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Abstract In the framework of 2HDM, we explore the
wrong-sign Yukawa region with direct and indirect searches
up to one-loop level. The direct searches include the latest
H/A → f f̄ , VV, Vh, hh reports at current LHC, and the
study of indirect Higgs precision measurements works with
current LHC, future HL-LHC and CEPC. At tree level of
Type-II 2HDM, for degenerate heavy Higgs mass mA =
mH = mH± < 800 GeV, the wrong-sign Yukawa regions are
excluded largely except for the tiny allowed region around
cos(β − α) ∈ (0.2, 0.3) under the combined Higgs con-
straints. The excluded region is also nearly independent of
parameter m12 or λv2 = m2

A −m2
12/(sin β cos β). The situa-

tion changes a lot after including loop corrections to the indi-
rect searches, for example mA = 1500 GeV, the region with
λv2 < 0 will be stronger constrained to be totally excluded.
Whilst parameter space with λv2 > 0 would get larger sur-
vived wrong-sign region for mA = 800 GeV compared to it
at tree level. We also conclude Higgs direct searches works
better on constraining λv2 ≈ 0 GeV range than theoreti-
cal constraints. We also find that the loop-level wrong-sign
Yukawa limit only occurs at mass decoupling scale.
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1 Introduction and motivation

Since the discovery of Standard Model (SM) -like Higgs
boson at LHC Run-I [1,2], SM is confirmed to be one self-
consistent theory, and exploring Higgs boson properties espe-
cially Higgs couplings becomes a promising window to study
new physics beyond-the-SM (BSM). Meanwhile motivated
by various experimental and theoretical hits, to extend SM
Higgs sector becomes necessary to address them.

Among numerous extensions, Two Higgs Doublet Model
(2HDM) is a well motivated framework [3–6]. After elec-
troweak symmetry breaking (EWSB), the general 2HDM
will generate 5 mass eigenstates, a pair of charged Higgs
H±, one CP-odd Higgs boson A and two CP-even Higgs
bosons, h, H . Here we take the lighter h as the measured
SM-like Higgs.

Since the improvements of various experiments, the
wrong-sign region have attracted fruitful researches [7–
16]. This work focuses on testing the so-called wrong-sign
Yukawa region up to one-loop level with both indirect and
direct searches at current LHC. For the direct searches, we
constrain the parameter space with various heavy Higgs
decays, taking the cross section times branching ratio σ ×Br
limits of various channels, including A/H → μμ [17–19],
A/H → bb [20,21], A/H → ττ [22–24], A/H → t t
[25,26], H → Z Z [27,28], H → WW [29,30] at tree
level. For the indirect searches, we perform the global fit
the SM-like Higgs precision measurement from LHC Run-II
[31], HL-LHC [32] and CPEC [33] up to one-loop level.
The results show that the wrong-sign Yukawa region for
mA < 800 GeV is strongly constrained. But the constraints
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get weaker afer including the loop correction to Higgs pre-
cision studies for λv2 > 0. While for mA = 1500 GeV with
λv2 > 0, the constraints get stronger compared to it at tree
level.

Our paper is structured as follows. In Sect. 2, we will give
a brief introduction to 2HDMs, concentrated on the wrong-
sign Yukawa analysis. We give a brief summary of study
methods and the relevant experimental reports in Sect. 3.
Then at Sects. 4 and 5 we present our analyses and results at
tree and one-loop level respectively. Finally we will give our
main conclusions in Sect. 6.

2 Two Higgs doublet models

2.1 2HDM Higgs sector

The general 2HDM has two SU(2)L scalar doublets �i (i =
1, 2) with hyper-charge Y = +1/2,

�i =
(

φ+
i

(vi + φ0
i + iGi )/

√
2

)
. (1)

where vi (i = 1, 2) are the vacuum expectation values (vev)
of the two doublets after EWSB with v2

1 + v2
2 = v2 =

(246 GeV)2 and tan β = v2/v1.
The 2HDM Lagrangian for the Higgs sector can be written

as

L =
∑
i

|Dμ�i |2 − V (�1,�2) + LYuk , (2)

with a Higgs potential of

V (�1,�2) = m2
11�

†
1�1 + m2

22�
†
2�2 − m2

12(�
†
1�2 + h.c.)

+λ1

2
(�

†
1�1)

2 + λ2

2
(�

†
2�2)

2

+λ3(�
†
1�1)(�

†
2�2) + λ4(�

†
1�2)(�

†
2�1)

+λ5

2

[
(�

†
1�2)

2 + h.c.
]
, (3)

where we have assumed CP conservation, and a soft Z2

symmetry breaking termm2
12. For the neutral CP-even Higgs,

with α as the rotation angle diagonalizing the CP-even Higgs
mass matrix,

Table 1 Interactions between fermions and Higgs doublets in four types
of 2HDM

Up-type Down-type Lepton

Type-I �1 �1 �1

Type-II �1 �2 �2

Type-LS �1 �1 �2

Type-F �1 �2 �1

(
H
h

)
=

(
cos α sin α

− sin α cos α

) (
φ0

1
φ0

2

)
, (4)

In this work we set mH > mh = 125 GeV, and by conven-
tion, here we set 0 ≤ β ≤ π

2 , 0 ≤ β − α ≤ π . The most
general Yukawa interactions of �1,2 with the SM fermions
under the Z2 symmetry is

− LYuk = YuQLiσ2�
∗
uuR

+Yd QL�ddR + YeLL�eeR + h.c. (5)

where �u,d,e are either �1 or �2. Depending on the interac-
tions of �i coupling to the fermion sector, there are typically
four types of 2HDM (Table 1):

For a review on different types of 2HDM as well as the
phenomena, see Ref. [34]. Table 2 is Higgs couplings to the
SM fermions in the four different types of 2HDM, normal-
ized to the corresponding SM values, for a better analysis at
following sections.

In the following sections, we will take κx = κ x
h . For nor-

malized SM-like Higgs gauge couplings, V = Z ,W±,

κV ≡ g2HDM
hVV

gSM
hVV

= sin(β − α) (6)

with sign(κV ) = 1 by convention.
After EWSB, three Goldstone bosons are absorbed by

the SM gauge bosons Z , W±, providing their masses. The
remaining physical mass eigenstates are h, H, A and H±.
Instead of the eight parameters appearing in the Higgs poten-
tialm2

11,m
2
22,m

2
12, λ1,2,3,4,5, a more convenient choice of the

parameters is v, tan β, α,mh,mH ,mA,mH± ,m2
12.

