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Abstract We study the mixing of the Gluino-Glue operator
in A" = 1 Supersymmetric Yang-Mills theory (SYM), both
in dimensional regularization and on the lattice. We calculate
its renormalization, which is not merely multiplicative, due
to the fact that this operator can mix with non-gauge invariant
operators of equal or, on the lattice, lower dimension. These
operators carry the same quantum numbers under Lorentz
transformations and global gauge transformations, and they
have the same ghost number. We compute the one-loop quan-
tum correction for the relevant two-point and three-point
Green’s functions of the Gluino-Glue operator. This allows
us to determine renormalization factors of the operator in the
MS scheme, as well as the mixing coefficients for the other
operators. To this end our computations are performed using
dimensional and lattice regularizations. We employ a stan-
dard discretization where gluinos are defined on lattice sites
and gluons reside on the links of the lattice; the discretiza-
tion is based on Wilson’s formulation of non-supersymmetric
gauge theories with clover improvement. The number of col-
ors, N¢, the gauge parameter, 8, and the clover coefficient,
csw, are left as free parameters.

1 Introduction

Supersymmetry (SUSY) has a long history as a viable exten-
sion of the Standard Model [1-3]. It provides possible
answers to a number of open questions, such as the hierar-
chy problem, a candidate for dark matter, and a scenario for
grand unification; its presence is also compelling in the con-
text of String Theory. Experimental signatures of Supersym-
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metry have thus far been elusive, despite decades of search
in large-scale experiments, including recent findings at LHC.
Nevertheless, there is a major ongoing research effort in this
direction, see e.g. [4,5], given that no satisfactory solution
to the above open questions has come about to date. In order
for SUSY to be compatible with “low-energy” phenomenol-
ogy, it is expected that it must be spontaneously broken in
nature. A detailed study of spontaneous breaking must nec-
essarily rely on nonperturbative methods, thus calling for an
investigation within lattice field theory [6—16]. To date the
study of supersymmetric models on the lattice has been very
limited, due to their sheer complexity. The fact that SUSY is
broken explicitly on the lattice poses severe issues to its cor-
rect simulation and to the numerical study of spontaneous
SUSY breaking. A thorough renormalization procedure is
an essential prerequisite towards non-perturbative investiga-
tions. This procedure must determine all relevant renormal-
ization and mixing coefficients in the Lagrangian, so that
the correct continuum limit can be reached, with SUSY and
chiral symmetry restored in this limit [8, 14].

A most appropriate prototype theory, exhibiting all the
above features and including both gauge and matter fields, is
Supersymmetric Quantum Chromodynamics (SQCD). The
study of SQCD is already very complicated on the lattice
due to its many degrees of freedom and interaction terms
[17,18]. Consequently, the study of composite operators and
their mixing is presently out of reach, especially at the non-
perturbative level. A simpler theory, and an important fore-
runner to the more complex models, is the Supersymmetric
Yang—Mills theory (SYM). It contains only gauge fields and
it exhibits an interesting spectrum of bound states, in par-
ticular particles made of gluino (1) and gluon (u,,) fields.
Preliminary nonperturbative investigations in this direction
were performed in Refs. [16,19,20]. A fundamental ingre-
dient in these investigations is the “Gluino-Glue” composite
operator, Og,. In the present work we study thoroughly the
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renormalization and mixing of this operator, to one loop in
perturbation theory.

The Gluino-Glue operator is a composite operator made
up of a gluon and a gluino field; it is thus flavor-singlet, and it
has the lowest possible dimensionality (7/2) compatible with
gauge invariance. It is defined as':

OGg = oy tre(Uyvr) (D

where:

1 .
Ouv = E[Vua wl, Upy = auuu - avuu + lg[“p,, uyl. (2)

Acting on the vacuum, Og, is expected to excite a light
bound state of the theory, which is a potential supersymmetric
partner of the glueballs and the gluinoballs [21].

Within the SYM formulation, we compute the relevant
two-point and three-point Green’s functions of the Gluino-
Glue operator with external gluino, gluon and ghost fields,
using both Dimensional Regularization (D R) [22] and Lat-
tice Regularization (L). Quantum corrections cause mixing
of some non-gauge invariant operators which have the same
quantum numbers as Og,. As in non-supersymmetric theo-
ries, these operators are separated in three classes [23,24].
The Gluino-Glue operator belongs to a separate class by
itself since there are no other gauge-invariant operators of
equal and lower dimensionality which can mix with Og,.
The renormalization of Og, as well as the corresponding
mixing coefficients are calculated in the MS scheme.

This paper is organized as follows. Section 2 shows all
relevant definitions and all operators which could possibly
mix with Og,. Section 3 describes the calculation setup. In
Sect. 4, we present our results for the Green’s functions, the
renormalization factors as well as the mixing coefficients in
dimensional regularization. Section 5 introduces the lattice
action. We use clover fermions and Wilson gluons. We com-
pute all relevant Green’s functions of O¢, within lattice per-
turbation theory. We also present the renormalization factors
and mixing coefficients in the lattice regularization and the
MS scheme. Finally, we conclude in Sect. 6 with a discus-
sion of our results and possible future extensions of our work.
Appendix A briefly recalls standard transformation proper-
ties in the continuum, and lists all continuum vertices of the
action and of Og,. Appendix B contains the one-loop renor-
malization factors for the gluon (Z,,) and gluino (Z,) fields.
Results for the latter quantities, and for other renormaliza-
tion factors that we need here, have been already presented
in Ref. [17] for different discretizations.

