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Abstract Two analytic examples of globally regular non-
Abelian gravitating solitons in the Einstein–Yang–Mills–
Higgs theory in (3 + 1)-dimensions are presented. In both
cases, the space-time geometries are of the Nariai type and
the Yang–Mills field is completely regular and of meron type
(namely, proportional to a pure gauge). However, while in the
first family (type I) X0 = 1/2 (as in all the known examples
of merons available so far) and the Higgs field is trivial, in
the second family (type II) X0 = 1/2 is not 1/2 and the
Higgs field is non-trivial. We compare the entropies of type
I and type II families determining when type II solitons are
favored over type I solitons: the VEV of the Higgs field plays
a crucial role in determining the phases of the system. The
Klein–Gordon equation for test scalar fields coupled to the
non-Abelian fields of the gravitating solitons can be written
as the sum of a two-dimensional D’Alembert operator plus
a Hamiltonian which has been proposed in the literature to
describe the four-dimensional Quantum Hall Effect (QHE):
the difference between type I and type II solutions manifests
itself in a difference between the degeneracies of the corre-
sponding energy levels.

1 Introduction

Non-Abelian solitons and instantons are fundamental pillars
in our understanding of gauge theories beyond perturbation
theories (see [1–5] and references therein). In many situa-
tions (such as in the cases of topological defects in the early
universe), the effects of gravity cannot be neglected (see [6]
and references therein). From a genuine General Relativistic
viewpoint, non-Abelian gravitating solitons represent severe
tests for well-known conjectures such as the no-hair conjec-
ture. Consequently, it is a mandatory task to shed further light
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b e-mail: shoh.physics@gmail.com (corresponding author)

on these types of gravitating solitons. The gravitating soli-
tons which have been analyzed in more details in the eight-
ies and nineties are asymptotically flat and (almost always)
numerical. However, it is worth noting that the requirement
of asymptotic flatness is somewhat “foreign” to the require-
ment of regularity in the sense that while gravitating soli-
tons must be regular by definition, genuine non-Abelian and
globally regular gravitating solitons need not to be asymp-
totically flat.1 The first example was discovered by Bartnik
and McKinnon (BK) [7]. Soon after the BK gravitating soli-
tons, genuine non-Abelian black holes were also constructed
numerically in [8–12]. These results closely related to the
no-hair conjecture and to the black holes uniqueness theorem
attracted a lot of attention since then (see, for instance, [13–
21] and references therein). In the present paper, we will be
mainly interested in the construction of analytic non-Abelian
gravitating solitons. To the best of our knowledge, the only
known analytic example in (3 + 1) dimensions of a glob-
ally regular gravitating soliton with “bona fide” non-Abelian
gauge field has been found in [22] (many nice numerical
examples are described in [13–21] and references therein).
Such remarkable analytic solution has been found in the
Einstein–Yang–Mills-dilaton system: so far it has not been
possible to extend this solution to Einstein–Yang–Mills the-
ory without dilatonic coupling. The main goal of the present
manuscript is to construct two types of globally regular ana-
lytic non-Abelian gravitating solitons in the Einstein–Yang–
Mills–Higgs system in (3 + 1)-dimensions without any dila-
tonic coupling and to analyze the transitions between these
families as well as their remarkable physical properties.

An obvious question is: why should one insist so much on
finding analytic solutions if these equations can be solved
numerically? Since the pioneering works of Bartnik and

1 Thus, as it is now usual in the literature, in the present manuscript
the notion of “gravitating soliton” means “globally regular” but not
necessarily asymptotically flat.
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McKinnon mentioned above, very powerful numerical tech-
niques have been proposed in the literature to construct non-
Abelian gravitating solitons (see, for instance, [13,23–26]
and references therein). There are really good reasons to
strive for analytic solutions nevertheless.

Besides the obvious fact that a systematic tool to con-
struct analytic gravitating solitons can greatly enlarge our
understanding of these configurations, the main reason is that
the availability of analytic gravitating non-Abelian solitons
allows to disclose phenomena that would be very difficult to
see otherwise. In particular, the present formalism discloses
the possibility to have transitions between these solitons and
a very surprising analogy with the four-dimensional Quan-
tum Hall Effect (QHE) which will be discussed in a moment.

As we are seeking for genuine non-Abelian effects, meron
types configurations (introduced in [27]) are really good
candidates as such configurations can only appear in non-
Abelian gauge theories (see [2] and references therein). A
gauge potential of meron type can be defined as proportional
to a pure gauge: Aμ = X0U−1∂μU (with X0 �= 0, 1): such
a gauge potential is non-trivial due to the presence of the
commutator in the non-Abelian field-strength. On the other
hand, in Abelian gauge theories, a gauge potential which
is proportional to a pure gauge is itself a pure gauge2 and
therefore is trivial. Consequently, merons are bona fide non-
Abelian configurations. Since the pioneering works [28–31],
the important role of these types of configurations in under-
standing the non-perturbative phase of QCD has been widely
recognized (see [32] and references therein).

All the known examples of merons so far have X0 = 1/2;
thus, a first question that we will answer (affirmatively) is:
is it possible to have non-trivial merons configurations with
X0 �= 1/2?

