diagram under consideration
(and normalise them as needed).

ᾱi ≡
∏

k∈
propagator

1

|p2
k − M2

k − iMk�k |2
, (34)

αi = ᾱi∑
j ᾱ j

. (35)

Such a change in the definition of the multi-weights does
not in principle impact the cross section (see Eq. 26). How-
ever in practise the choice of the dynamical scale is done on a
CKKW inspired clustering [50] which depends on the Feyn-
man diagram selected by the single diagram enhancement
method. This modification of the channel weight will there-
fore impact the scale associated to each event and therefore
the cross section and shape, both within scale uncertainties.
In our tests, the impact of this effect was at the order of the
percent, so well below the scale uncertainty. In general this
can be avoided – if needed – by changing the scale com-
putation to HT /2 or some other purely kinematical scale
choice [51]. However, one should note that it is not possible

12 This is due to the requirement of the code to perform at least three
iterations.

123

Eur. Phys. J. C (2021) 81 :435 Page 11 of 17 435

Fig. 4 Comparison of various orderings of the three variables of inte-
gration corresponding to the invariant of time-like particles for the
channel associated to the Feynman diagram represented on the left.

We present both the relative error, the number of events generated at a
given iteration and the associated un-weighting efficiency

Table 5 Integration timing (time to solution) on a mac-book pro (quad-
core 2016) to generate 10k events depending of the t-channel ordering
strategy. If the generation fails to generate enough events the timing is

re-scaled accordingly. In such a case the timing is set in bold and the
number of events actually generated is then indicated

Process 2.9.0 old ordering 2.9.0 Speed-up
VBF-like processes Survey Refine Survey Refine

pp → W+W+ j j [gS = 0] 17 s 7 m 1 s 14 s 7 m 28 s 0.91×
pp → W+W− j j,W → lvl[gS = 0,13 TeV] 8 m 0 s 1 m 30 s 7 m 0 s 1 m 29 s 1.1×
pp → W+W− j j,W → lvl[gS = 0,100 TeV] 6 m 0 s 1 h 0 m/3821 5 m 0 s 16 m 25 s 3.1×
ud̄ → W+

L W−
L ud̄[gS = 0] 12 s 4 m 23 s 11 s 1 m 36 s 2.6×

ud̄ → W+
L W−

L ud̄,W+ → dū,W− → τ+ντ [gS = 0] 1 m 0 s 24 m 19 s 1 m 0 s 4 m 27 s 4.6×
ud̄ → W+

T W−
T ud̄ ,W+ → dū,W− → τ+ντ [gS = 0] 33 s 1 m 9 s 33 s 2 m 6 s 0.63×

μ+μ− → hhhν̄μνe [14 TeV] 1 s 29 s 1 s 10 s 2.7×
μ+μ− → t t̄μ+μ− [13 TeV] 7 s 24 s 5 s 22 s 1.1×
μ+μ− → W+W−μ+μ− [4 TeV] 13 s 15 s 14 s 14 s 1.0×
Other processes Survey Refine Survey Refine

pp → W+[0 − 4] j 14 m 0 s 3 s 11 m 0 s 3 s 1.3×
pp → t t̄[0 − 2] j 36 s 27 s 27 s 22 s 1.3×
pp → 4 j 1 m 0 s 15 m 26 s 1 m 0 s 14 m 17 s 1.1×
pp → t t̄3 j 1 h 0 m 3 h 44 m 52 m 0 s 1 h 16 m 2.2×
pp → W+Z 1 s 2 s 1 s 2 s 1.0×
pp → t t̄h <1 s 1 s <1 s 2 s 0.5×
pp → t t̄h j 2 s 5 s 3 s 4 s 1.0×
pp → t t̄ Z 1 s 4 s 1 s 4 s 1.0×
pp → W+W− j j [QCD only] 9 s 1 m 24 s 10 s 33 s 2.2×

to avoid such effects when running matched/merged gener-
ation within MLM or shower-kT MLM [52,53], since the
CKKW clustering is mandatory in those type of generation.

A more subtle effect of the modification of the channel
weight is related to the parton shower. When writing an event
inside the output file, MG5aMC provides (in addition to the
kinematic variables) the colour dipole representation in the
leading colour approximation. The determination of the eligi-
ble dipole depends on the Feynman diagram (e.g. in presence

of mixed expansion) and therefore the modification of the
multi-channel strategy can impact such a selection. One can
therefore expect some change, within theoretical uncertain-
ties, after parton shower for some QCD related observable.