! tr. means trace over color matrices.
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2 Definitions and candidate operators of dimension 7/2
and 5/2

In this section we briefly introduce the notation used in this
paper and we present all candidate operators that may mix
with Og,. The action of SYM in Minkowski space is (D is
an auxiliary field):

1 i- 1 A
Lsym = —Zuzvuzv + EA%VMD/L)‘%I + EDD(DO‘, Ay = <)—LZ)
3)

The subscript M recalls the Majorana nature of the gluino.
Henceforth we will omit this subscript for simplicity. The
field strength u,, and the covariant derivative of A are:

DA™ = 3,0% — gf*P ubpy

uyy, = duuly — dyuj, — gf“ﬂyuﬁu\)f. )

By eliminating the auxiliary field, we get:

1 i-
—Zu‘;vuzu + EAQV’LDMA“ 5)
where the Lagrangian, Lgy, is invariant up to a total deriva-

tive under the supersymmetry transformations with Grass-
mann parameter &:

Lsym =

Seuy, = —iEyHAY,

¢ A¢

1 o i v
T ©)

Given that the renormalized theory does not depend on
the choice of a gauge fixing term, and given that many reg-
ularizations, in particular the lattice regularization, violate
supersymmetry at intermediate steps, one may as well choose
the standard covariant gauge fixing term, proportional to
(8Mu“)2, rather than a supersymmetric variant [17,25]. The
full SYM action (Eq. (A4)) thus includes a gauge-fixing term
and a ghost term arising from the Faddeev—Popov procedure.
Under BRST transformations (see Eqgs. (AS)), the action is
indeed invariant. Given that the effect of a BRST transfor-
mation on physical fields is that of a gauge transformation,
all gauge invariant parts of the action will automatically also
be BRST invariant.

By general renormalization theorems, the operators that
will possibly mix with Og, are either gauge invariant (class
G) or belong to one of three classes. Class A operators are the
BRST variation of other operators. Class B operators vanish
by the equations of motion. Lastly, class C contains all other
operators with compatible quantum numbers.

In SYM, there are no further gauge invariant operators
with the same quantum numbers as Og,. Let us now deter-
mine the members of class A, B and C. By Eq. (AS5), the oper-
ators whose BRST variation will be the members of class A
must necessarily have the same index structure as Ogg, i.e.,
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one free spinor index and no free color or Lorentz indices;
in addition, their dimensionality must not exceed 5/2. This
requirement leaves only two candidates:

- 1 ~
SprsT (A*¢%) = mkaaﬂu/‘jn 1 g P P ey
= Oy = ;)\0‘8 u® +gfaﬂycﬂkyfa
1—p M
)
dgrst (Ac”) = P cPArn, ®)

We note that BRST variations of operators are automati-
cally BRST invariant.”> Operators containing unequal num-
bers of ghost and antighost fields cannot mix with Ogg,
since Ogg has ghost number zero. Thus, the only admis-
sible Class A operator is O 41, which is written in Eq. (7).
Class A operators have vanishing matrix elements in phys-
ical external states with transverse polarization. However,
they must be correctly taken into account for the renormal-
ization of Og,. Similar comments apply to class B and C.
The second term of 041, will appear also in class C (see
below): Ocs = gf*FY cPAY . In order to find the mixing
coefficient for O¢4, we will have to calculate the three-point
Green’s function shown in the diagrams of Fig. 3.

For the class B operators we check the equations of motion
for the gluino and gluon fields. Taking into account that oper-
ators must have zero ghost number and that the gluon equa-
tion of motion has already dimension 3, we conclude that only
the gluino equation of motion may contribute; we must also
multiply it by a factor of u,,y,, in order to render it colorless.
This leads to only one member in class B: Opg; = tr, @ P)).

Class C operators are neither gauge invariant, nor BRST
variations, nor operators that vanish by the equations of
motion; but they have the correct free indices, dimension-
ality and ghost number.

We present all candidate operators which can mix with

Ogg:

On = 7= ﬂtrC(A duuy) —igtre(rle, €]) ®
Op1 = tre@ Pr) (10)
Oc1 = tro(d, 1 ut) (11)
Oca = tre@h) (12)
Oc3z = igoytre(Auy, uyl) (13)
Ocs = igtre(Ac, ). (14)

In the context of SQCD [18], there is a plethora of fur-
ther operators which mix; they all share the same quantum
numbers, including being flavor singlet and having baryon
number zero, containing also quark and squark fields.

2 The BRST invariant operators are nilpotent modulo terms which van-
ish by the equations of motion.

Class C operators cannot contribute in the continuum for
the purpose of MS-renormalization. However, they may give
finite mixing coefficients on the lattice. Note also that the
operator Oc, is of lower dimension and it will not mix with
Og, in dimensional regularization; it may however show up
in the lattice formulation. The presence of symmetries, which
are preserved by the SYM action, both in the continuum and
on the lattice, forbids other operators from mixing with the
Gluino-Glue operator.