The second and most difficult issue related to merons is
the following. Merons on flat spaces are necessarily singu-
lar: they play an important role (see [28–32] and references
therein) as “elementary components” of instantons (since an
instanton can be thought as a bound state of two merons).
However, on flat spaces, merons cannot be observed directly
(as they have infinite Euclidean action/energy). When Yang–
Mills theory is coupled with General Relativity (GR), it has
been possible to construct analytic examples of merons-black
holes [33–36]. Thus, in a sense, meron-black holes can be
observed directly (some peculiar effects have been discussed
in [36]), but the meron singularity is still there (although
hidden behind the horizon). Consequently, the examples in
[33–36] are not gravitating solitons but rather non-Abelian
black holes. The very important question is: can we construct
analytic examples of gravitating merons in which the typical
singularity of the merons disappears completely? In the fol-

2 In the Abelian case, when X0 is constant, Aμ = X0∂μ� ⇒ Aμ =
∂μ (X0�).

lowing, we will show that it is indeed possible to construct
globally regular gravitating merons solutions free of any sin-
gularity. Moreover, there are two different families of regular
gravitating merons that compete against each other leading
to quite interesting phenomena.

A further by-product of the present analysis appears when
one analyzes the dynamics of a test field charged under the
gauge group moving on these gravitating non-Abelian soli-
tons. The effective Hamiltonian determining the dynamics
of charged test fields includes the Hamiltonian describing
the four-dimensional Quantum Hall Effect (4DQHE) intro-
duced in [37,38] and further analyzed in [39–51] and ref-
erences therein. Such deep generalization of the usual the-
ory of the two-dimensional QHE has also been confirmed in
condensed matter experiments (see [52,53] and references
therein). However, until now, there have been very few con-
crete realizations of the 4DQHE in high energy physics using
fields arising in the standard model of particles physics min-
imally coupled to GR. In this work, we fill the gap by provid-
ing a setting (in the Einstein–Yang–Mills–Higgs theory3) in
which an explicit realization of the physical features of the
4DQHE is possible. A very intriguing effect is that the two
families of non-Abelian gravitating solitons can be distin-
guished by looking at the degeneracies of the corresponding
energy levels.

The paper is organized as follows: in Sect. 2, we present
the model and give our ansatz and the corresponding field
equations. In Sects. 3 and 4, we construct the two families
of the analytic regular solutions of the Einstein–Yang–Mills–
Higgs theory in (3 + 1)-dimensions. In Sect. 5, we introduce a
standard coordinate system of the Nariai class of spacetime
to work out the surface gravity and the temperature of the
system. In Sect. 6, we present the entropy functions of the
two types of the solutions and provide some useful plots of
the entropy functions to see which configuration is favored
for given sets of the physical parameters. In Sect. 7, we ana-
lyze the Klein–Gordon equation to disclose the difference
between two types of solutions by making use of the four-
dimensional quantum hall effects. In the last section, our
conclusions are drawn.

2 Action and ansatz

The starting point is the action of the (3 + 1)-dimensional
Einstein–Yang–Mills–Higgs field:

I =
∫

d4x
√−g

( R − 2�

κ
+ 1

4e2 Tr
[
FμνF

μν
]

+ 1

2e2 Tr
[
Dμ�∗Dμ�

] − 2V (�∗�)
)

,

3 To the best of the authors knowledge, the first glimpse of the relevance
of the usual QHE in astrophysical Black Holes has been provided in [54].
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where R, �, and V (�∗�) are the Ricci scalar of the space-
time, the cosmological constant, and the self-interacting
Higgs potential, respectively. The dimensionless constant e
is the gauge coupling and κ = 8πG for the gravitational
constant G. The field strength of the Yang–Mills field Aμ is
Fμν = ∂μAν − ∂ν Aμ + [Aμ, Aν] and the gauge-covariant
derivative is Dμ = ∇μ + [Aμ, · ]. In this notation, the Ein-
stein’s equations are written as

Rμν − 1

2
gμνR + �gμν = κTμν ,

where the energy–momentum tensor is given by

Tμν = T (YM)
μν + T (H)

μν ,

where

T (YM)
μν = − 1

2e2 Tr
(
gαβFμαFνβ − 1

4
gμνF

αβFαβ

)
, (1)

T (H)
μν = − 1

2e2 Tr
(
Dμ�Dν� − 1

2
gμνD

α�Dα�
)

− gμνV (�∗�) . (2)

The equations for the Higgs and Yang–Mills fields are

gμνDμDν� = −e2 dV

d(�∗�)
� , (3)

DμFμν = [�, Dν�] . (4)

The Higgs potential is given by

V (�∗�) = λ(�∗� − v2
0)2 ,

where λ is the self-interacting coupling constant of the Higgs
fields. We consider this Einstein–Yang–Mills–Higgs (briefly,
EYMH) system in the space-time with the metric given by

ds2 = F0
[ − 2y(u, v)dudv + L2(dθ2 + sin2 θ dφ2)] ,

where L and F0 are constant (without loss of generality F0

can be assumed to be positive). As has been already empha-
sized, the Yang–Mills field is assumed to have the meron
form

Aμ = X0 U
−1∂μU , (5)

where X0 is a constant such that X0 �= 0, 1. The SU (2)-
valued scalar field U is parametrized as

U±1(xμ) = ±Y A(xμ)tA ;
Y 1 = sin θ cos φ , Y 2 = sin θ sin φ , Y 3 = cos θ ,

where tA = iσA for the Pauli matrix σA The Higgs field is
given in an adjoint representation by

� = W0 U ,

where the constantW0 has to be determined solving the Higgs
field equations which (with the ansatz defined above) reduce
to the single algebraic equation

2λe2F0L
2(W 2

0 − v2
0) + (2X0 − 1)2 = 0 . (6)

The Yang–Mills equations (4) also reduce to the following
single algebraic equation;

(2X0 − 1)
[
L2F0W

2
0 − X0(1 − X0)

] = 0 . (7)

From Eqs. (6) and (7) it is clear that there are two families of
solutions.