In Table 6, we compare the time needed to generate ten
thousand events with the previous strategy and the one intro-
duced in this paper (all other optimisations of this paper are
included in both cases). As one can expect for such deep mod-
ification of the phase-space integration strategy, the observed

123

435 Page 12 of 17 Eur. Phys. J. C (2021) 81 :435

Table 6 Integration timing (time to solution) on a mac-book pro (quad-
core 2016) to generate 10k events depending of the multi-channel strat-
egy. If the generation fails to generate enough events the timing is re-

scaled accordingly. In such a case the timing is set in bold and the
number of events actually generated is then indicated

Process Old strategy New strategy Speed-up Default
VBF-like processes Survey Refine Survey Refine

pp → W+W+ j j [gS = 0] 13s 2 h 12 m/1290 16 s 8 m 1 s 16× New

pp → W+W− j j,W → lvl[gS = 0, 13 TeV] 19 m 0 s 9 m 6 s 10 m 0 s 1 m 43 s 2.4× New

pp → W+W− j j,W → lvl[gS = 0, 100 TeV] 10 m 0 s 24 m 8 s 7 m 0 s 18 m 10 s 1.4× New

ud̄ → W+
L W−

L ud̄[gS = 0] 23 s 27 h 56 m/203 14 s 1 m 53 s 792× New

ud̄ → W+
L W−

L ud̄,W+ → dū,W− → τ+ντ [gS = 0] 2 m 0 s 15 h 52 m/793 1 m 0 s 5 m 42 s 142× New

ud̄ → W+
T W−

T ud̄ ,W+ → dū,W− → τ+ντ [gS = 0] 36 s 2 m 54 s 37 s 2 m 28 s 1.1× New

μ+μ− → hhhν̄μνe [14 TeV] 3 s 8 h 50 m/641 1 s 11 s 2653× New

μ+μ− → t t̄μ+μ− [13 TeV] 20 s 3 h 6 m/948 6 s 25 s 362× New

μ+μ− → W+W−μ+μ− [4 TeV] 1 m 0 s 33 m 26 s 16 s 15 s 66× New

Other processes Survey Refine Survey Refine

pp → W+[0 − 4] j 20 m 0 s 5 s 20 m 0 s 4 s 1.0× Old

pp → t t̄[0 − 2] j 38 s 32 s 38 s 19 s 1.2× Old

pp → 4 j 1 m 0 s 1 h 21 m/7003 1 m 0 s 21 m 5 s 3.7× New

pp → t t̄3 j 1 h 0 m 1 h 36 m 2 h 0 m 1 h 37 m 0.71× Old

pp → W+Z 1 s 3 s 1 s 2 s 1.3× New

pp → t t̄h <1 s 2 s <1 s 3 s 0.67× Old

pp → t t̄h j 2 s 4 s 3 s 10 s 0.45× Old

pp → t t̄ Z 1 s 4 s 1 s 4 s 1.0× Old

pp → W+W− j j [QCD only] 11 s 36 s 11 s 37 s 1.0× Old

spectrum of speed-up/down is extremely broad going from
three orders of magnitude speed-up to five times slower. It
is clear that such an optimisation is a must-have in the con-
text of VBF processes but must be avoided for most QCD
multi-jet processes. While the user can easily switch from
one strategy to the other (see Sect. 1), we have configured
the code such that the default value is process dependent. All
processes with only one colour-flow will use the new method
while others processes will use the old method. We made an
exception for pure multi-jet processes which now use the new
method as well. The default for each process is indicated in
the last column in Table 6. Since for most QCD processes
we keep the previous integration strategy, the caveats on the
change in the scale/leading colour choice, mentioned above,
are naturally mitigated.

3.4 Comparison with older version of MG5aMC

In Table 7, we compare the speed of the code between two
versions of MG5aMC (2.8.1 and 2.9.0). 2.9.0 is the first ver-
sion of the code containing the modification described in this
paper. Let’s stress that every optimisation flag is set to their
default value and therefore this is the speed-up that a user
will observe without playing with any options.

The combined impact of all our optimisations is striking
for VBF-like processes with a speed-up of more than 30,000
times faster for one process. While this process is very spe-
cific and probably not the most important one for many users,
all the VBF processes show massive speed-up passing from
hour long runs to a couple of minutes. Actually, in many
cases, the previous version of the code had a lot of trouble
in generating the requested number of events and sometimes
even to correctly converge to the correct cross section. All
those problems are now solved with 2.9.0; the cross section
converges quickly and events are generated very efficiently.

The gain for the other processes is more modest. Firstly
because the phase-space integration was much better handled
to start with and secondly because those processes are less
sensitive to t-channel diagrams on which we have focused.
Nevertheless in combination with the helicity recycling, the
code is, for processes heavily used at the LHC, around three
times faster, a very valuable gain.