3 Calculation setup

The renormalization coefficients of all candidate operators
are calculated by constructing a 7 x 7 mixing matrix, which
includes: a gauge invariant operator, Ogg, a BRST invariant
operator, O 41, an operator that vanishes by the equations of
motion, Op1, and four class C operators: Oc1, Oca, O¢s,
Oc4. The mixing matrix relates the renormalized operators
to the bare ones. It was checked that the divergent parts of the
mixing matrix have a block-triangular form.> We calculate
only its first row since we are interested in the renormalization
of the Gluino-Glue operator. Thus, the renormalized operator
Og ¢ is related to the bare ones, through:

Ogg = chogg +ZAIO/§1 +2310§1 + 201051
+ZC2og2 + Zc3(9g3 + ZC4(’)34 (15)

where the renormalization factor Z = 1 + O(g?) and the
mixing coefficients z = ((g?) should more properly be
denoted as Z%-Yand z%°Y, where X is the regularization and
Y the renormalization scheme. Superscript B stands for bare
and R for renormalized quantities.

Asanexample, if one is interested in the full mixing matrix
in DR and the MS renormalization scheme, its explicit form
is triangular. We have omitted class C operators since their
mixing coefficients, if they appear, will be finite and thus they
will not contribute in the MS scheme:

O, Zgg za1 281\ (O8,
Ok 1=1 0 Zarzas | | OF, |- (16)
Olgl 0 0 Zpi 051

From the above matrix, it is clear that class B operators can
only mix with operators of the same class (in DR and MS).
If the renormalization matrix were not triangular then the
renormalized operators of Classes A and B would not vanish
on-shell, even though the bare operators vanish. Triangularity
ensures that for matrix elements in physical states | P), | P’),
we have:

(PIO&,IP") = ZGg(P|OG,| P'). (17)

3 Le.an operator from class G, A, B, C can mix with operators from the
same or from the subsequent classes but not from the previous classes.

@ Springer
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Thus, one can ignore non-gauge invariant operators for phys-
ical states. On the other hand, if one calculates a Green’s
function with elementary external fields (as is typically done
for deducing nonperturbative renormalization on the lattice),
they may have finite contributions which cannot be ignored
even in the MS scheme.

In order to calculate the one-loop renormalization fac-
tor and the mixing coefficients, we compute the two-point
Green’s function of (’)g o with one external gluino and one
external gluon fields, as well as three-point Green’s functions
with external gluino/gluon/gluon fields and with external
gluino/ghost/antighost fields. Furthermore, renormalization
conditions involve the renormalization factors of the gluon,
gluino, ghost and coupling constant. For completeness, we
present the definitions of these factors:

ul =z, ul, (18)
AR =7, 2B, (19)
R =7, (20)
gt =2Z,ug", 1)

where p is an arbitrary scale with dimensions of inverse
length. For one-loop calculations, the distinction between g &
and ;1 ~€ g? is inessential in many cases; we will simply use
g in those cases. Our results are presented as functions of the
MS scale j1 which is related to u1 through*: 1 = ji/e7E /4x.

All of our results are computed as functions of the coupling
constant g, the number of colors N, the gauge fixing param-
eter B, the clover parameter csw and the external momenta
qi. More specifically, we calculate the two-point Green’s
function (i} (—q1)Ogyg (x)A%2(g)), for three choices of the
external momenta g1 and ¢,. This has been done in order to
differentiate among the tree-level structures of the operators
containing a gluon and a gluino field. Clearly, all operators
that can possibly mix with O, appear on the rhs of Eq. (15);
the tree-level Green’s functions of these operators naturally
show up in the results for the one-loop Green’s functions of
OR . thus allowing us to deduce the corresponding mixing
coefficients. The one-loop Feynman diagrams (one-particle
irreducible (1PI)) contributing to this Green’s function are
shown in Fig. 1.

We also calculate the three-point functions
(' (=g i (—=q2) Ogg(x) A% (g3))  and  (c*(g3)
Ogg(x) c*(g2)1* (q1)), corresponding to the Feynman dia-
grams shown in Figs. 2 and 3 in order to determine the mix-
ing coefficients with O¢3 and Oc4, respectively. We present
below the results of each three-point function in a given
choice of the external momenta g1, g and g3. Even though
mixing is not expected to appear in the case of DR, we use
this fact as a check on our perturbative results in the con-
tinuum. In the lattice regularization we expect finite mixing

4 yg is Euler’s constant: yg = 0.57721 .. ..

@ Springer

with these operators. In fact we have seen that there is no
mixing with O¢4 but on the lattice finite mixing with O¢3
emerges.

Since renormalization conditions are typically imposed
on amputated renormalized Green’s functions, let us relate
the latter to the bare ones.

For the gluino-gluon Green’s function:

= —1/2 ,—172 =
(u{f Ogg )‘R>amp = Zx / Zy / ZGg(”f Ogg )\B>amp
+zai(uy OF A2)ee + zp1(uf OF 2P)oee
+zer(uy OF AP) et + zca(uf O&, AP )iee
+0(gh).
(22)

Similarly for the gluino-gluon-gluon Green’s function:
- i -
(14{,e ullf Ogg AR)a,np =7, / Z, IZGg(ufuff Ogg AB)amp

B, B B 7 B\tree
+z31(uvuu OBI)\, yiree

amp
+ze3(ubul Ofs XB)Zr,fl; + O(gh.
(23)

We should renormalize the coupling constant in the tree-level
three point Green’s function of O(B; . thus we multiply it by

Zg_1 since the relevant (’)g o Vertex contains one power of

g?. Given that these calculations are up to one-loop order,
the coupling constant in the one-loop bare Green’s function
(being higher order in g) is already expressed in terms of the
renormalized coupling.