The first family (which will be called type I) corresponds
to the usual meron solution together with the condition that
the Higgs field profile W0 is in the “VEV”:

X0 = 1

2
, W 2

0 = v2
0 . (8)

The second family (which will be called type II) corre-
sponds to the conditions

X0 �= 1

2
, W 2

0 �= v2
0 . (9)

The explicit form of the type II solution will be discussed in
the next sections.

The nonvanishing components of the Einstein’s equation
are found to be

e2[κλ(W 2
0 − v2

0)2 + �
]
(F0L

2)2

+ [
κW 2

0 (2X0 − 1)2 − e2](F0L
2) + 2κX2

0(1 − X0)
2 = 0 ,

(10)

1

y
∂u∂v y − 1

y2 ∂u y · ∂v y

+
(2κX2

0(1 − X0)
2

e2(F0L2)2 − κλ(W 2
0 − v2

0)2 − �
)
F0y = 0 .

(11)

3 Type I family: standard meronic configuration

It follows from Eq. (6) that the value of W0 is precisely the
vacuum expectation value v0 if and only if the configuration
of the gauge field is a meron:

W0 = v0 ⇐⇒ X0 = 1

2
.
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In this case, the Eqs. (6) and (7) are automatically satisfied
and the Eq. (10) fixes the value of F0L2, which is the size of
the S2, in terms of the cosmological constant � and of the
other parameters:

�(F0L
2)2 − F0L

2 + κ

8e2 = 0 .

This equation admits one or two positive roots for F0L2 and
the number of roots depends on the range of physical param-
eters as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

F0L2 = 1±
√

1−κ�/2e2

2�
> 0 when 0 < � < 2e2/κ ,

F0L2 = 1−
√

1−κ�/2e2

2�
> 0 when � < 0 ,

F0L2 = 1
2�

when � = 2e2/κ ,

F0L2 = κ
8e2 when � = 0 .

(12)

4 Analytic solutions of type II

The Higgs equation (6) has the solution

X0 = 1

2

(
1 ±

√
2λe2F0L2(v2

0 − W 2
0 )

)
, (13)

only when the constant W0 lies in the range of

W 2
0 ≤ v2

0 . (14)

When W0 = v0 the configuration of the Yang–Mills field
becomes that of a standard meron X0 = 1/2 (and the Higgs
field becomes trivial as it completely disappears from the
energy–momentum tensor) so the solutions become of type
I. In this section, we will discuss W0 such that W 2

0 < v2
0 (the

type I solutions will be discussed in the next section). The
Yang–Mills equation (7) gives

F0L
2 = 1

2
(
λe2(v2

0 − W 2
0 ) + 2W 2

0

) . (15)

Using (13) and (15) in Eq. (10), we obtain a quadratic equa-
tion for W 2

0

κ(2 − λe2)(W 2
0 )2 − 2e2(2 − λe2)W 2

0

+e2[λv2
0(κv2

0 − 2e2) + �
] = 0 . (16)

This equation admits one or two positive roots for W 2
0 within(

0, v2
0

)
. Let us examine the corresponding configurations of

the physical system in order.

4.1 Type II configurations

There are three cases that must be considered separately.
Option 1) Eq. (16) can have two positive roots for W 2

0
(in this case type II configurations can be divided into two
sub-families, one for each positive root of Eq. (16)).

Option 2) Eq. (16) can have one positive roots for W 2
0 (in

this case, there is just one family of type II configurations).
Option 3) Eq. (16) has no positive roots for W 2

0 (in this
case, there is no family of type II configurations).

Whether (for instance) option 1 is realized instead of
options 2 or 3 depends on the values of the parameters of
the models. Especially relevant are the Higgs coupling con-
stant λ and the VEV v2

0. Option 1 is the most interesting
one from the thermodynamical viewpoint since, in this case,
there is a competition between three types of solutions: the
standard meron X0 = 1/2 and W 2

0 = v2
0 (type I), the type

II solution corresponding to the larger positive root of Eq.
(16) and the type II solution corresponding to the smaller
positive root of Eq. ( 16). As it will be discussed in the next
sections, this opens the very intriguing possibility of multiple
transitions between these three types of solutions. Option 2
is the second most interesting case since there is a compe-
tition between two types of solutions: the standard meron
X0 = 1/2 and W 2

0 = v2
0 (type I), and the only viable type

II solution corresponding to the unique positive root of Eq.
(16). On the other hand, when option 3 is realized, no transi-
tion is possible since the only viable non-Abelian gravitating
solitons belong to type I. In the discussion below, it will be
convenient to introduce the following boundary values of �:

�1 = λv2
0(2e2 − κv2

0) , �2 = 2v2
0(2e2 − κv2

0)

e2 ,

�3 = �1 + e2(2 − λe2)

κ
,

4.1.1 Option 1: W 2
0 has two positive roots within

(
0, v2

0

)

The Eq. (16) has two different positive roots

(
W (±)

0

)2 = e2

κ

(
1 ± √

D1
)
, (17)

where

D1 = 1 + κ
[
λv2

0(κv2
0 − 2e2) + �

]
e2(λe2 − 2)

. (18)

when one of the following sets of conditions is satisfied:

1. When 0 < λ < 2/e2:

e2/v2
0 < κ < 2e2/v2

0 and �2 < � < �3 , (19)

κ ≥ 2e2/v2
0 and �1 < � < �3 . (20)

123



Eur. Phys. J. C (2021) 81 :432 Page 5 of 12 432

2. When 2/e2 < λ:

e2/v2
0 < κ < 2e2/v2

0 and �3 < � < �2 , (21)

κ ≥ 2e2/v2
0 and �3 < � < �1 . (22)

4.1.2 Option 2: W 2
0 has one positive root in

(
0, v2

0

)

The Eq. (16) has one positive root W 2
0 ∈ (

0, v2
0

)
and one

negative root W 2
0 ∈ ( − ∞, 0

)
when the conditions given

below are satisfied:

1. When 0 < λ < �/v2
0(2e2 − κv2

0):

0 < κ < 2e2/v2
0 and 0 < � < �2 , (23)

κ > 2e2/v2
0 and �2 < � < 0 . (24)

2. When λ > �/v2
0(2e2 − κv2

0):

0 < κ < 2e2/v2
0 and �2 < � , (25)

κ > 2e2/v2
0 and � < �2 . (26)

In this case, the physical solution is W0 = W (+)
0 given in

Eq. (17).
When W 2

0 has a positive double root in
(
0, v2

0

)
The Eq. (16) has a positive double root

(
W (D)

0

)2 = κλv2
0(1 + 2e2) − (4 − λ)e2

2κ
[
λ(1 + e2) − 2

] ,

when the following condition is satisfied:

λ �= 2

e2 and κ >
e2

v2
0

(27)

In this case, the cosmological constant � and the other cou-
pling constants are related by

λ(κv2
0)2 − 2λe2(κv2

0) + e2(2 − λe2) + κ� = 0 .

4.1.3 Option 3: W 2
0 has no positive roots within

(
0, v2

0

)

The Eq. (16) has no positive root within
(
0, v2

0

)
when one of

the following sets of the conditions is satisfied:

1. When 0 < λ < 2/e2:

0 < κ ≤ 2e2/v2
0 and � ≤ �1 , (28)

κ > 2e2/v2
0 and � ≤ �2 . (29)

2. When λ > 2/e2:

0 < κ ≤ 2e2/v2
0 and � ≥ �1 , (30)

κ > 2e2/v2
0 and � ≥ �2 . (31)

4.2 Equation for y(u, v) and Ricci Scalar (both type I and
II)

In all of the above cases, the only non-trivial differential
equation is the θθ -component of the Einstein’s equations,
which can be written as

1

y2 ∂u∂v y − 1

y3 ∂u y · ∂v y + 1

y0
= 0 , (32)

where

y0 =
[ 2κ

L4e2F0
X2

0(1− X0)
2 −κλF0(W

2
0 −v2

0)2 −�F0

]−1
.

(33)

The solution to this equation is found to be

y(u, v) = −2C2C3y0 sech2(C1 + C2u + C3v) . (34)

Correspondingly, the Ricci scalar Rs is given by

Rs = 2

F0

( 2

y0
+ 1

L2

)
. (35)

The gauge field for both type I and type II are regular and
free of singularity, since the following scalars invariant under
coordinate transformation are found to be

Tr
(
FμνF

μν
)=−16X2

0(1 − X0)
2

F2
0 L

4
, Tr

(
AμA

μ
)=− 4X2

0

F0L2 .

One can also find that the space-time of this solution belongs
to the Petrov type D (Fig. 1).

5 Thermodynamics in Nariai coordinates

Without loss of generality, one can rescale the coordinates u
and v to choose the constantsC1 = 0,C2 = 1, andC3 = −1.
Then, the metric becomes

ds2 = −2F0y0 sech2(u − v)dudv + F0L
2d�2

2 . (36)

Introducing new coordinates t̃ and R given by

u = t̃ + R

2
, v = t̃ − R

2
,
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Fig. 1 The burgundy, green, and white regions show the range of couplings on which Eq. (16) has one, two, and no positive root of W 2
0 in (0, v2

0),
respectively. The solid lines represent the configurations with double roots

we can express the metric (36) becomes

ds2 = F0y0

2
sech2(R)

( − dt̃2 + dR2) + F0L
2d�2

2 . (37)

Again, introducing new coordinates t and r given by

t = r0 t̃ , sech2(R) ≡ 1 − r2

r2
0

the metric (37) can be transformed to the following metric
representing a product space dS2 × S2:

ds2 = F0y0

2r2
0

[
−

(
1 − r2

r2
0

)
dt2 + 1

1 − r2

r2
0

dr2
]

+ F0L
2d�2

2 .