2.2 Wrong-sign Yukawa of 2HDM

Taking the notations in [35], we define,

κU ≡ cos α

sin β
= 1 + cos(β − α) cot β − 1

2
cos2(β − α)

+O(cos2(β − α)) (7)

κD ≡ − sin α

cos β
= 1 − cos(β − α) tan β − 1

2
cos2(β − α)

+O(cos2(β − α)) (8)

When sin(β − α) = 1, all the SM-like Higgs boson cou-
plings in four types will be exact same as them in SM respec-
tively, which is the usual case called as alignment limit .
These terms also can be written in the other mode,

κU = sin(β + α) + cos(β + α) cot β

= ±1 + cos(β + α) cot β ∓ 1

2
cos2(β + α)

+O(cos2(β + α)) (9)

κD = − sin(β + α) + cos(β + α) tan β

= ∓1 + cos(β + α) tan β ± 1

2
cos2(β + α)
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Table 2 Higgs couplings to the SM fermions in the four different types of 2HDM, normalized to the corresponding SM values

Normalized Higgs couplings

κu
h κd

h κe
h κu

H κd
H κe

H κu
A κd

A κe
A

Type-I cos α
sin β

cos α
sin β

cos α
sin β

sin α
sin β

sin α
sin β

sin α
sin β

cot β − cot β − cot β

Type-II cos α
sin β

− sin α
cos β

− sin α
cos β

sin α
sin β

cos α
cos β

cos α
cos β

cot β tan β tan β

Type-LS cos α
sin β

cos α
sin β

− sin α
cos β

sin α
sin β

sin α
sin β

cos α
cos β

cot β − cot β tan β

Type-F cos α
sin β

− sin α
cos β

cos α
sin β

sin α
sin β

cos α
cos β

sin α
sin β

cot β tan β − cot β

+O(cos2(β + α)) (10)

Here we can get sin(β + α) = 1, κU = −κD = 1, whilst
sin(β +α) = −1, κU = −κD = −1, which is usually called
“wrong-sign” Yukawa limit in 2HDM.

Wrong-sign Yukawa Regime As defined in [35], the
wrong-sign Yukawa regime requires at least one of sign of
Yukawa couplings is opposite to Higgs vector boson cou-
pling, in physics which can be expressed as,

sign(g2HDM
U/D )sign(g2HDM

V ) = −1 (11)

With κi ≡ g2HDM
i /gSM

i , it is,

sign(κU/D)sign(κV ) = −1

or κU/D κV < 0 (12)

for any up-type or down-type quark. Physically this definition
is suitable for both tree- and loop-level study.

For the gauge couplings κV = sin(β − α), it is always
positive in our notaion. Through Table 2, Type-I 2HDM only
has the wrong κU = −1 case, and other three types would
have both κU = −1 or κD = −1 cases. It would deviate from
1 significantly, which could be one important constraint for
parameter space of the wrong-sign Yukawa region.

But even at future lepton colliders, the wrong-sign Yukawa
region at tree level will be allowed as shown in Fig. 3, even
the allowed | cos(β − α)| is less than 0.007. This situation
can be changed once the loop level corrections are included,

κ
loop
U = κU + �

loop
U , κ

loop
D = κD + �

loop
D .

Here �
loop
U ,�

loop
D are loop corrections, dependent on all

parameters α, β,m12 and four Higgs masses. |κ loop
U | and

|κ loop
D | would not be exact 1 at same time until the decou-

pling effect comes.

Wrong-sign Yukawa Limit
For Type-II,

κD = −1, κU = 1 (13)

This definition, wrong-sign limit, works for both tree- and
one-loop level studies.

At tree level, from Eqs. (9) and (10), sin(β + α) =
1, cos(β + α) = 0 is the limit.

At one-loop level, to reach at wrong-sign limit at Eq. (13),
mass decoupling and sin(β + α) = 1, cos(β + α) = 0 are
all in need. At this limit, �

loop
U/D are negligible and all values

become same as them at tree level. Under current measure-
ments, there are allowed regions deviated from this exact
limit at loop level.

In this work, we will address one-loop level �1−loop

effects to the global fit results around wrong-sign Yukawa
region before the decoupling scale, with Higgs precision
measurement at current LHC Run-II and future HL-LHC,
CEPC.

3 Study method

Since the discovery of 125 GeV Higgs boson at LHC Run-I,
the study of Higgs sector, both the SM-like Higgs boson pre-
cision measurements and direct search of additional Higgs
boson, has fruitful results. To have a complete study of
wrong-sign Yukawa region of 2HDM, here we will explore its
properties with both direct and indirect experimental reports
at LHC Run-II.

To interpret the experimental direct search reports, we
take the cross section times branching ratio σ × Br lim-
its of various channels, including A/H → μμ [17–19],
A/H → bb [20,21], A/H → ττ [22–24], A/H → t t
[25,26], H → Z Z [27,28], H → WW [29,30]. About the
theoretical predictions in the 2HDM parameter space, we
get σ × Br with the SusHi package [36] for the produc-
tion cross-section at NNLO level, and 2HDMC [37] code for
Higgs decay branching ratio at tree level.

About the indirect search, we transfer the errors of SM-
like Higgs boson couplings to the constraints on the model
parameters at one-loop level, adopting the on-shell renormal-
ization scheme [38] for Higgs masses, α, β, vacuum expecta-
tion value v, and minimal substraction scheme for parameter
m12. The conventions for the renormalization constants, and
conditions follows Refs. [38,39], which are two-point func-
tions of Higgs field. More details are discussed at our previous
work [40], and our numerical results keeps consistent with
package H-coup [41]. We make a global fit by constructing
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the χ2 with the profile likelihood method

χ2 =
∑
i

(μBSM
i − μobs

i )2

σ 2
μi

. (14)

Here μBSM
i = (σ×Br)BSM

(σ×Br)SM
for various Higgs search channels

and σμi is the experimental precision on a particular chan-
nel. μBSM

i is predicted in each specific model, depending on
model parameters. For the LHC Run-II, the measured μobs

i
and corresponding σμi are given by ATLAS at 13 TeV up to
80 f b−1 [31]. In our analyses of the future colliders, μobs

i
are set to be the SM value: μobs

i = 1, assuming no deviation
to the SM observables are observed. For the corresponding
σμi of the HL-LHC and CEPC, we take the precision mea-
surements from [32,33]. The future FCC-ee [42] has similar
performance to CEPC [43], thus here we will only show the
results with CEPC. For one or two parameter fit, the corre-
sponding �χ2 = χ2 − χ2

min for 95% C.L. is 3.84 or 5.99,
respectively.