4 Conclusion

In order to evaluate an amplitude MG5aMC must sum it
over all contributing helicity combinations. Before the work

123

Eur. Phys. J. C (2021) 81 :435 Page 13 of 17 435

Table 7 Integration timing (time to solution) on a mac-book pro (quad-
core 2016) to generate 10k events. If in 2.8.1, it was not possible to
generate ten thousand events, the time is re-scaled accordingly (and the

timing is set in bold). The second number presented in that case is the
actual number of events that was generated

Process 2.8.1 2.9.0 Speed-up x-section

VBF-like processes Survey Refine Survey Refine (pb)

pp → W+W+ j j [gS = 0] 15 s 16 m 40 s 14 s 7 m 28 s 2.2× 0.2

pp → W+W− j j,W → lvl[gS = 0, 13 TeV] 18 m 0 s 22 m 54 s 7 m 0 s 1 m 29 s 4.8× 0.018

pp → W+W− j j,W → lvl[gS = 0, 100 TeV] 8 m 0 s 11 h 19 m/1398 5 m 0 s 16 m 25 s 32× 0.66

ud̄ → W+
L W−

L ud̄[gS = 0] 21s 3 h 53 m/1497 11 s 1 m 36 s 131× 0.00029

ud̄ → W+
L W−

L ud̄,W+ → dū,W− → τ+ντ [gS = 0] 1 m 0 s 4 h 55 m/3120 1 m 0 s 4 m 27 s 54× 1.2e−05

ud̄ → W+
T W−

T ud̄ , W+ → dū,W− → τ+ντ [gS = 0] 43 s 8 m 36 s 33 s 2 m 6 s 3.5× 9e−05

μ+μ− → hhhν̄μνe [14 TeV] 2 s 106 h 0 m/43 1 s 10 s 34693× 6.9e−06

μ+μ− → t t̄μ+μ− [13 TeV] 53 s 1 h 25 m/6401 5 s 22 s 190× 0.033

μ+μ− → W+W−μ+μ− [4 TeV] 10 m 0 s 1 h 55 m 14 s 14 s 267× 2.4

Other processes Survey Refine Survey Refine

pp → W+[0 − 4] j 38 m 17 s 4 s 11 m 0 s 3 s 3.5× 1.1e+05

pp → t t̄[0 − 2] j 1 m 32 s 1 m 27 s 27 s 22 s 3.7× 1.5e+03

pp → 4 j 3 m 26 s 4 h 18 m 1 m 0 s 14 m 17 s 17× 1.3e+07

pp → t t̄3 j 2 h 15 m 5 h 42 m 52 m 0 s 1 h 16 m 3.7× 1.8e+02

pp → W+Z 1 s 8 s 1 s 2 s 3.0× 15

pp → t t̄h 1 s 3 s <1 s 2 s 2.0× 0.38

pp → t t̄h j 4 s 14 s 3 s 4 s 2.6× 0.46

pp → t t̄ Z 1 s 7 s 1 s 4 s 1.6× 0.56

pp → W+W− j j [QCD only] 41 s 3 m 13 s 10 s 33 s 5.4× 23

of this paper MG5aMC would calculate every wave function
and amplitude separately for each helicity combination. We
have successfully restructured the code so it will now only
calculate a given wave function once and then reuse the out-
put for all the different helicity combinations. We have also
been able to split up the amplitude calculation such that part
of it can be recycled across different helicity combinations.
This restructuring of the code has also allowed us to avoid
calculating parts of the helicity calculation that contribute to
null-diagrams. All these optimisations mean that for com-
plex processes with few fermions we can a see a speed-up
of the code of around 2×. At the other end of scale, simple
processes dominated by fermions can see a speed-up of only
a few percent.

Additionally, we have studied the efficiency issue of
MG5aMC for VBF-like processes at high energy. We
have identified that modifying the order of integration
of the virtuality of t-channel particles and changing the
multi-channel weight was highly valuable, providing game-
changing speed-up for such computations. This has fixed a
lot of the issues faced in the past for such processes.

Combining all those optimisations allow us to overshoot
the target speed-up asked by the HSF community [1,2] since

we provide a code at least three times faster for CPU intensive
processes and far higher for VBF processes.

Optimisation is important for any program heavily used by
LHC experiments and MG5aMCrepresents a non-negligible
amount of grid/local cluster usage. We believe that this paper
is a significant milestone for MG5aMC providing significant
speed improvements both in the time to evaluate a phase-
space point and to the phase-space integrator. However this
is certainly not the end of the road and this effort has to (and
will) continue. First, the techniques developed in this paper
need to be applied to the NLO processes within MG5aMC.
We do not expect any big difficulties in such porting and
expect similar gain in speed. Second, there is still room to
optimise the evaluation of the matrix element, even at leading
order: work is in progress to have a tighter link to the hardware
with investigation on a GPU port but also on the use of SIMD
operation on CPUs [54].