(38)

This metric clearly shows that our space-time belongs to the
Nariai family of space-times. With this coordinate system, it
is straightforward to compute the surface gravity κ

κ = 1

r0
,

so that the temperature T is found to be

T = 1

2πr0
.

It should be noticed that (as it will be shown in the next sec-
tion) the entropies of the two different families are inversely
proportional to r2

0 , so that the ratio of the entropies (which
determines which family prevails) is independent of r2

0 . In the
next section, we will compute the entropy functions of type
I and type II and find the range of the physical parameters
where one of these type dominates the other.

6 Thermodynamics and transitions between families

One of the most interesting outcomes of the present anal-
ysis is that there are different types of gravitating non-
Abelian solitons in the Einstein–Yang–Mills–Higgs in the
sector described above. The space-time geometry is of Nar-
iai type, while the Yang–Mills field can be either a standard
(X0 = 1/2) meron with a trivial Higgs field or a non-standard
meron with a non-trivial Higgs field. Hence, the natural ques-
tion is: which one of the gravitating solitons described above
will prevail? The analysis shows that the answer to this ques-
tion depends in a crucial way both on the Higgs coupling
and on the “VEV” of the Higgs field itself. There are two
related tools to answer this question: the first is the com-
putation of the “entropy” of the solutions, the second is the
computation of the Euclidean action of the different con-
figurations (as it will be shown, these tools give consistent
answers).

6.1 Entropy function

The entropy function(al) of space-times of the form AdS2 ×
SD−2 (associated to the near-horizon geometries of extremal
black holes) for an arbitrary dimension D was studied by
Sen [55]. The entropy function of this class of space-times
is the product of 2π with the Legendre transform of the
Lagrangian density integrated over SD−2. Since the electric
fields associated with the gauge fields play the role of con-
figuration variables, this entropy is a Routhian density over
AdS2 rather than a Hamiltonian density. A direct application
of the Sen’s method to Nariai class shows that the entropy
of a Nariai space-time is “minus” Routhian density over dS2

[56]. The first step corresponds to the on-shell evaluation of
the Lagrangian of the matter field (while the second step cor-
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responds to integrate the on-shell Lagrangian for the matter
field over S2). The on-shell Lagrangian reads

1

4e2 Tr
[
FμνF

μν
] = − 1

4e2

(4X0(1 − X0)

F0L2

)2
, (39)

1

2e2 Tr
[
Dμ�∗Dμ�

] = − 1

2e2

(2W0(2X0 − 1)

F0L2

)2
, (40)

and the Ricci scalar was given by (35). In the Nariai coordi-
nates, we have

√−g = F2
0 y0L2

2r2
0

sin θ .

Since the system has no electric field, the Routhian density
H becomes

H = −
∮
S2
dθdφ

√−gL

= −2πF2
0 y0L2

r2
0

[ 2

F0

( 2

y0

+ 1

L2

)
− 1

4e2

(4X0(1 − X0)

F0L2

)2

− 1

2e2

(2W0(2X0 − 1)

F0L2

)2

−λ(W 2
0 − v2

0)2
]

, (41)

where L is the Lagrangian of the system. The computations
given in [55,56] tells us that the entropy function S will be
given by

S = −2πHmax . (42)

where Hmax is the maximum value with respect to F0y0 and
F0L2 (note that Hmax is negative so that the entropy is positive
definite as it should). The entropy function of the system is
found to be

S =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4π2

κe2r2
0

(
κλ(W 2

0 − v2
0)2 + �

)(
e2 − κW 2

0 (2X0 − 1)2 + √
Q

)
for W 2

0 �= v2
0

4π2
(
1 + √

1 − κ�/2e2
)

κ�r2
0

for W 2
0 = v2

0 .

where

Q = (
e2 − κW 2

0 (2X0 − 1)2)2

−8κe2X2
0(1 − X0)

2(κλ(W 2
0 − v2

0)2 + �
)
.

6.2 Euclidean action

In order to compute the Euclidean action for both families,
it is convenient to define the “sizes” of the dS2 and S2 as

v1 = F0y0, v2 = F0L
2 ,

respectively. Then, the Euclidean action can be written as

IE = 4π2v1v2

r2
0

[
2
( 1

v1
+ 1

v2

)
− 1

4e2

(4X0(1 − X0)

v2

)2

− 1

2e2

(2W0(2X0 − 1)

v2

)2 − λ(W 2
0 − v2

0)2
]

.

The on-shell conditions that extremize the Euclidean action
are found to be

2λe2(W 2
0 − v2

0)v2 + (2X0 − 1)2 = 0 , (43)

(2X0 − 1)
[
W 2

0 v2 − X0(1 − X0)
] = 0 , (44)

e2[κλ(v2
0 − W 2

0 )2 + �
]
v2

2

+ [
κ(2X0 − 1)2W 2

0 − e2]v2 + 2κX2
0(1 − X0)

2 = 0 ,

(45)[
e2(κλ(v2

0 −W 2
0 )2+�

)
v2

2 −2κX2
0(1 − X0)

2]v1 + e2v2 = 0
(46)

One can easily check that these equations are equivalent to the
equations of motion (6), (7), (10), and (33). Thus, it follows
from (42) that the on-shell Euclidean action is precisely equal
to the entropy of the system. The overall factor 2π should be
understood as the circumference of the imaginary time.