In 2HDMs, the additional Higgs sector involves several
Higgs self-couplings, which are constrained by various the-
ories considerations, such as vacuum stability, perturbativity
and unitarity. For the detailed study, we refer to the results in
works [40,43]. The general idea is −(125 GeV)2 ≤ √

λv2 ≤
(600 GeV)2, and we will study inside of this region.

4 Results at tree level

Based on the discussion above, first we will show our study
results at tree level. It includes the current LHC direct and
indirect searches, as well as the indirect searches at future
HL-LHC and CEPC.

4.1 Indirect search at LHC and future colliders

With the global fit methods in Sect. 3, here we will utilize
the SM-like Higgs precision measurement from LHC Run-II
[31], HL-LHC [32] and CPEC [33]. In details, for LHC Run-
II we work with the ATLAS results ATLAS at 13 TeV up to
80 f b−1, and for HL-LHC, we work with combined results
from future ATLAS and CMS, up to 6 ab−1. For CPEC, the
latest designed luminosity is 5.6 ab−1 at

√
S = 240 GeV.

We give our global fit results in Fig. 1, the allowed region
in the plane of tan β - cos(β−α) at 95% C.L. for the four types
of 2HDM, given LHC Run-II (green), HL-LHC (blue) and
CEPC (red) Higgs precision measurements. For the Type-I
2HDM, all the SM-like Higgs fermion couplings are κU type
in Eq. (7) with cot β-enhanced corrections when deviates
from alignment limit cos(β − α) = 0. Thus at large tan β

region, the Yukawa couplings would not contribute much in
constraining the parameter space, and the main restriction is

from gauge couplings. The detailed values are displayed in
Table 3.

For the other three types, they include both κU and κD
type Yukawa couplings, as a result both large and small tan β

are strongly constrained apart for the wrong-sign Yukawa
regions. The relevant the maximally allowed | cos(β − α)|
ranges are also shown in Table 3. We also note the Type-LS is
less restricted at small tan β compared to Type-II and Type-
F, because only lepton couplings of Type-LS have κD type
and the precisions of δκb is better than δκτ , for example in
CPEC, δκb = 1.3%, δκτ = 1.5%.

The gray represent the wrong-sign Yukawa regions as
Sect. 2.2, with κUκV < 0 for Type-I, κbκV < 0 for Type-II
and Type-F, κτ κV < 0 for Type-II and Type-LS.

4.2 Wrong-sign region and disappeared up-type

From Eqs. (9) and (10), even cos(β − α) � 0 there are still
allowed regions to get |κU,D| = 1, which is the so called
wrong-sign Yukawa region of 2HDM as defined (Eq. 12).
As shown in Fig. 1, gray regions are of wrong-sign Yukawa
couplings defined in Eq. (12). Since κV > 0 keeps always,
Eq. (12) means κU/D < 0, with the lower left region for
Type-I, and the upper right regions for Type-II/L/F. The later
three types all have κU -type wrong-sign Yukawa region as
Type-I, which are not shown out.

In details the κD-type wrong-sign Yukawa in Eq. (10) only
occurs at tan β > 1. For the exact wrong-sign limit at tree
level κU = −κD = 1, sin(β − α) = − cos 2β, and at large
tan β, we have

cos(β − α) = 2/ tan β . (15)

Thus even at CEPC, where we will have δκZ = |1− sin(β −
α)| ≤ 0.25%, the wrong-sign Yukawa is still allowed around
cos(β − α) ≈ 2/ tan β for cos(β − α) < 0.07 at tree level.

κU -type wrong-sign Yukawa in Eq. (10) only occurs at
tan β < 1. For the exact wrong-sign limit κD = −κU = 1,
sin(β − α) = cos 2β, and at small tan β,

cos(β − α) = −2 tan β . (16)

Usually κU and κD are estimated in the form of κ2
U,D ,

except for if there is any interference. The two sensitive
parameters [32] are

κγ = (1.59κ2
W − 0.67κtκW + 0.071κ2

t . . .)0.5 , (17)

κg = (1.11κ2
t − 0.12κtκb + 0.01κ2

b . . .)0.5 . (18)

Here Eqs. (17) and (18) tell us the sign of κb does not
make an important enough difference to χ2(κb → 1) and
χ2(κb → −1) through the global fit method Eq. (14) at tree
level [35], while the sign of κt makes an important difference
to both κγ , κg . For κU -type wrong-sign region, corrected κγγ
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Fig. 1 The allowed region in the plane of tan β - cos(β − α) at 95%
C.L. for the four types of 2HDM, given LHC Run-II (green), HL-LHC
(blue) and CEPC (red) Higgs precision measurements. For future mea-
surements, we assume that the measurements agree with SM predic-
tions. The gray represent the wrong-sign Yukawa regions discussed at

Sect. 2.2, with κUκV < 0 for Type-I, κbκV < 0 for Type-II and Type-
F, κτ κV < 0 for Type-II and Type-LS. . The colored “arm” regions
for the Type-II, L and F are the allowed wrong-sign Yukawa regions
correspondingly

deviated from SM values too large to be excluded. The col-
ored “arm” regions for the Type-II, L and F are the allowed
wrong-sign Yukawa regions correspondingly at 95% C.L.
under various Higgs precision measurements.

4.3 Current LHC direct search

Afte r the indirect searches, here we will take the Type-
II 2HDM as an example to compare with the direct LHC

Table 3 Apart for the wrong-sign region, the maximally allowed
| cos(β−α)| range at 95% C.L. given LHC Run-II, HL-LHC (including
both ATLAS and CMS), and CEPC Higgs precision measurements

Type LHC Run-II HL-LHC CEPC

Type-I tan β � 5 0.38 0.2 0.08

Type-II tan β ∼ 1 0.08 0.015 0.01

Type-L tan β ∼ 1 0.22 0.12 0.011

Type-F tan β ∼ 1 0.08 0.015 0.012
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searches, and to explore the combined constraint ability to
the wrong-sign Yukawa region.