Acknowledgements The authors would like to thanks Fabio Maltoni,
Mike Seymour, Richard Ruiz, Luca Mantani, Andrew Lifson, Andrea
Valassi, Stefan Roiser and all MG5aMC authors (past and present)
for useful discussions. We would also like to thank the Université
catholique de Louvain staff for working around the limitations imposed
by the Covid-19 pandemic. This work has received funding from the
European Union’s Horizon 2020 research and innovation programme
as part of the Marie Skłodowska-Curie Innovative Training Network

123

435 Page 14 of 17 Eur. Phys. J. C (2021) 81 :435

MCnetITN3 (grant agreement no. 722104). This project has received
funding from the European Union’s Horizon 2020 research and inno-
vation programme under grant agreement No 824093. Computational
resources have been provided by the Consortium des Équipements de
Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scien-
tifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11 and by
the Walloon Region.

Data Availability Statement This manuscript has associated data in
a data repository. [Authors’ comment: The script needed to reproduce
Table 4–7 are included in this published article [and its supplemen-
tary information files, they can also be download via https://doi.org/10.
14428/DVN/B5NADE.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

Appendix A: Manual

When generating an LO process within MG5aMC, the opti-
misation described in this paper will be activated by default
(since version 2.9.0). If for some reason one wants to de-
activate some optimisation or change some internal parame-
ter, we offer the possibility to do so via a couple of param-
eters that can be included in the run_card.dat which
is the main configuration file. Most of these parameters are

not present by default in that card since we consider them
as advanced parameters. It is enough to add them in the file
when needed. The only parameter present by default is the
one allowing for the choice of multi-channel strategy.

In Table 8, we briefly present the various parameters that
can be modified and in what way. One should notice that the
parameter “hel_recycling” is a switch that forbids the use
of helicity recycling, therefore when set to False, the other
parameters related to helicity recycling (prefixed with “hel_”)
will be without any impact.

It is also possible to ask directly MG5aMC to generate
code without any helicity recycling. This allows for the gen-
eration of code closer to the previous version and avoids
spending time generating the new aloha routines. To do this
one needs to modify the “output” command and add the flag
“--hel_recycling=False”. For example

1 generate p p > t t~ 3j
2 output MYDIR --hel_recycling=False

Another new optional flag for the “output” command allows
for the control of the ordering of the variable of integration
corresponding to the invariant mass of t-channel propagators.
For example:

1 generate p p > W+ W- j j QCD=0
2 output MYDIR --t_strategy=X

The possible values and the associated meaning is described
below. A concrete example for the ordering of the Feynman
diagram represented in Fig. 4 is also given to provide a sim-
pler comparison.

– 0 [default] Automatically decide based on the diagram.
– 1 Always use one-sided ordering integrating the t invari-

ant mass from the bottom of the Feynman Diagram to the

Table 8 Short description of the various hidden parameters that can be specified within the run_card (configuration file) to tweak the behaviour of
the new methods introduced in this paper

Parameter Default Values Comments

Options controlling helicity recycling

hel_recycling T T/F Allows/forbids the full helicity recycling

hel_filtering T T/F Allows filtering over non contributing helicity

hel_splitamp T T/F Allows amplitude splitting (see Eqs. (20–22))

hel_ampzero T T/F Allows filtering of vanishing amplitudes

Options controlling phase-space integration

sde_strategy 1/2 Integration strategy: “1” means Eq. (25), “2” means Eq. (35)

hard_survey 0 0/1/2/3 Increase number of events and maximum number of iterations

second_refine_threshold 0.9 [0,1] Threshold used to forbid the second refine

Options controlling advanced compilation flag

global_fflag “-O” String Compilation flag for all used for all compilation

aloha_fflag “ ” String Additional compilation flag for aloha routine (suggested: -ffast-math)

Note: re-compilation is not automatic (need “make clean” in “Source” directory)

123

https://doi.org/10.14428/DVN/B5NADE
https://doi.org/10.14428/DVN/B5NADE
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Eur. Phys. J. C (2021) 81 :435 Page 15 of 17 435

top (initial state particle with positive pz is displayed con-
ventionally at the top of the diagram). For the example,
this corresponds to

∫
dt1

∫
dt2

∫
dt3.

– 2 Always use one-sided ordering integrating the t invari-
ant mass from the top of the Feynman Diagram to
the bottom. This was the only option in older ver-
sions of the code. For the example, this correspond to∫
dt3

∫
dt2

∫
dt1.

– −1 Going from external to internal t-variables starting
with the t invariant mass at the bottom of the Feynman
Diagram, then the one at the top, then the second one from
the bottom, followed by the second one from the top and
so on up to depletion. For the example, this correspond to∫
dt2

∫
dt1

∫
dt3. For an example with 4 t-channel prop-

agator this will correspond to
∫
dt2

∫
dt3

∫
dt1

∫
dt4.

– −2 Same as the previous ordering but starting from the
most top invariant mass. For the example, this correspond
to

∫
dt2

∫
dt3

∫
dt1 and for a 4 t-channel propagator case,

this will correspond to
∫
dt3

∫
dt2

∫
dt4

∫
dt1.