Lastly, for the gluino-ghost-antighost Green’s function:

-R T — —1/2 b7
(R OB, R iRy iy = 271 7,2 2G4 (P O, &35 )y
+za1(c? OF &P RB e
+zealc? 08, eBrB) e + 0(gh)
(24)

A few comments are in order here:

1. The gluino field and the gluon field renormalization fac-
tors, Z, and Z, do not depend on flavour since this study
is within the SYM theory. The ghost field renormaliza-
tion constant, Z., is the same as in Ref. [17]. In addition,
continuum results for the renormalization factors of fields
are also the same as in Ref. [17], setting Ny = 0. The
lattice results here have additional terms due to the fact
that we use clover fermions.

2. To avoid heavy notation we have omitted coordinate/
momentum arguments on A, O, u,, as well as Dirac and
color indices on (u,, O 1), etc.

3. The three point tree-level Green’s function of the Gluino-
Glue operator with an external ghost-antighost pair and
a gluino vanishes.
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Fig. 1 One-loop Feynman diagrams contributing to the two point
Green’s function of the Gluino-Glue operator, (u,OcggA). A wavy
(dashed) line represents gluons (gluinos). A cross denotes the insertion

Imposing renormalization conditions of the above two-
point and three-point Green’s functions is sufficient’ in order
to obtain the renormalization of the Gluino-Glue opera-
tor Zg, and all mixing coefficients z. Once the renormal-
ization factors in the MS scheme are determined, one can
construct their counterparts in the modified Regularization-
Independent scheme (RI') [26], using conversion factors
which are immediately extracted from the above Green’s
function regularized in D R to the required perturbative order.
Being regularization independent, these same conversion fac-
tors can then be also used on the lattice. The same procedure
can be applied in a straightforward manner to determine from
our results the renormalization and mixing coefficients in
other schemes, as well.

As already shown, in order to impose renormalization con-
ditions (see, e.g., [27]), we need the expressions for certain
tree-level Green’s functions of the operators. In particular, the
nonvanishing two-point amputated tree-level Green’s func-
tions, with an operator insertion at point x, are:

U (—=q1) OGg 2 (q2)) ot

1 .
_ Eﬁalazlel(ql+q2)x0ﬂp(f]1u5w — q1p0,0)

=~/ DFR gy — 1) (25)
(ug (—q1) Oa1 2°2(q2)) oo

_ %Salaziei(q1+qz)xq]v (26)
(U (—=q1) O1 A*2(q2)) s

= %6“1“21'8@1*42)*(yuqup 27)

5 One could of course calculate also four-point Green’s functions; in
doing so a number of consistency checks would emerge regarding the
divergent part of the mixing coefficients z. Further Green’s functions
(five-point and above) will bring in no superficial divergences.

3
___)._ -——
>~_ 6
s \
/ \
/ \
| [
\ /
i il AVAVAV bl \VAVAVAVAV

of the Gluino-Glue operator. Diagrams 2, 4 do not appear in dimensional
regularization; they do however show up in the lattice formulation

(U (=q1) Oc1 A% (@2) gy

1 .

— Esmaziel(mwz)xqzv (28)
W (—q1) Oca A2 (g0

— %Salazei(thﬂlz)x Y (29)

and the three-point amputated tree-level Green’s functions of
Ocg, Op1, Ocz and Ocy:

(5 (=) U2 (=q2) O 2 (a3)) oy
= —g fH120 ei(q1+qz+q3)xaw

= —g [0 LU PTBIY (yy, — 5, (30)
WS (—q1) ul? (—q2) Op1 A% (q3)) s

= —g fH12m ei(q‘+q2+q3)xow 31
WS (—q1) w2 (—q2) Oc3 X (q3)) et

= —g [ ei(q1+qz+q3)xaw (32)
(€ (g3) 018 (q2) A (1)) s

— %g foreas el a1—a+q3)x (33)
(€ (g3) Oca € (q2) X (q1)) ot

— —%g oo el 1= +q3)x. (34)

The structures on the rhs of Egs. (25)—(29) are the only
ones which may appear with divergent coefficients in the one-
loop Green’s function of Ogy: (uy' (—q1) Ogy 22 (@2))amp:
this allows us to determine unequivocally the coefficients
ZGg, ZAl1, ZB1, 2C1 and 2C2- The coefficients 2C3 and 2C4,
which cannot be divergent, are determined by comparing the
one-loop Green'’s functions: (' (—q1) uj
(—42) OGg 293 (q3))amp and (c**(q3) OGg c*(q2) A (q1)>amp
to the tree-level structures on the rhs of Egs. (30)—(34).