As shown in Fig. 2, the excluded region by current
LHC direct search in the plane mH/A − tan β, including
A → Zh(h → bb̄) (red), A/H → bb̄ (purple), H → hh
(cyan), A/H → μ+μ− (yellow), H → VV (green),
A/H → τ+τ− (orange) respectively. Based one Fig. 1, to
study the the wrong-sign Yukawa region, we take the bench-
mark parameter cos(β − α) = 0 (left), 0.2 (middle) , and
0.4 (right), with degenerate heavy Higgs mass mA = mH ,
mH± = max{600 GeV,mH } ,m2

H = m2
12/sβcβ . For the con-

straints from charged Higgs, on one hand, both the B-physics
requiring mH± > 580 at tan β > 0.7 [44,45] and direct
searches at LHC [46] do not have strong probe ability on
wrong-sign Yukawa region as channels about heavy neutral
ones. On the other hand, mass splittings between heavy Higgs
are allowed [40]. Therefore charged Higgs constraints do
not affect wrong-sign Yukawa regions from direct searches
or affecting neutral heavy Higgs indirectly. After all in our
studies, we take mA = mH , mH± = max{600 GeV,mH }.

In the left panel of Fig. 2, only H/A → f f̄ channels
have constraint since Hhh, HVV, AhZ couplings at tree
level are proportional to cos(β − α). Generally the region
mA ∈ (130, 800), tan β > 10 is excluded by ττ decay chan-
nel, and for larger heavy Higgs mass, the excluded tan β

limit will be larger, to limitless around 1.5 TeV. Also a small
region mA ∈ (130, 2mt ), tan β ∈ (0.5, 2) is excluded
by A/H → ττ . For middle and right panels of Fig. 2,
all channels here would make a difference with non-zero
cos(β − α). For cos(β − α) = 0.2, at large tan β the regions
of mA < 700, tan β > 5, mA < 800, tan β > 10 are
excluded. Similarly the restriction ability goes down until
1.5 TeV. At small tan β region, mA < 800, tan β < 0.3

is strongly constrained. The excluded region can reach 1.2
TeV for tan β ∈ (0.9, 2). For larger cos(β − α) = 0.4, when
mA < 800, tan β > 3 are strongly constrained since the more
powerful A → Zh channel. This channel gets larger decay
rates with larger cos(β − α). But it can only reach 1.4 TeV
around tan β = 30. The excluded region of cos(β−α) = 0.4
at small tan β region is similar as cos(β −α) = 0.2. Another
important feature is, the covered regions on tan β are nearly
similar for mA ∈ (2mt , 800) GeV.

The strong constraints at large tan β and non-zero cos(β−
α) can contribute to exclude the wrong-sign Yukawa region.
To have a more straightforward idea, we will compare the
direct and indirect searches in the plane cos(β − α) − tan β.

As in Fig. 3, here we choose benchmark parameters
mA = mH = mH± = 800 GeV (left and middle), 1500

GeV (right) and
√

λv2 ≡
√

(m2
H − m2

12/sβcβ) = 100 GeV
(left and right), 600 GeV (middle), to discuss the combine
the constraint from indirect Higgs precision measurement
and direct heavy Higgs searches at current LHC Run-II. The
details about the experimental reports are same as Figs. 1
and 2. At left panel with mA = 800 GeV,

√
λv2 = 100 GeV

, the wrong-sign region at large tan β > 20 is totally cov-
ered by A/H → ττ channel, and at small tan β region, it is
strongly constrained by A → Zh channel. The small allowed
region is around 8 < tan β < 10, 0.2 < cos(β − α) < 0.3.
At small tan β region, LHC direct searches give weak con-
straints resulting from too wide �A/H and current searches
are not valid in this region. Compared the middle panel with√

λv2 = 600 GeV, the general results around wrong-sign
Yukawa region are quite similar. This tells us the indepen-
dence on

√
λv2 orm12 in the considered regions. For the right

panel with mA = 1500 GeV,
√

λv2 = 100 GeV , the LHC
direct search can nearly give no constraints there, which is

Fig. 2 Interpretation results of excluded region in the plane mH/A −
tan β with latest LHC direct search limits, including A →
Zh(h → bb̄) (red), A/H → bb̄ (purple), H → hh (cyan),
A/H → μ+μ− (yellow), H → VV (green), A/H → τ+τ−

(orange). Here the benchmark parameter is degenerate heavy Higgs
mass mA = mH , mH± = max{600 GeV,mH }, cos(β −
α) = 0 (left), 0.2 (middle), 0.4 (right), and m2

H = m2
12/sβcβ
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Fig. 3 Here we will show the excluded region from indirect Higgs
precision measurements and direct search results in the plane tan β -
cos(β − α) for Type II 2HDM. The indirect come from ATLAS at 13
TeV [31], and the direct seaches includs A → HZ (blue), A → Zh
(red), A/H → ττ (orange), A/H → bb (purple) and A/H → μμ

(yellow), to compare different channel constraining ability. Here we
choose benchmark parametersmA = mH = mH± = 800 GeV (left and

middle), 1500 GeV (right) and
√

λv2 ≡
√

(m2
H − m2

12/sβcβ) = 100
GeV (left and right), 600 GeV (middle). The current precision mea-
surements results are shown by solid lines. Generally the central region
between the two lines around cos(β −α) = 0 are allowed except for the
“arm” of Type-II, the wrong-sign Yukawa region as discussed detailed
in Fig. 1

also shown in Fig. 2. Also from middle and right panels of
Fig. 2, where the LHC direct search constraints are similar
for mA < 800 GeV and large tan β region, we can say the
wrong-sign region with mA < 800 GeV are strongly con-
strained by the combined indirect and direct searches at tree
level.

For direct searches, channels like H → bb, ττ can
make differences if their couplings are tan β-enhanced as
from Table 2. For Hττ of Type-L, and Hbb of Type-F are also
same as Type-II, and other channels are tan β-reduced. Thus
the constraints on wrong-sign region for Type-L/F would be
same as Type-II, or weaker than Type-II.