A final flag for the “output” command allows for the deac-
tivation of the common sub-expression reduction algorithm
for the colour-factor part of the code (which by default is
activated):

1 generate g g > t t~ g g g
2 output MYDIR --jamp_optim=False

In some cases this flag can be relevant since the upfront cost
of such a function can be large (here 5 min for the example),
while the run-time gain (around 8%) might not always be
enough to justify it. In general both the upfront cost and the
reduction are barely noticeable. Note that this flag can also
be used for Fortran standalone output.

Appendix B: Extension of Aloha

Aloha [30] is a program shipped with MG5aMC which com-
putes automatically the set of helicity amplitudes needed for
a given matrix-element computation (like Eq. 16). After the
generation of the Feynman diagram by MG5aMC, MG5aMC
requestsAloha to generate the HELAS [28] function needed
for the associated computation.

In the context of helicity recycling a new type of helicity
routine has been introduced (Eqs. (20–22)). Contrary to the
other types of routines, MG5aMC does not know at genera-
tion time which of those functions will be effectively used.
Consequently MG5aMC request Aloha to generate all pos-
sible choices (so in general three routines) such that any strat-
egy can be picked if relevant.

The implementation strategy is to askAloha to generates
a standard internal wave-function routine but with a custom
propagator. This was possible thanks to a previous extension

of Aloha adding support for custom propagators [55,56].
The definitions for such propagators are

scalar : 1, (B.1)

fermion : δi j, (B.2)

vector : ημν. (B.3)

The reason for the presence of a metric term for the vector
propagator is that it allows us to not include the metric in the
final scalar product and therefore have code which is easier
for the compiler to optimise (giving the possibility to use
some SIMD instructions) which can be critical since a large
part of the computation is spent evaluating such simple scalar
products (≈ 20% for gg → t t̄ gg).

Concerning the ALOHA naming scheme convention, such
a routine will have a suffix “P1N”. So for the following
Lorentz structure (which correspond to a γμ Lorentz struc-
ture [57]):

1 FFV1 = Lorentz(name = 'FFV1 ',
2 spins = [2, 2, 3],
3 structure = 'Gamma (3,2,1) ')

the three new expressions (20–22) will have the following
name/definitions:

FFV1P1N_1 : γμ ψ
h2
2 φ

μ
hφ

, (B.4)

FFV1P1N_2 : ψ̄
h1
1 γμ φ

μ
hφ

, (B.5)

FFV1P1N_3 : ψ̄
h1
1 γμ ψ

h2
2 ημν. (B.6)

References

1. T. Aarrestad, et al. HL-LHC Computing Review: Common Tools
and Community Software, in 2021 Snowmass Summer Study ed.
by P. Canal, et al. (2020). https://doi.org/10.5281/zenodo.4009114

2. J. Albrecht et al., A roadmap for HEP software and computing R
& D for the 2020s. Comput. Softw. Big Sci. 3(1), 7 (2019). https://
doi.org/10.1007/s41781-018-0018-8

3. 2020 Update of the European Strategy for Particle Physics. CERN
Council, Geneva (2020). https://doi.org/10.17181/ESU2020

4. J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mat-
telaer, H.S. Shao, T. Stelzer, P. Torrielli, M. Zaro, The automated
computation of tree-level and next-to-leading order differential
cross sections, and their matching to parton shower simulations.
JHEP 07, 079 (2014). https://doi.org/10.1007/JHEP07(2014)079

5. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, Mad-
Graph 5: going beyond. JHEP 06, 128 (2011). https://doi.org/10.
1007/JHEP06(2011)128

6. J. Alnefjord, A. Lifson, C. Reuschle, M. Sjodahl, The chirality-flow
formalism for the standard model (2020)

7. F.A. Berends, W. Giele, Recursive calculations for processes with
n gluons. Nucl. Phys. B 306, 759–808 (1988). https://doi.org/10.
1016/0550-3213(88)90442-7

8. F.A. Berends, W. Giele, H. Kuijf, Exact expressions for processes
involving a vector boson and up to five partons. Nucl. Phys. B 321,
39–82 (1989). https://doi.org/10.1016/0550-3213(89)90242-3

9. F. Maltoni, K. Paul, T. Stelzer, S. Willenbrock, Color flow decom-
position of QCD amplitudes. Phys. Rev. D 67, 014026 (2003).
https://doi.org/10.1103/PhysRevD.67.014026

123

https://doi.org/10.5281/zenodo.4009114
https://doi.org/10.1007/s41781-018-0018-8
https://doi.org/10.1007/s41781-018-0018-8
https://doi.org/10.17181/ESU2020
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.1007/JHEP06(2011)128
https://doi.org/10.1007/JHEP06(2011)128
https://doi.org/10.1016/0550-3213(88)90442-7
https://doi.org/10.1016/0550-3213(88)90442-7
https://doi.org/10.1016/0550-3213(89)90242-3
https://doi.org/10.1103/PhysRevD.67.014026