@ Springer
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Fig. 2 One-loop Feynman diagrams contributing to the three point lattice regularization. A cross denotes the insertion of the operator. A
Green’s function of the Gluino-Glue operator, (u,u, OggA). A wavy mirror version (under exchange of the two external gluons) of diagrams
(dashed) line represents gluons (gluinos). Diagrams 1, 2, 3,5, 6, 11, and 3,4,5,6, 8,10, 14, 15 and 16 must also be included

13 do not appear in dimensional regularization but they contribute in the

@ Springer
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|
|

Y
|

Fig. 3 One-loop Feynman diagrams contributing to the three point
Green’s function of the Gluino-Glue operator, (¢ OggcA). A wavy
(dashed) line represents gluons (gluinos). A cross denotes the insertion

4 Results at the continuum regularization

We use dimensional regularization in order to calculate the
two-point and three-point Green’s functions of Og, in the
continuum, in D = 4 — 2¢ dimensions.

To make use of Eq. (22) we need to know also the factors
Z, and Z,.. For arbitrary values of N, and parameter 8 (N =
0) these are given by®:

2
— N1 B
ZPRMS — 8 e (1 B 35
u o2 U T2 (35)
_ 2N1
ZPRMS _ L 8 Nl gy 36
. +35-a-p (36)

The total expression for all Green’s functions in DR can
be written as one part that contains the divergent terms (poles
in €) and a second part with finite terms. To return to four
dimensions, we must be able to take the limit ¢ — 0. The
MS renormalization scheme is set to eliminate the pole parts,
leaving the finite terms intact. These terms make up the MS
renormalized Green’s functions and they will be used in order
to extract the corresponding renormalization factors and mix-
ing coefficients in the lattice regularization. In contrast, the
R1I’-like conditions eliminate the divergent part, but also alter
the finite part.

Specifically, we calculate the two point Green’s function
of the Gluino-Glue operator for the following three choices
of momentum: g» = 0, ¢; = 0 and g = —q. For the choice
g2 = 0, we find:

6 We briefly recall the procedure for the extraction of these factors in
Appendix B.

|
|

Y
|

of the operator. The “double dashed” line is the ghost field. Diagrams
1 and 2 do not appear in dimensional regularization; they do however
show up in the lattice formulation

_ DR
(U1 (=q1) OGg 2 (@2))amp | sy
2
y 8§ Nl '
_ _aalaz i _ _8a1a2 1q1x
e (ng — qu) + 1622 ¢

, 12 —
X [l(wh —q1v) <——€

B 12-38 I

The pole part of this expression (actually also the finite part
in this case) is proportional to the tree-level Green’s function
of Og, and thus there is no mixing with Oy4;: zflR’MS =0.
By imposing the renormalization condition of Eq. (22) and

demanding the lhs to be finite, Z¢, is determined to be:

pRVS _, _ &°Ne3
Geg l6n2 e
Indeed, Zg, is gauge invariant in MS. For the second choice
of momentum (q; = 0), the tree-level Green’s function of
Ocgy, gives zero, but the one-loop result is:

Z

(38)

= DR
<M?jl (=q1) OGg 2%2 (42)>amp |q1=0

2 72
g°Nc 1 o i . . 3 3 1

= —§M 22X - —+1+ =1 — .
162 2 e iq2y — iyug2 e +1+ 7 log p

39)

The pole part of Eq. (39) determines immediately the mixing
coefficient of @p; in DR and MS:

pRMS _ & Ne 3
Bl 1672 2€’
We note that this coefficient is also gauge independent, even
though Op is a non-gauge invariant operator. The term pro-
portional to the tree-level Green’s function of the operator

(40)

@ Springer
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Oc is finite and thus zglR -MS automatically vanishes. In

the case of the lower dimension operator O¢», no mixing is

expected to appear in the continuum, indeed ZDR MS _ .

The last choice of momentum (g, = —ql), for the two-
point Green’s function in DR, corresponds to the insertion
of the Gluino-Glue operator at zero momentum.

(u a]( ql)OGg )»az(lh) amp|
= =82y — q1v)

q92=—4q1

2
g°N¢ 1 — 38 B
8a1a2 _ -7 —
+16 75 [l()/uqil 6]|v)< e + >
12-3 T 3 3 T
— A log <M )) +lyvt[1< +2+ —log (—Mz >)]
2 ql 2 q;

(41)

Equation (41) is used as a consistency check: indeed its pole
parts are eliminated upon applying the renormalization and
mixing coefficients previously found.

Eliminating the pole parts of Eqgs. (37), (39) and (41), one
arrives at the MS renormalized two point Green’s functions.
The difference between the latter and the bare Green’s func-
tions on the lattice will give the corresponding renormaliza-
tion factor and mixing coefficients on the lattice.

In order to determine the mixing of the remaining oper-
ators Oc3, Oca we have to calculate certain three-point
Green’s functions containing Og,. Our result for the Green’s
function with external gluino, antighost and ghost fields is:

( m(%) OGg az(QZ))\al(QI) amp|

8 2N, 3(
T 1672 \4

Equation (42) is necessarily pole free, since the tree-level
value of this Green’s function vanishes, and O¢4 belongs
to class C. Calculation of the same Green’s function on the

lattice will determine whether a (finite) mixing coefficient

é 4MS will be necessary in order to match Eq. (42).