5 Results at one-loop level

From last section, the combined indirect and direct searches
at current LHC can give strong constraints on wrong-sign
Yukawa region for mA < 800 GeV while for large heavy
Higgs mass such mA = 1500 GeV, direct searches nearly
has no restrictions. The conclusion will be modified to a large
extent when including the loop-level corrections to Higgs
precision measurement study [40,43].

5.1 Loop effects in cos(β − α) − tan β plane

To explore loop effects on the wrong-sign Yukawa region,
here we first analyze the individual Higgs couplings cos-
ntraints in details in Type-II 2HDM. In [40,43], we have
detailed studies about the normal Yukawa regions around

cos(β − α) = 0, and the studies method here are similar,
thus here we only display the wrong-sign regions.

As the Fig. 4, we show the allowed wrong-sign Yukawa
region in the plane of tan β - cos(β−α) at 95% C.L. for Type-
II 2HDM, given LHC Run-II Higgs precision measurements
at one-loop level. The benchmark parameters in the left panel
is mA = mH = mH± = 800 GeV, λv2 = −1002. The
gray regions are of κb < 0 as in Fig. 1. The blue region is
allowed at one-loop level, and the red and green lines are for
δκb = ±0.19 and δκZ = ±0.08 taken from current LHC
reports [32].

The allowed region by hZ Z coupling at one-loop level
are always around cos(β − α) = 0 displayed by green
line, similar to tree level. For hbb the case becomes param-
eter dependent, with κb = −1 ± 0.19 represented by red
lines. In the left panel with λv2 = −1002 GeV2, region with
κb < 0 gets reduced compared to it at tree level, as well as
the allowed wrong-sign Yukawa “arm”. In the middle panel
with λv2 = 0 GeV2, the upper right regions has κb > 0,
resulting to two regions of κb = −1 ± 0.19. For right panel
with λv2 = 6002 GeV2, κb < 0 region gets larger, and the
allowed wrong-sign Yukawa “arm” shifts a lot compared to
themselves at tree level. Generally we can conclude, the blue
allowed wrong-sign Yukawa regions are mainly dependent
on hbb, hZ Z channels at one-loop level at Type-II.

In Fig. 5, based on the analysis in Fig. 4, we show the
allowed wrogn-sign Yukawa regions of various λv2 values at
one-loop level in the plane of tan β - cos(β −α) at 95% C.L.
for Type-II 2HDM, given LHC Run-II Higgs precision mea-
surements at one-loop level. Here we work with the bench-
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Fig. 4 The blue allowed region in the plane of tan β - cos(β − α) at
95% C.L. for Type-II 2HDM, given LHC Run-II Higgs precision mea-
surements at one-loop level. Here we take the benchmark parameters
mA = mH = mH± = 800 GeV, λv2 = −1002 (left), 0 (middle), abd

6002 (right) GeV2. The gray regions are of κb < 0 as in Fig. 1. We
also show the current precision δκb = ±0.19 and δκZ = ±0.08 with
red and green lines respectively, whose overlap parts are blue allowed
regions

Fig. 5 The summarized allowed wrogn-sign Yukawa region in the
plane of tan β - cos(β −α) at 95% C.L. for Type-II 2HDM, given LHC
Run-II Higgs precision measurements at one-loop level. Here we take
the benchmark parameters mA = mH = mH± = 800 GeV (left) and
1500 GeV (right). The diffenet colorful regions are for λv2 = −1002

(blue), 0 (light red), 502 (magenta), 2002 (green), 4002 (cyan) and 6002

(orange) GeV2. We also show the allowed wrong-sign Yukawa region
at tree level with black solid lines. For mA = 800 GeV, we show the
larger allowed region in the subplot, upper right corner of the left panel

mark parametersmA = mH = mH± = 800 GeV (left), 1500
GeV (right), λv2 = −1002, 0, 502, 2002, 4002, 6002 GeV2

displayed by blue, light red, magenta, green and cyan regions
respectively. At the left panel, the main plot shows cos(β −
α) ∈ (−0.02, 0.2), and the larger region is in the subplot
for cos(β − α) ∈ (−0.02, 0.4) . The allowed wrong-sign
Yukawa region at tree level is displayed by black solid lines.
Here the light red region for λv2 = 0 is the most similar one
to the tree level region, and regions of smaller λv2 would
locate at right while regions of larger λv2 would shift to

the left of black lines. Thus this range would be less con-
strained by current LHC direct searches as shown in Fig. 3.
For mA = 1500 GeV, region of λv2 ≤ 0 is totally excluded,
and for large λv2 the allowed region is shifted to the left
of black lines as mA = 800 GeV. Here we also see, the
allowed cos(β − α) range at loop level is larger than it at
tree level, for both cases. Usually theoretical constraints can
restrict large |λv2| strongly, especially for

√|λv2| > 100
GeV, while Higgs precision measurements is complemen-
tary on constraining small λv2 for large mass.
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5.2 Loop effects in m� − m12 plane

Since there are weak theoretical constraints around λv2 =
m2

H/A −m2
12/(sin β cos β) = 0, here we explore this special

region carefully, in the plane of mA − m12.
In Fig. 6, performing the global fit at 95% C.L. for Type-

II 2HDM, we show the allowed region in the plane of mA

- m12 after including the loop corrections to SM-like Higgs
couplings. For the benchmark parameters, we still take heavy
Higgs mass mA = mH ,mH± = 600 GeV, with cos(β −
α) = 0.05 (left), 0.07 (right), tan β = 30 (blue), 35 (green), 45
(red). The global fit results with current LHC and future HL-
LHC Higgs precision measurements are displayed with light
and dark colors respectively. With the future CEPC reports,
the allowed region is strongly constrained, and since the χ2

of best point is larger than 100 for these cases, we would not
show them here.