6.3 Useful plots

The previous analysis showed that a critical parameter to
determine which of the solutions is thermodynamically

favored is the VEV of the Higgs field v2
0. Here below, we

will include the plots which clarify the comparisons between
the two families of gravitating solitons in the three options
defined in the previous sections (depending on the number
of roots in the equation for W 2

0 ).
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6.3.1 Option 1 plots

In the “Option 1 case” defined in the previous sections, Eq.
(16) has two different positive real roots (let us call them(
W 2

0

)±
where the + stands for the larger root and the − for

the smaller one). In this case, multiple transitions may appear
as the thermodynamics is determined by the comparison of
three solutions: the type I, the type II with root

(
W 2

0

)+
and

the type II with root
(
W 2

0

)−
. These three solutions will be

characterized by their own entropy (Euclidean actions): let us
call SI , S

+
I I and S−

I I the entropy of the type I solution, of the

type II solution with root
(
W 2

0

)+
and the type II solution with

root
(
W 2

0

)−
respectively. Obviously, SI , S

+
I I and S−

I I (which
have been constructed explicitly in the previous subsection)
depends on all the parameters of the model λ, e, �, and so
on. Here we will emphasize especially the dependence on the
VEV of the Higgs field v2

0 as v2
0 appears to be quite crucial

to determine the phases of the system.
Hence, using the results from the previous subsection, we

get

SI = SI (x) = 4π2
(
1 + √

1 − κ�/2e2
)

κ�r2
0

, (47)

S+
I I = S+

I I (x) = 4π2
[
e
(
2 + λe2D1 − (λκx − λe2 − 2)

√
D1

) + √
f+(x)

]
er2

0

[
λκx + (2 − λe2)(1 + √

D1)
][

λ(e2(1 + √
D1) − κx)2 + κ�

] , (48)

S−
I I = S−

I I (x) = 4π2
[
e
(
2 + λe2D1 + (λκx − λe2 − 2)

√
D1

) + √
f−(x)

]
er2

0

[
λκx + (2 − λe2)(1 − √

D1)
][

λ(e2(1 − √
D1) − κx)2 + κ�

] , (49)

where

f±(x) = e2(λe2 − 2)(λe2D1 − 2)(1 ± √
D1)

2

+ κλx
[
κ(λe2D1 − 2

(
1 ± √

D1)
2)x

− 2e2(1 ± √
D1)

(
(λe2 − 2)D1 − 2(1 ± √

D1)
)]

− 2κ�
(
1 ± √

D1)
2. (50)

x = v2
0 .

Here we plot together SI , S
+
I I and S−

I I as function of x in three
different cases (case 1: e = 100, λ = 1; case 2: e = 1, λ = 1;
case 3: e = 1, λ = 100) in order to show the differences
between the situations in which the Higgs and Yang–Mills
coupling are equal, and one small and one large. In these three
plots, both � and κ will be fixed to 1. As one can see from
these figures, the most preferred configuration is determined
in a sensitive way depending on the physical parameters. For
the parameters used in these three figures, the most favorable
configuration is the standard meron. The last figure shows
that S−

I I wins S+
I I for some certain values of the parameters

(Fig. 2).

6.3.2 Option 2 plots

In the “Option 2 case” defined in the previous sections, Eq.
(16) has one positive real roots (let us call it just W 2

0 ). In
this case, transitions may appear as the thermodynamics is
determined by the comparison of two solutions: the type I
and the type II with root W 2

0 . These two solutions will be
characterized by their own entropy (Euclidean actions): let
us call SI and SI I the entropy of the type I solution and of
the type II solution respectively. As in the option 1 case, SI
and SI I depends on all the parameters of the model, but we
will emphasize the dependence on v2

0.
Using the results from the previous subsection, we get the

entropy function of the type II with a double root

S(D)
I I = S(D)

I I (x) = 4π2

er2
0

[
λκx + 2 − λe2)

] . (51)

The entropy function for the case with one positive and
one negative roots equals to S+

I I . Also in this case, we plot

together SI and SI I as function of x in two different cases
(case 1: e = 1, λ = 1; case 2: e = 1, λ = 100) in order
to show the differences between the situations in which the
Higgs and Yang–Mills coupling are equal, and λ is larger
than e. In these three plots, r0, �, and κ will be fixed to 1. It
should be emphasized that for a given set of the parameters
{e, λ, κ,�, r0}, the most preferred configuration can change
as the square of the VEV varies. Interestingly, such a config-
uration changes continuously in Fig. 3a whereas it changes
in a discontinuous way, as can be seen in Fig. 3b and c.

7 Spin from isospin and 4DQHE

The analysis of the Klein–Gordon equation reveals some cru-
cial differences between the present non-Abelian versions of
Nariai space-times and the well known Nariai space-times,
which are solutions of the Einstein–Maxwell field equations
[57,58].