From Eq. (23) we can verify that zc3 also vanishes in
DR. ZPRMS Z/\DR’MS, ng’MS d ZZ?R’MS are required
to eliminate the pole parts of the rhs of Eq. (23), leaving only

finite parts. The lhs is actually the MS-renormalized three
DRI .

=q2, 43=0

1= B)g fe1e ) : (42)

point Green’s function. The expression for Z, is (see,
e.g., Ref. [17] for Ny = 0):
2
S 13
7DRMS _ | & 12 43
g + 1672€2 “43)

In contrast to Eq. (42) which is finite, the bare three-point
Green’s function with an external gluino and two gluons is
not. The contributions from the diagrams of Fig. 2, taken
separately, are not proportional to tree-level. However, their
sum has this property and it takes the following form in the
continuum:

@ Springer

WS (—gDu? (—q2) Ogg A3 (g3)) amp|
=—g fozlazocs ()/v)/ﬂ _ Mv)Zgl
+g N fala2053 |:8/,Ll) (ﬁ + i — é

42=0,93=—q1

1672 16
1 5 5 2
4 8 2 a 12
B B B i
- = L 1 =
+Vv)/u<3 2+6+4+4+,30g 12

5 > d1q1 (77 ,3
| Ll Sg_2PL P
2 °g<q2>>+y“ 2 \16 T3
LB
4

1
d1q1v 1 B q1v511u 63 98
e ) Tt
91 ql

)]

(44)

In the above equation the terms proportional to 1/€ can-
cel against the renormalization factors of the fields, of the
Gluino-Glue operator, of the coupling constant and of the
mixing with the operator Opgj. Therefore, using the condi-

tion of Eq. (23), mixing with O¢3 is not observed and thus
DR.MS
2c3 =0

5 Lattice regularization

In our lattice calculation, we extend Wilson’s formulation of
the QCD action, to encompass SUSY partner fields as well.
In this standard discretization, gluinos reside on the lattice
sites, and gluons reside on the links of the lattice: U, (x) =
Usxpp = /8T Ui (x+ait/2) where o is a color index in the
adjoint representation of the gauge group and a is the lattice
spacing. This formulation leaves no SUSY generators intact
[6], and it also breaks chiral symmetry; it thus represents a
“worst case” scenario, which is worth investigating in order to
address the complications (see [14], and references therein)
which will arise in numerical simulations of SUSY theories.
In our ongoing investigation we plan to address also improved
actions [28,29], so that we can check to what extent some of
the SUSY breaking effects can be alleviated. The gluinos are
described by clover improved Wilson fermions in the adjoint
representation and the Euclidean action SSLYM on the lattice

[19] becomes’:

7 Note that the lattice action, Eq. (45), contains a bare gluino mass
term, mq, which breaks supersymmetry softly. Its “critical” value is
presented in Appendix B; it ensures a massless gluino in the continuum
limit. For one loop calculations in perturbation theory this critical value
is irrelevant since it is already of order g2.
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N, 1
SSLYM = a4 Z |:g—§ Z (1 — VTVUM\))
X c

v

+3 <Tr <)_LyﬂDMA) - %n(@h))
w

— Z <CS\Z ai“auvigfkﬂ> + moTr<)_L)L>i|
TR

(45)

Equation (45) is invariant under the local gauge transfor-
mations:

U, (x) =G WU )G +af), N (x)=G""x)Ax)G(x)
(5D

where G (x) is an element in the fundamental representation
of the SU(N) gauge group. These gauge transformations

s L L commute with the lattice supersymmetry transformations (cf.
where F)/ in the adjoint representation is defined as: [6]):
2 1 -~ -
Fifl = 505 = 0% (46)
Qzﬁ = 2trc (Ta Ux,x-i—u Ux+;1,,x+u+v Ux+,u+v,x+v Ux—i—v,x Tﬁ Ux,x+v Ux+v,x+u+v Ux-l—u—&-u,x—i—u Ux+;/,,x

+Ta UX,X+VUX+V,X+U—;,LUX+U—M,,X—[,LUX—}L,XTﬂ Ux,x+,uUx+p,,x+p,—vUx+u—v,x—qu—v,x

+Ta Ux,xfu.Uxfu,xfufvUxf,ufv,vaUva,x Tﬂ Ux,vaUva,xf,ufvUxfu.fv,xquxfu,,x

+Ta Ux,xfuUva,vaJruUx7u+u,x+/1,Ux+u,xTﬂ Ux,x,quu,xu+vau+v,x+qu+v,x) (47)
and
Uy () = Up (U, (x + a@) U} (x + ad)U} (x) 48)  SeUu(x) = g;a EYurh()Uy (%),

_ - g

The definitions of the covariant derivatives are as follows: S h(x) = 4 Vi o ]Upn ()8 /(iga®). (52)

1
D) = o[ Uu(orx + apUf (o)
—US (= aipi(x — ai)Uux —a)] - @9)

1 .
D) = — ) (U0 + aip U] ) = 206)
m

+UL(x — ap)r(x — af) Uy (x — a;l)]. (50)

The 4-vector x is restricted to the values x = na, with n
being an integer 4-vector. The terms proportional to the Wil-
son parameter, 7, eliminate the problem of fermion doubling,
at the expense of breaking chiral invariance.® In the limit
a — 0 the classical lattice action reproduces the continuum
one. A gauge-fixing term, together with the compensating
ghost field term, must also be added to the action, in order
to avoid divergences from the integration over gauge orbits;
these terms are the same as in the non-supersymmetric case
[30]. The lattice analog of the BRST transformations of the
continuum action is shown in Refs. [6,30]. Similarly, a stan-
dard “measure” term must be added to the action, in order
to account for the Jacobian in the change of integration vari-
ables: U, — u,,. Further details of the lattice action can be
found in Ref. [17].