Generally for a pair of fixed cos(β − α) and tan β,
the allowed wrong-sign Yukawa regions at one-loop level
are divided into two parts based on tan β = 20. For
m12 > 20 GeV, the allowed region tends to have

√
λv2 =√

m2
A − m2

12(1 + tan2 β)/ tan β ≈ 0 GeV, where there is
weak constraints from theory, and mA < (1.5 − 2) TeV.
Larger mA range is excluded because of too large loop cor-
rections. In the plots, we also show the dashed line indicating
the tiny regions allowed by theoretical constraints for corre-
sponding parameters. The allowed region partially are same
as the colored region allowed by Higgs precision measure-
ments. For m12 < 20 GeV, the allowed region has large

|√λv2| > 100 GeV, to excluded by theoretical constraints
[40]. Therefore we can conclude, constraints from Higgs
precision measurements works better than theoretical con-
straints at small λv2, and the two together could constrain
the whole λv2 stronger.

Based on Eq. (15), the wrong-sign Yukawa region at tree
level has a simple relationship cos(β − α) ≈ 2/ tan β when
tan β � 1 . This relationship at one-loop level would not
keep anymore, since for a specific cos(β−α), different tan βs
are allowed.

6 Conclusions

Since the discovery of SM-like Higgs boson at LHC Run-I,
exploring its properties especially Higgs couplings become
a promising method to study new physics. In the framework
of 2HDM, this work focuses on testing the so-called wrong-
sign Yukawa region up to one-loop level. It is known that
wrong-sign limit of Type-II is κD = −1, and κU = 1.
sin(β + α) = 1 can reach it at tree level. We pointed out
that, the limit at one-loop level requires heavy Higgs mass
decoupling as well.

Our study worked with both indirect and direct searches
at current LHC, to search the region before decoupling scale.
For the direct searches, we constrained the parameter space
with various heavy Higgs decays, A/H → f f̄ , VV, Vh, hh
at tree level. For the indirect searches, we perform the global

Fig. 6 The allowed region in the plane of mA - m12 at 95% C.L. for
Type-II 2HDM, given LHC Run-II (light color) and HL-LHC (dark
color) Higgs precision measurements at one-loop level. Here we take
the benchmark parameters mA = mH ,mH± = 600 GeV, cos(β −α) =
0.05 (left), 0.07 (right), tan β = 30 (blue), 35 (green), 45 (red). Gener-

ally for a pair of fixed cos(β − α) and tan β, the allowed wrong-sign
Yukawa region tends to get a linear relationship between mA-m12, until
mA approaches (1.5–2) TeV to be excluded by current LHC Run-II data.
The dashed line are allowed line (tiny region) by theoretical constraints
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fit with current LHC, future HL-LHC and CEPC Higgs pre-
cision measurements up to one-loop level.

Generally as shown in Figs. 1, 2, 3, for heavy Higgs mass
mA = mH < 800 GeV,mH± = max{mH , 600 GeV},
the wrong-sign Yukawa regions at tree level are excluded
largely for Type-II 2HDM, except for the tiny allowed region
around tan β ∈ (8, 10) under the combined direct and indi-
rect searches of current LHC data at tree level. The excluded
region is also nearly independent of parameter m12 or λv2 =
m2

A − m2
12/(sin β cos β). For larger mA, the constraints get

weaker, and direct searches can not put any more constraints
on the wrong-sign region for mA = 1500 GeV.

The excluded region would change much after including
loop corrections to the indirect Higgs precison measuremetns
studies. Comparing Fig. 1 and Fig. 4, the sign(κb) = −1
region and the allowed wrong-sign Yukawa region could be
corrected magnificently in some parameter space, which is
mainly depedent on hbb, hZ Z channels for Type-II. Unlike
the results at the tree level, m12 or λv2 could also make a
difference. From Fig. 5, we can conclude that the wrong-
sign region with λv2 > 0 will be less constrained by heavy
Higgs direct searches at Fig. 2 for small mass such as mA =
800 GeV. For large mass, such as our case study with mA =
1500 GeV where is no constraints from direct searches at
tree level, region of λv2 ≤ 0 is totally excluded, and for large
λv2 > 50 GeV2 the allowed region is shifted to the left of the
tree-level region. In general we can conclude that with loop
corrections, wrong-sign Yukawa regions of small λv2 will be
more constrained, while the range of large λv2 is less con-
strained under current LHC direct and indirect limits. These
features are quite different to the results at tree level. Since
theoretical constraints put weak restriction on small |λv2|, at
Fig. 6 we explored the λv2 = m2

A − m2
12/(sin β cos β) ≈ 0

GeV. We found Higgs measurements works better here than
theoretical constraints. There are still allowed regions under
current LHC form mA < 1500 GeV, but when considering
the future CEPC, it is difficult to find out the survived points.

Acknowledgements We thank Huayang Song for useful discussions.
This work is supported by the Australian Research Council Discovery
Project DP180102209.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: The work has no
data to be deposited. All the important results and formulae are included
in the main draft.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. ATLAS Collaboration, G. Aad et al. Observation of a new par-
ticle in the search for the Standard Model Higgs boson with the
ATLAS detector at the LHC. Phys. Lett. B 716, 1–29 (2012).
arXiv:1207.7214 [hep-ex]

2. C.M.S. Collaboration, S. Chatrchyan et al., Observation of a new
boson at a mass of 125 GeV with the CMS experiment at the LHC.
Phys. Lett. B 716, 30–61 (2012). arXiv:1207.7235 [hep-ex]

3. J. Bernon, J.F. Gunion, H.E. Haber, Y. Jiang, S. Kraml, Scrutinizing
the alignment limit in two-Higgs-doublet models: mh=125 GeV.
Phys. Rev. D 92(7), 075004 (2015). arXiv:1507.00933 [hep-ph]

4. J. Bernon, J.F. Gunion, H.E. Haber, Y. Jiang, S. Kraml, Scrutinizing
the alignment limit in two-Higgs-doublet models. II. mH=125 GeV.
Phys. Rev. D 93(3), 035027 (2016). arXiv:1511.03682 [hep-ph]

5. E.J. Chun, The muon g-2 in two Higgs doublet models. EPJ Web
Conf. 118, 01006 (2016). arXiv:1511.05225 [hep-ph]

6. L. Wang, X.-F. Han, A light pseudoscalar of 2HDM confronted
with muon g-2 and experimental constraints. JHEP 05, 039 (2015).
arXiv:1412.4874 [hep-ph]