Let us begin this section with a very short review of the
spin-from-isospin effect [59–61]. Roughly speaking, in the
case of topologically non-trivial configurations that are not
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Fig. 2 The entropy functions with κ = � = r0 = 1. The green, red, and blue curves are the graphs of SI , S+
I I , and S−

I I , respectively

Fig. 3 The entropy functions with κ = � = r0 = 1. The green and
red curves are the graphs of SI and SI I , respectively. The last two fig-
ures show two different regions for the same physical parameters. For
the case with e = 1 and λ = 100, the interval 0.29 < x < 1.71 is

forbidden. In a, the type I is favored for x < 1.359 and the type II is
favored for x > 1.359. In b, the type II always prevails, and in c, the
type I is always preferred

spherically symmetric but whose energy–momentum ten-
sor is spherically symmetric the lack of spherical symmetry
under spatial rotation is compensated by an internal trans-
formation. This leads to a modification of the definition of
the angular momentum, which in the usual example of non-
Abelian SU (2) monopoles reads:

−→
L → −→

J = −→
L − 1

2
−→τ , (52)

where
−→
L is the orbital angular momentum and −→τ are the

SU (2) generators entering in the ansatz of the gauge field.
The new term in the definition of

−→
J is exactly related to

the infinitesimal internal rotation needed to compensate the
lack of spherical symmetry under spatial rotation. As it has
been discussed in the original references [59–61] this leads

scalar test fields moving in the background of this type of
gauge fields to behave as Fermions. From the viewpoint of the
Klein–Gordon equation this can be directly seen as follows.
The non-Abelian flat Klein–Gordon operator reads (see [34,
36]).

ds2 = −dt2 + dr2 + r2
(
dθ2 + sin2 θdφ2

)
, (53)

DμD
μ = (∇μ − [

Aμ, ·]) (∇μ − [
Aμ, ·]) ⇒

DμD
μ = �2D −

(−→
J · −→

J − c0

)

r2 , (54)

where �2D is the two-dimensional D’Alembertian in the t
and r coordinates and c0 is a constant which depends on
the representation of the test scalar field. Hence, Eq. (54)
explains in a very simple way the effect of the “need to com-
pensate” the lack of spherical symmetry with an internal rota-
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tion: the centrifugal barrier (which is the term that goes as
1/r2 for large r ) is modified. Obviously, it is precisely from
the centrifugal-barrier like term that one usually reads the
spin of the “test fields”. A quite trivial (but useful as we
will now show) observation is the following: the 1/r2 factor
which multiplies

−→
J ·−→J arises because of the r2 term in front

of the two-sphere in the metric in Eq. (53). Now, we are ready
for an important question:

What happens if in the spherically symmetric space-time
of our interest (sourced by a non-Abelian soliton) in front
of the two-sphere we have just a constant instead of the
coordinate-dependent factor r2? What happens to the spin-
from-isospin effect?

Equation (54) suggests an intriguing answer: the (modi-
fied) centrifugal barrier becomes a term that does not depend
on r at all: such a term possesses discrete degenerate energy
levels (as it is proportional to

−→
J · −→

J ) with an energy gap
proportional to the (homogeneous) magnetic flux. In other
words, when in front of the two-sphere we have a constant
instead of r2 the “spin-from-isospin” term is replaced by the
typical Hamiltonian which is used to describe the QHE in
higher dimensions4 (see in particular, [37–42]). We will now
show that this is indeed the case, and that the degeneracy of
the energy levels of the non-Abelian Klein–Gordon equation
changes dramatically when passing from the type I to the
type II solutions: such an effect is a genuine non-Abelian
fingerprint of the present families of gravitating solitons.

Let us consider scalar test fields �a (a = 1, 2), which
transforms like a two-component vector, in our background
space-time. The field equation is given by

D2� − m2 = 0 ,

where m is the mass of the scalar fields. Note that the Yang–
Mills field associated with our solution satisfies

∇μAμ = 0 , AμAμ = − 2X2
0

L2F0
12×2 .

The Klein–Gordon equation can be written as

∇2� − m2� + 2Aμ∇μ� + AμAμ� = 0 .

Explicitly, it can be written as

�(u,v)� +
[ 1

F0L2

(
L − X0τ

)2 + X2
0

F0L2 − m2
]
� = 0 ,

4 Although this is (to a certain extent) not too surprising taking into
account that the present gravitating solitons possess a non-trivial (non-
Abelian) magnetic flux, the fact that there are two families of solitons
competing against each other lead to very interesting consequences.

where L̂ = L̂iτi for the standard angular momentum opera-
tors L̂i , and �(u,v) is the 2 dimensional D’Alembertian oper-
ator given by

�(u,v) = − 2

F0y0
∂u∂v .

The eingenfunction of this operator has the form of

� = eau+bv�0 , (55)

with the eigenvalue −2ab/F0y0, for arbitrary constants a
and b, and a constant doublet �0.

7.1 Differences between type I and type II non-Abelian
solitons

In the case of the type I non-Abelian gravitating solitons
one can compute the sum of the orbital and isospin angu-
lar momenta through a standard procedure. In particular, the
eigenvalues of the spin-orbit coupling can be obtained by

J2 =
(

L + 1

2
τ
)2 = L2 + 1

4
τ 2 + L · τ

�⇒ L · τ = J2 − L2 − 1

4
τ 2 (56)

which gives the eigenvalues of the coupling operator L · τ

j ( j + 1) − l(l + 1) − 1

2
·
(1

2
+ 1

)
.