8 In what follows, we will set |r| = 1.

The Gluino-Glue operator on the lattice is defined as:
OGg = O—,uvtrc( ﬁ/w)\) (53)

where

A

1
F;w = g(Q/w - Qvu)

Q/w = Ux,x+,u Ux+u,x+u+v Ux+u+v,x+v Ux+v,x

+ Ux,x+vUx+v,x+v—uUx+v—p.,x—qu—u,x (54)

+ Ux,x—qu—u,x—u—v Ux—u—u,x—v Ux—u,x

+ Ux,va Uva,x7u+u Ux7v+/l,,x+,u Ux+u,x .

Lattice vertices are very lengthy and are not presented
here for the sake of brevity.” Some of the vertices have no
analog in the continuum; although these vertices vanish in
the continuum limit, they contribute beyond tree level in per-
turbation theory even in the limita — 0.

For completeness, we present all relevant two- and three-
point Green’s functions, shown in Eqs. (58), (60), (62) and
(64), on the lattice. The renormalization conditions which we
impose involve the renormalization factors of the gluino (Z, ),
gluon (Z,), ghost (Z,) fields and of the coupling constant
(Z,). Since we used the clover action for gluino fields, Z;,

9 Vertices are available from the authors upon request.
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and Z,, are recalculated, leading to!0

ZLMS _q _ 12.8524
A 16 2(
+3.79208 — 5.5891 c3y — 4.4977 cswr
+(1 - p) log(a® %)) (55)
2
e N. 1
ZEMS 4 8 Telyg 7390
“ T N?Z

~17.1775 — 1.38638
+18.8508 ¢y — 1.5939 cswr

+ <1 + g) log(a® ,12)> (56)

which coincide with the expressions in Ref. [17] for cgw = 0
and Ny = 0. Divergences in renormalization factors man-
ifest themselves as logarithms in the lattice spacing (cf.
Egs. (55)-(64), (B2), (B5)), or even as an inverse power law
(cf. Eq. (B7)). It is only after combining these factors with
the corresponding bare Green’s functions, computed non-
perturbatively via simulations, that the ¢ — 0 limit can be
taken. The calculation of Z; and Z, as well as the critical
value for the gluino mass are presented in Appendix B. Fur-
ther, in Ref. [17], the ghost and the coupling constant renor-
malizations were presented for Wilson fermions and gluons.
ZCL ‘MS s the same here because the ghost propagator does

not involve gluino fields, and therefore the clover parameter

does not appear in its expression. On the other hand Z; L, Ms

since it is calculated from the gluon-ghost-antighost Green S

function, is changed here due to the presence of the clover

L.MS LMS .

term in Z,, . The new value of Z; is:

_ 2
Zé{‘,Ms=1+ g |:_

1
| - 9.8696— + N.(12:8904

C

3
+0.7969 csw r — 94254 gy, — 3 log(a’ ,12))}.
(57)

The computation of the bare Green’s functions of Og, on
the lattice is the most demanding part of the present work.
The algebraic expressions involved are split into two parts:
(a) A part that can be evaluated in the ¢ — 0 limit: It contains
terms which have a complicated dependence on the external
momentum ¢ and show up in the regularization indepen-
dent renormalized Green’s functions. (b) Terms which are
divergent as a — 0; their dependence on g is necessarily
polynomial. Our computations were performed in a covari-
ant gauge, with arbitrary value of the gauge parameter B.
Both renormalized and bare lattice Green’s functions have
the same tensorial forms, but the bare ones have additional
lattice contributions.

10 For brevity, decimal numbers in our results are presented only with
four digits after the decimal point; they are known to higher accuracy.

@ Springer

The first two-point Green’s function for g = 0 (cf.
Egs. (22), (37)) will provide us with the renormalization of
the Gluino-Glue operator, since it is proportional to its tree-
level value:

(u 011( ql)(gGg)L (6]2) am,n|q2 -0
= —S“I“Zie’q“‘(wa —q1v)

2
g N,
16722 25‘1'“2 eI (yugh — 6I1v)<

+27.5552 +4.17838

—39.4784

+— N2

1
+§52 — 4.6002 csw? — 12.8568 csw r

+6loa(a’q}) — 7 log<a2q%)). (58)

The determination of the renormalization factor, Z L gMS fol-
lows by imposing the renormalization condition of Eq. (22),
in which the lhs is the MS renormalized Green’s function
(Eq. (37) without the pole terms). Our result is:

NS N, (9.8696
LMS _ c 2
Zg o =1- 16”2( NT T 1.7626 — 9.9198 c3y
+4.9765 csw r — 3log(a® ;12)). (59)

The same Green’s function, evaluated at g; = 0, provides
the mixing coefficient with the operator Op in accordance
with Eq. (22).