7. P.M. Ferreira, R. Guedes, J.F. Gunion, H.E. Haber, M.O.P. Sam-
paio, R. Santos, The Wrong Sign limit in the 2HDM. in Pro-
ceedings, 2nd Conference on Large Hadron Collider Physics
Conference (LHCP 2014): New York, USA, June 2-7, 2014
(2014). arXiv:1410.1926 [hep-ph]. http://www.slac.stanford.edu/
econf/C140602.2/papers/1410.1926v1.pdf

8. D. Fontes, J.C. Romão, J.P. Silva, A reappraisal of the wrong-sign
hbb coupling and the study of h → Zγ . Phys. Rev. D 90(1),
015021 (2014). arXiv:1406.6080 [hep-ph]

9. P.M. Ferreira, R. Guedes, M.O.P. Sampaio, R. Santos, Wrong sign
and symmetric limits and non-decoupling in 2HDMs. JHEP 12,
067 (2014). arXiv:1409.6723 [hep-ph]

10. A. Biswas, A. Lahiri, Alignment, reverse alignment, and wrong
sign Yukawa couplings in two Higgs doublet models. Phys. Rev.
D 93(11), 115017 (2016). arXiv:1511.07159 [hep-ph]

11. N. Greiner, S. Liebler, G. Weiglein, Interference contributions to
gluon initiated heavy Higgs production in the Two-Higgs-Doublet
Model. Eur. Phys. J. C 76(3), 118 (2016). arXiv:1512.07232 [hep-
ph]

12. T. Modak, J.C. Romão, S. Sadhukhan, J.P. Silva, R. Srivastava,
Constraining wrong-sign hbb couplings with h → ϒγ . Phys. Rev.
D 94(7), 075017 (2016). arXiv:1607.07876 [hep-ph]

13. P.M. Ferreira, S. Liebler, J. Wittbrodt, pp → A → Zh and the
wrong-sign limit of the two-Higgs-doublet model. Phys. Rev. D
97(5), 055008 (2018). arXiv:1711.00024 [hep-ph]

14. L. Wang, R. Shi, X.-F. Han, Wrong sign Yukawa coupling of
the 2HDM with a singlet scalar as dark matter confronted with
dark matter and Higgs data. Phys. Rev. D 96(11), 115025 (2017).
arXiv:1708.06882 [hep-ph]

15. N.M. Coyle, B. Li, C.E.M. Wagner, Wrong sign bottom Yukawa
coupling in low energy supersymmetry. Phys. Rev. D 97(11),
115028 (2018). arXiv:1802.09122 [hep-ph]

16. C.-W. Chiang, K. Yagyu, Implications of Higgs boson search data
on the two-Higgs doublet models with a softly broken Z2 symme-
try. JHEP 07, 160 (2013). arXiv:1303.0168 [hep-ph]

17. CMS Collaboration, C. Collaboration, A Search for Beyond Stan-
dard Model Light Bosons Decaying into Muon Pairs

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1207.7214
http://arxiv.org/abs/1207.7235
http://arxiv.org/abs/1507.00933
http://arxiv.org/abs/1511.03682
http://arxiv.org/abs/1511.05225
http://arxiv.org/abs/1412.4874
http://arxiv.org/abs/1410.1926
http://www.slac.stanford.edu/econf/C140602.2/papers/1410.1926v1.pdf
http://www.slac.stanford.edu/econf/C140602.2/papers/1410.1926v1.pdf
http://arxiv.org/abs/1406.6080
http://arxiv.org/abs/1409.6723
http://arxiv.org/abs/1511.07159
http://arxiv.org/abs/1512.07232
http://arxiv.org/abs/1607.07876
http://arxiv.org/abs/1711.00024
http://arxiv.org/abs/1708.06882
http://arxiv.org/abs/1802.09122
http://arxiv.org/abs/1303.0168


Eur. Phys. J. C (2021) 81 :404 Page 11 of 11 404

18. CMS Collaboration, A.M. Sirunyan et al., Search for MSSM Higgs
bosons decaying to μ+μ− in proton-proton collisions at

√
s = 13

TeV. arXiv:1907.03152 [hep-ex]
19. ATLAS Collaboration, M. Aaboud et al., Search for scalar reso-

nances decaying into μ+μ− in events with and without b-tagged
jets produced in proton-proton collisions at

√
s = 13 TeV with the

ATLAS detector. JHEP (2019). arXiv:1901.08144 [hep-ex]
20. C.M.S. Collaboration, A.M. Sirunyan et al., Search for beyond

the standard model Higgs bosons decaying into a bb pair in pp
collisions at

√
s = 13 TeV. JHEP 08, 113 (2018). arXiv:1805.12191

[hep-ex]
21. ATLAS Collaboration, G. Aad et al., Search for heavy neutral

Higgs bosons produced in association with b-quarks and decay-
ing to b-quarks at

√
s = 13 TeV with the ATLAS detector.

arXiv:1907.02749 [hep-ex]
22. CMS Collaboration, C. Collaboration, Search for additional neutral

MSSM Higgs bosons in the di-tau final state in pp collisions at√
s = 13 TeV

23. C.M.S. Collaboration, A.M. Sirunyan et al., Search for additional
neutral MSSM Higgs bosons in the ττ final state in proton-proton
collisions at

√
s = 13 TeV. JHEP 09, 007 (2018). arXiv:1803.06553

[hep-ex]
24. ATLAS Collaboration, M. Aaboud et al., Search for additional

heavy neutral Higgs and gauge bosons in the ditau final state pro-
duced in 36 fb−1 of pp collisions at

√
s = 13 TeV with the ATLAS

detector. JHEP 01, 055 (2018). arXiv:1709.07242 [hep-ex]
25. CMS Collaboration, A. M. Sirunyan et al., Search for heavy Higgs

bosons decaying to a top quark pair in proton-proton collisions at√
s = 13 TeV. arXiv:1908.01115 [hep-ex]

26. ATLAS Collaboration, M. Aaboud et al., Search for heavy particles
decaying into a top-quark pair in the fully hadronic final state in pp
collisions at

√
s = 13 TeV with the ATLAS detector. Phys. Rev. D

99(9), 092004 (2019). arXiv:1902.10077 [hep-ex]
27. C.M.S. Collaboration, A.M. Sirunyan et al., Search for a new scalar

resonance decaying to a pair of Z bosons in proton-proton collisions
at

√
s = 13 TeV. JHEP 06, 127 (2018). arXiv:1804.01939 [hep-ex]

28. ATLAS Collaboration, M. Aaboud et al., Search for heavy ZZ res-
onances in the �+�−�+�− and �+�−νν̄ final states using proton-
proton collisions at

√
s = 13 TeV with the ATLAS detector. Eur.