435 Page 16 of 17 Eur. Phys. J. C (2021) 81 :435

10. M. Backes, A. Butter, T. Plehn, R. Winterhalder, How to GAN
Event Unweighting (2020)

11. J. Bendavid, Efficient Monte Carlo integration using boosted deci-
sion trees and generative deep neural networks (2017)

12. E. Bothmann, T. Janßen, M. Knobbe, T. Schmale, S. Schumann,
Exploring phase space with neural importance sampling. Sci. Post
Phys. 8(4), 069 (2020). https://doi.org/10.21468/SciPostPhys.8.4.
069

13. C. Gao, S. Höche, J. Isaacson, C. Krause, H. Schulz, Event genera-
tion with normalizing flows. Phys. Rev. D 101(7), 076002 (2020).
https://doi.org/10.1103/PhysRevD.101.076002

14. M.D. Klimek, M. Perelstein, Neural network-based approach to
phase space integration. Sci. Post Phys. 9, 053 (2020). https://doi.
org/10.21468/SciPostPhys.9.4.053

15. D. Benjamin, J. Childers, S. Hoeche, T. LeCompte, T. Uram,
Challenges in scaling NLO generators to leadership computers. J.
Phys. Conf. Ser. 898(7), 072044 (2017). https://doi.org/10.1088/
1742-6596/898/7/072044

16. K. Hagiwara, J. Kanzaki, Q. Li, N. Okamura, T. Stelzer, Fast
computation of MadGraph amplitudes on graphics processing unit
(GPU). Eur. Phys. J. C 73, 2608 (2013). https://doi.org/10.1140/
epjc/s10052-013-2608-2

17. K. Hagiwara, J. Kanzaki, N. Okamura, D. Rainwater, T. Stelzer,
Calculation of HELAS amplitudes for QCD processes using graph-
ics processing unit (GPU). Eur. Phys. J. C 7, 513–524 (2010).
https://doi.org/10.1140/epjc/s10052-010-1465-5

18. K. Hagiwara, J. Kanzaki, N. Okamura, D. Rainwater, T. Stelzer,
Fast calculation of HELAS amplitudes using graphics processing
unit (GPU). Eur. Phys. J. C 6(6), 477–492 (2010). https://doi.org/
10.1140/epjc/s10052-010-1276-8

19. J.R. Andersen, C. Gütschow, A. Maier, S. Prestel, A positive
resampler for Monte Carlo events with negative weights. Eur.
Phys. J. C 80(11), 1007 (2020). https://doi.org/10.1140/epjc/
s10052-020-08548-w

20. H. Brooks, C.T. Preuss, Efficient multi-jet merging at high multi-
plicities (2020)

21. R. Frederix, S. Frixione, S. Prestel, P. Torrielli, On the reduction of
negative weights in MC@NLO-type matching procedures. JHEP
07, 238 (2020). https://doi.org/10.1007/JHEP07(2020)238

22. K.T. Matchev, P. Shyamsundar, OASIS: optimal analysis-specific
importance sampling for event generation (2020)

23. O. Mattelaer, On the maximal use of Monte Carlo samples: re-
weighting events at NLO accuracy. Eur. Phys. J. C 76(12), 674
(2016). https://doi.org/10.1140/epjc/s10052-016-4533-7

24. B. Nachman, J. Thaler, Neural resampler for Monte Carlo reweight-
ing with preserved uncertainties. Phys. Rev. D 102(7), 076004
(2020). https://doi.org/10.1103/PhysRevD.102.076004

25. E. Bothmann et al., Event Generation with Sherpa 2.2. Sci. Post
Phys. 7(3), 034 (2019). https://doi.org/10.21468/SciPostPhys.7.3.
034

26. S. Frixione, P. Nason, C. Oleari, Matching NLO QCD computations
with parton shower simulations: the POWHEG method. JHEP 11,
070 (2007). https://doi.org/10.1088/1126-6708/2007/11/070

27. W. Kilian, T. Ohl, J. Reuter, WHIZARD: simulating multi-particle
processes at LHC and ILC. Eur. Phys. J. C 71, 1742 (2011). https://
doi.org/10.1140/epjc/s10052-011-1742-y

28. H. Murayama, I. Watanabe, K. Hagiwara, HELAS: HELicity
amplitude subroutines for Feynman diagram evaluations (1992)

29. F. Maltoni, T. Stelzer, MadEvent: automatic event generation
with MadGraph. JHEP 02, 027 (2003). https://doi.org/10.1088/
1126-6708/2003/02/027

30. P. de Aquino, W. Link, F. Maltoni, O. Mattelaer, T. Stelzer,
ALOHA: automatic libraries of helicity amplitudes for Feynman
diagram computations. Comput. Phys. Commun. 183, 2254–2263
(2012). https://doi.org/10.1016/j.cpc.2012.05.004