Thus, the part of the Hamiltonian which results in a spin–
isospin effect

Hspin–isospin = 1

F0L2

(
L − X0τ

)2 (57)

has the same degeneracy of the physical system as the usual
spin-orbit couplings when X0 = 1/2. It gives a very sim-
ilar behavior5 of the Hamiltonian of the four dimensional
quantum hall effect proposed in [37,38],

HQHE = 1

2MR2

∑
a<b

�2
ab ,

where �ab = −i
(
xaDb − xbDa

)
. Here, F0L2, the denomi-

nator of (57), plays the same role as the radius of the orbit in
the system with QHE.

5 Indeed, as it happens in [37,38], also in the present case in order to
increase the degeneracy of the discrete energy levels of the Hamiltonian
we must increase the dimension of the representation of the test field.
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On the other hand, in the gravitating solitons of type II
(In the case with X0 �= 1/2 and a non-trivial Higgs field) the
(would be) total angular momentum

−→
J becomes

−→
J = L − X0τ

with a real coefficient X0 different from 1/2 (as, generically,
X0 is not even a rational number: see Eqs. (13) and (16)).
The most dramatic effect manifests itself in the degeneracy
of the energy level associated to the operator (57). This can
be understood easily looking at the standard manipulations
in Eq. ( 56) in the case in which X0 is a generic real number:

−→
J = L − X0τ , and X0 �= 1/2, 0

�⇒ [Ji , Jk] �= εikl Jl . (58)

Although one may still hope to find a rigorous definition
of the “total angular momentum

−→
J ” with X0 a real number,

it is clear that one should not expect that the spectrum of the
above “spin-from-isospin operator” Hspin–isospin in Eq. (57)
is still related to the combination

j ( j + 1) , j = l + X0 .

The reason is that Eq. (58) suggests that the eigenvalues of
Hspin–isospin depend on l (related to the eigenvalues of L ) and
s (related to the eigenvalues of τ ) separately (and therefore
the degeneracy is expected to be lower than in the case with
X0 = 1/2 when the eigenvalues only depend on j). Conse-
quently, the non-Abelian Klein–Gordon equation associated
to the type II gravitating merons should have energy levels
with a different degeneracy than in the case of the type I
gravitating solitons.

This has the following potential consequence. A multi-
Fermionic system (charged under the gauge group) living in
the type I gravitating solitons (in the approximation in which
these Fermions can be considered as test fields) would be
subject to a Hamiltonian with many of the features of the
4D QHE (as it has been explained here above). The same
multi-Fermionic system would perceive a Hamiltonian with
very different degeneracies in the type II gravitating solitons.
Therefore, if there is a semiclassical transition from one fam-
ily to the other6 the multi-Fermionic system would suddenly
be subject to a different QHE-like Hamiltonian with com-
pletely different degeneracies. We hope to come back on the
fascinating physical properties of these scenarios in a future
publication.

6 This could happen, for instance, if there is a slight change in the
VEV of the Higgs field around a value at which the family II starts to
overcome the family I.

8 Conclusions

In this article, we constructed the first two analytic fami-
lies of globally regular non-Abelian gravitating solitons in
the Einstein–Yang–Mills–Higgs theory in (3 + 1)-dimensions
with the Higgs field in the adjoint representation (however,
the case in which the Higgs field is in the fundamental is
very similar). The space-time metric is of Nariai type in
both cases. The Yang–Mills fields are of meron type (namely,
proportional to a pure gauge: Aμ = X0U−1∂μU for some
parameter X0) for both families. On the other hand, while in
the first family (called type I in the main text) of non-Abelian
gravitating soliton X0 = 1/2 (as in all the known examples
of merons available so far) and the Higgs field is trivial, in
the second family (type II) X0 �= 1/2 and the Higgs field
is non-trivial (to the best of the authors knowledge, this is
the first example of meron solutions with X0 �= 1/2). We
have compared these two families of globally regular grav-
itating solitons by computing the Euclidean action of both
types. This allows to determine when type II solitons (with
a non-trivial Higgs and X0 �= 1/2) are favored over type I
solitons and viceversa. It turns out that the most favored con-
figuration is determined in a sensitive way depending on the
parameters of the model. Even for a given set of the param-
eters other than x = v2

0, the most preferred configuration
changes continuously or discontinuously as x varies. In order
to disclose the differences between type I and type II grav-
itating solitons we analyzed the non-Abelian Klein–Gordon
equation for a test scalar field minimally coupled to the non-
Abelian fields sourcing the gravitating solitons themselves.
The Klein–Gordon equation is able to detect very neatly the
difference between type I and type II solitons (despite the
fact that the space-time metric is similar in both cases). The
Klein–Gordon equation can be written as the sum of a two-
dimensional D’Alambert operator plus one of the Hamilto-
nians which has been proposed in the literature to describe
the four-dimensional Quantum Hall Effect (QHE): the differ-
ence between type I and type II solutions manifests itself in
a difference between the degeneracies of the corresponding
energy levels. This opens the very intriguing perspective to
analyze the “many-body” wave functions of multi-Fermionic
systems minimally coupled to the regular meronic fields of
type I and type II solutions (in the test field limit in which
these Fermions do not modify substantially the space-time
metric). The idea would be to distinguish type I and type II
solutions by looking at the degeneracy of the corresponding
Landau Levels. We will return to this very interesting issue
in a future publication.
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