Phys. J. C 78(4), 293 (2018). arXiv:1712.06386 [hep-ex]
29. CMS Collaboration, C. Collaboration, Search for high mass Higgs

to WW with fully leptonic decays using 2015 data,
30. ATLAS Collaboration, M. Aaboud et al., Search for heavy reso-

nances decaying into WW in the eνμν final state in pp collisions
at

√
s = 13 TeV with the ATLAS detector. Eur. Phys. J. C 78(1),

24 (2018). arXiv:1710.01123 [hep-ex]
31. ATLAS Collaboration, T. A. collaboration, Combined measure-

ments of Higgs boson production and decay using up to 80 fb−1

of proton–proton collision data at
√
s = 13 TeV collected with the

ATLAS experiment

32. HL/HE WG2 group Collaboration, M. Cepeda et al., Higgs Physics
at the HL-LHC and HE-LHC. arXiv:1902.00134 [hep-ph]

33. CEPC Study Group Collaboration, M. Dong et al., CEPC
Conceptual Design Report: Volume 2 - Physics & Detector.
arXiv:1811.10545 [hep-ex]

34. G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher, J.P.
Silva, Theory and phenomenology of two-Higgs-doublet models.
Phys. Rept. 516, 1–102 (2012). arXiv:1106.0034 [hep-ph]

35. P.M. Ferreira, J.F. Gunion, H.E. Haber, R. Santos, Probing wrong-
sign Yukawa couplings at the LHC and a future linear collider.
Phys. Rev. D 89(11), 115003 (2014). arXiv:1403.4736 [hep-ph]

36. S. Liebler, S. Patel, G. Weiglein, Phenomenology of on-shell Higgs
production in the MSSM with complex parameters. Eur. Phys. J.
C 77(5), 305 (2017). arXiv:1611.09308 [hep-ph]

37. D. Eriksson, J. Rathsman, O. Stal, 2HDMC: Two-Higgs-Doublet
model calculator physics and manual. Comput. Phys. Commun.
181, 189–205 (2010). arXiv:0902.0851 [hep-ph]

38. A. Denner, Techniques for calculation of electroweak radiative cor-
rections at the one loop level and results for W physics at LEP-200.
Fortsch. Phys. 41, 307–420 (1993). arXiv:0709.1075 [hep-ph]

39. S. Kanemura, Y. Okada, E. Senaha, C.-P. Yuan, Higgs coupling
constants as a probe of new physics. Phys. Rev. D 70, 115002
(2004). arXiv:hep-ph/0408364

40. N. Chen, T. Han, S. Su, W. Su, Y. Wu, Type-II 2HDM under the
precision measurements at the Z -pole and a Higgs Factory. JHEP
03, 023 (2019). arXiv:1808.02037 [hep-ph]

41. S. Kanemura, M. Kikuchi, K. Sakurai, K. Yagyu, H-COUP: a
program for one-loop corrected Higgs boson couplings in non-
minimal Higgs sectors. Comput. Phys. Commun. 233, 134–144
(2018). arXiv:1710.04603 [hep-ph]

42. F.C.C. Collaboration, A. Abada et al., FCC-ee: The Lepton Col-
lider. Eur. Phys. J. ST 228(2), 261–623 (2019)

43. J. Gu, H. Li, Z. Liu, S. Su, W. Su, Learning from Higgs physics
at future higgs factories. JHEP 12, 153 (2017). arXiv:1709.06103
[hep-ph]

44. HFLAV Collaboration, Y. Amhis et al., Averages of b-hadron, c-
hadron, and τ -lepton properties as of summer 2016. Eur. Phys. J.
C 77(12), 895 (2017). arXiv:1612.07233 [hep-ex]

45. F. Arco, S. Heinemeyer, M. Herrero, Exploring sizable triple Higgs
couplings in the 2HDM. arXiv:2005.10576 [hep-ph]

46. S. Li, H. Song, S. Su, Probing exotic charged higgs decays in the
type-II 2HDM through Top Rich Signal at a Future 100 TeV pp
Collider. arXiv:2005.00576 [hep-ph]

123

http://arxiv.org/abs/1907.03152
http://arxiv.org/abs/1901.08144
http://arxiv.org/abs/1805.12191
http://arxiv.org/abs/1907.02749
http://arxiv.org/abs/1803.06553
http://arxiv.org/abs/1709.07242
http://arxiv.org/abs/1908.01115
http://arxiv.org/abs/1902.10077
http://arxiv.org/abs/1804.01939
http://arxiv.org/abs/1712.06386
http://arxiv.org/abs/1710.01123
http://arxiv.org/abs/1902.00134
http://arxiv.org/abs/1811.10545
http://arxiv.org/abs/1106.0034
http://arxiv.org/abs/1403.4736
http://arxiv.org/abs/1611.09308
http://arxiv.org/abs/0902.0851
http://arxiv.org/abs/0709.1075
http://arxiv.org/abs/hep-ph/0408364
http://arxiv.org/abs/1808.02037
http://arxiv.org/abs/1710.04603
http://arxiv.org/abs/1709.06103
http://arxiv.org/abs/1612.07233
http://arxiv.org/abs/2005.10576
http://arxiv.org/abs/2005.00576

	Probing loop effects in wrong-sign Yukawa coupling region of Type-II 2HDM 
	Abstract 
	1 Introduction and motivation
	2 Two Higgs doublet models
	2.1 2HDM Higgs sector
	2.2 Wrong-sign Yukawa of 2HDM

	3 Study method
	4 Results at tree level
	4.1  Indirect search at LHC and future colliders
	4.2  Wrong-sign region and disappeared up-type
	4.3 Current LHC direct search

	5 Results at one-loop level
	5.1 Loop effects in cos(β-α)-tanβ plane
	5.2 Loop effects in mΦ- m12 plane

	6 Conclusions
	Acknowledgements
	References