31. A. Belyaev, N.D. Christensen, A. Pukhov, CalcHEP 3.4 for collider
physics within and beyond the Standard Model. Comput. Phys.
Commun. 184, 1729–1769 (2013). https://doi.org/10.1016/j.cpc.
2013.01.014

32. P. De Causmaecker, R. Gastmans, W. Troost, T.T. Wu, Helicity
amplitudes for massless QED. Phys. Lett. B 105, 215 (1981).
https://doi.org/10.1016/0370-2693(81)91025-X

33. P. De Causmaecker, R. Gastmans, W. Troost, T.T. Wu, Multiple
Bremsstrahlung in gauge theories at high-energies. 1. General for-
malism for quantum electrodynamics. Nucl. Phys. B 206, 53–60
(1982). https://doi.org/10.1016/0550-3213(82)90488-6

34. R. Gastmans, The Helicity Method: a review. AIP Conf. Proc. 201,
58–72 (1990). https://doi.org/10.1063/1.39098

35. R. Britto, F. Cachazo, B. Feng, New recursion relations for tree
amplitudes of gluons. Nucl. Phys. B 715, 499–522 (2005). https://
doi.org/10.1016/j.nuclphysb.2005.02.030

36. R. Britto, F. Cachazo, B. Feng, E. Witten, Direct proof of tree-
level recursion relation in Yang–Mills theory. Phys. Rev. Lett. 94,
181602 (2005). https://doi.org/10.1103/PhysRevLett.94.181602

37. M.D. Schwartz, Quantum Field Theory and the Standard Model
(Cambridge University Press, Cambridge, 2014)

38. J.P. Ellis, Ti k z-feynman: Feynman diagrams with ti k z. Comput.
Phys. Commun. 210, 103–123 (2017). https://doi.org/10.1016/j.
cpc.2016.08.019

39. N. Nethercote, J. Seward, Valgrind: a framework for heavyweight
dynamic binary instrumentation. In: Proceedings of the 28th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’07, p. 89–100. Association for Comput-
ing Machinery, New York, NY, USA (2007). https://doi.org/10.
1145/1250734.1250746

40. J. Weidendorfer, Sequential performance analysis with callgrind
and kcachegrind, in Tools for High Performance Computing, ed. by
M. Resch, R. Keller, V. Himmler, B. Krammer, A. Schulz (Springer,
Berlin, 2008), pp. 93–113

41. D.E. Knuth, The State of the Art of Computer Programming (1976)
42. S. Weinzierl, Introduction to Monte Carlo methods (2000)
43. G.P. Lepage, Adaptive Multidimensional Integration: VEGAS

Enhanced (2020)
44. W.H. Press, G.R. Farrar, Recursive stratified sampling for multidi-

mensional Monte Carlo integration (1989)
45. M. Rauch, Vbfnlo. Slides at AQGC (Dresden 2013)
46. J. Baglio, et al.: Release Note - VBFNLO 2.7.0 (2014)
47. E. Byckling, K. Kajantie, Particle Kinematics: (Chapters I-VI, X)

(University of Jyvaskyla, Jyvaskyla, 1971)
48. F. Maltoni, G. Ridolfi, M. Ubiali, b-initiated processes at the

LHC: a reappraisal. JHEP 07, 022 (2012). https://doi.org/10.1007/
JHEP04(2013)095. (Erratum: JHEP 04, 095 (2013))

49. K. Hagiwara, J. Kanzaki, K. Mawatari, QED and QCD helicity
amplitudes in parton-shower gauge. Eur. Phys. J. C 80(6), 584
(2020). https://doi.org/10.1140/epjc/s10052-020-8154-9

50. S. Catani, F. Krauss, R. Kuhn, B. Webber, QCD matrix elements
+ parton showers. JHEP 11, 063 (2001). https://doi.org/10.1088/
1126-6708/2001/11/063

51. V. Hirschi, O. Mattelaer, Automated event generation for loop-
induced processes. JHEP 10, 146 (2015). https://doi.org/10.1007/
JHEP10(2015)146

52. J. Alwall, S. de Visscher, F. Maltoni, QCD radiation in the produc-
tion of heavy colored particles at the LHC. JHEP 02, 017 (2009).
https://doi.org/10.1088/1126-6708/2009/02/017

53. F. Caravaglios, M.L. Mangano, M. Moretti, R. Pittau, A
New approach to multijet calculations in hadron collisions.
Nucl. Phys. B 539, 215–232 (1999). https://doi.org/10.1016/
S0550-3213(98)00739-1

54. J. Reinders, B. Ashbaugh, J. Brodman, M. Kinsner, J. Pennycook,
X. Tian, vectors. In: Data Parallel C++, p. 259–276. Apress (2020).
https://doi.org/10.1007/978-1-4842-5574-2_11

123

https://doi.org/10.21468/SciPostPhys.8.4.069
https://doi.org/10.21468/SciPostPhys.8.4.069
https://doi.org/10.1103/PhysRevD.101.076002
https://doi.org/10.21468/SciPostPhys.9.4.053
https://doi.org/10.21468/SciPostPhys.9.4.053
https://doi.org/10.1088/1742-6596/898/7/072044
https://doi.org/10.1088/1742-6596/898/7/072044
https://doi.org/10.1140/epjc/s10052-013-2608-2
https://doi.org/10.1140/epjc/s10052-013-2608-2
https://doi.org/10.1140/epjc/s10052-010-1465-5
https://doi.org/10.1140/epjc/s10052-010-1276-8
https://doi.org/10.1140/epjc/s10052-010-1276-8
https://doi.org/10.1140/epjc/s10052-020-08548-w
https://doi.org/10.1140/epjc/s10052-020-08548-w
https://doi.org/10.1007/JHEP07(2020)238
https://doi.org/10.1140/epjc/s10052-016-4533-7
https://doi.org/10.1103/PhysRevD.102.076004
https://doi.org/10.21468/SciPostPhys.7.3.034
https://doi.org/10.21468/SciPostPhys.7.3.034
https://doi.org/10.1088/1126-6708/2007/11/070
https://doi.org/10.1140/epjc/s10052-011-1742-y
https://doi.org/10.1140/epjc/s10052-011-1742-y
https://doi.org/10.1088/1126-6708/2003/02/027
https://doi.org/10.1088/1126-6708/2003/02/027
https://doi.org/10.1016/j.cpc.2012.05.004
https://doi.org/10.1016/j.cpc.2013.01.014
https://doi.org/10.1016/j.cpc.2013.01.014
https://doi.org/10.1016/0370-2693(81)91025-X
https://doi.org/10.1016/0550-3213(82)90488-6
https://doi.org/10.1063/1.39098
https://doi.org/10.1016/j.nuclphysb.2005.02.030
https://doi.org/10.1016/j.nuclphysb.2005.02.030
https://doi.org/10.1103/PhysRevLett.94.181602
https://doi.org/10.1016/j.cpc.2016.08.019
https://doi.org/10.1016/j.cpc.2016.08.019
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1007/JHEP04(2013)095
https://doi.org/10.1007/JHEP04(2013)095
https://doi.org/10.1140/epjc/s10052-020-8154-9
https://doi.org/10.1088/1126-6708/2001/11/063
https://doi.org/10.1088/1126-6708/2001/11/063
https://doi.org/10.1007/JHEP10(2015)146
https://doi.org/10.1007/JHEP10(2015)146
https://doi.org/10.1088/1126-6708/2009/02/017
https://doi.org/10.1016/S0550-3213(98)00739-1
https://doi.org/10.1016/S0550-3213(98)00739-1
https://doi.org/10.1007/978-1-4842-5574-2_11

Eur. Phys. J. C (2021) 81 :435 Page 17 of 17 435

55. D.B. Franzosi, O. Mattelaer, R. Ruiz, S. Shil, Automated predic-
tions from polarized matrix elements. JHEP 04, 082 (2020). https://
doi.org/10.1007/JHEP04(2020)082

56. N.D. Christensen, P. de Aquino, N. Deutschmann, C. Duhr, B. Fuks,
C. Garcia-Cely, O. Mattelaer, K. Mawatari, B. Oexl, Y. Takaesu,
Simulating spin- 3

2 particles at colliders. Eur. Phys. J. C 73(10),
2580 (2013). https://doi.org/10.1140/epjc/s10052-013-2580-x

57. C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer, T.
Reiter, UFO: the universal FeynRules output. Comput. Phys. Com-
mun. 183, 1201–1214 (2012). https://doi.org/10.1016/j.cpc.2012.
01.022

123

https://doi.org/10.1007/JHEP04(2020)082
https://doi.org/10.1007/JHEP04(2020)082
https://doi.org/10.1140/epjc/s10052-013-2580-x
https://doi.org/10.1016/j.cpc.2012.01.022
https://doi.org/10.1016/j.cpc.2012.01.022

	Speeding up MadGraph5_aMC@NLO
	Abstract
	1 Introduction
	2 Helicity recycling within the helicity amplitude method
	2.1 Helicity Amplitudes and previous optimisations in MG5aMC
	2.1.1 Helicity amplitude formalism
	2.1.2 MadGraph implementation

	2.2 Helicity recycling
	2.3 Result
	2.3.1 Matrix routine breakdown
	2.3.2 Overall speed-up

	3 Phase-space integrator
	3.1 Monte-Carlo integration and single diagram enhancement
	3.2 t-channel strategy
	3.3 New Diagram enhancement strategy
	3.4 Comparison with older version of MG5aMC

	4 Conclusion
	Acknowledgements
	Appendix A: Manual
	Appendix B: Extension of Aloha
	References