(u al( QI)CDGg)L (g2)) amp’
8 2N, 1
T 16722

3
= log<a2q§>) } (60)

q1=0

Z§x o Hiqax |: —iqyy — iyuga (1.42407

By comparing the finite parts of Eq. (39) with the lattice
Green’s function Eq. (60), the coefficient of y,¢> determines
the mixing coefficient with Op;.

VS 8°Ne 3 2 -2
g = 1622 (0 4241 — Elog(a ). (61)
An immediate check of our results is the extraction of the
MS-renormalized Green’s function at g, = —q1, followed by

a comparison with our continuum result, shown in Eq. (41).

This can be easily done by applying ZL MS and z L MS in

the condition of Eq. (22), and using the bare lattice Green S
function at ¢» = —q;:



Eur. Phys. J. C (2021) 81:401

Page 11 of 15 401

(u al( QI)OGg)‘ *(q2)) amp|

q2=—4q1
2
N —39.4784
8(11 o —_—
= lex22 [l(ml qm( N2
426.5552 4 5.17838
1
+5B” — 4.6002csw” — 128568 csw r -+ 6log(a’a})
3 . 3
-2 1og(a2q%>) +inds (2.4241 -5 10g(a2q12)>].

(62)

For all other operators, having non vanishing tree-level
Green’s functions with one external gluon and one external

gluino field, their mixing coefficients automatically vanish:
LMS _ LMS _ LMS_
a1 =21 =iz =0

We now turn to the three-point Green’s functions. As we

have already mentioned, the lattice three- point Green’s func-

tion, (¢*3(g3) Ogg €% (q2)A% (q1)) am,,\ql — 4. gs—0 CoinCides
with the one in the continuum:
(c*(q3) OGg Caz(q2))\al (q1)) amp‘ql =2, 3=0

(Ca3 (Q3) OGg az(Qz)Aa'(Ql) amP|q| =q2, q3=0

N, (3
= len (Z“ - Blg fe ) : (63)

It follows that zC4 MS vanishes. On the other hand for the
lattice Green’s function with one external gluino and two
external gluons, we find:

(u ]( Q1)14a2( 112)005)» z((113) amp‘

42=0,q3=—q\
= =g [ (1Y — 8u) Zg !
1973008, o083 (1) 0§
1672 N, Yo¥u = O
g3

LA [ o~ 7.83744 —3.9073p

-7 62 4 6.4284 cow r +2.3001 w
5 2.2 2.2
—3 log(a%q}) + Blog(aq)))
’32
V0¥ (9 8999 +3.5323f + 7= — 6.4284 cswr —2.3001 GGy,

~Blog@qd) + 3 log(@q)))

2
+)’v(/]q2m <E — 137/3 + P > + /quqzlv (L - é)

@ \16 8 4 ¢ \16 4
2
o (89 ) &
q;

The difference between the MS renormalized and bare
Green’s functions consists only of expressions proportional
to the tree-level Green’s functions of operators Ogg, Opi
and Oc3; in this way, the rhs of Eq. (23) can be rendered

equal to the corresponding lhs, by an appropriate definition
of the renormalization factors and mixing coefficients on the
lattice. Indeed, taking this difference removes the following
structures: ququ/qz, yquﬂ/q2 and )/,qu,)/q2 from Eq. (64)
leaving only contributions proportional to the tensorial struc-
ture: (Y, ¥v — Suv). By using the one-loop renormalization
factors of the fields, the coupling constant renormalization
and operators Ogg, Op1 and Oc3, we end up with a lin-

ear equation whose only unknown is the mixing coefficient,

z&MS Note that ZL MS and Zg L MS , which we find using the

two-point Green’s functlons, along with the renormalization

of fields and coupling constant, do render Eq. (64) finite as

expected. We find for zL s,

2
LMS 8 N
26" = —1-50.000114. (65)

The above result is independent of the choice of the clover
parameter, csw.

6 Summary and future plans

In this paper, we performed a detailed perturbative study of
the Gluino-Glue operator, Og,. This operator is directly con-
nected to light bound states of the theory, and its renormaliza-
tion is necessary for the correct extraction of renormalized
Green’s functions, involving Ogyg, from numerical simula-
tion data.

Our study of the Gluino-Glue operator entails a two-step
regularization procedure:

(1) Continuum regularization, where we calculate Green’s
functions of the Gluino-Glue operator in order to derive the
MS renormalized Green’s functions. We provide all the bare
Green’s functions in D R; from these the reader may straight-
forwardly determine the conversion factors to other schemes,
such as RI’ which can be used nonperturbatively. The calcu-
lation of conversion factors from MS to a new Gauge Invari-
ant Renormalization Scheme (GIRS) in coordinate space is
presently underway. Within GIRS one obtains the renormal-
ization factor of O nonperturbatively.

(i1) The calculation of lattice regularized Green’s func-
tions: this is the most demanding part of the present work.
We determine perturbatively the renormalization factors and
all mixing coefficients. Use of these quantities converts bare
Green’s functions, calculated in lattice simulations, directly
to MS, without need for an intermediate scheme such as R1’.

It will be interesting to study properties of the fermionic
Gluino-Glue particle, in parallel with bosonic glueballs
and mesonic gluinoballs. The Gluino-Glue particle and
gluinoballs are expected to be the SUSY partners of glue-
balls, and therefore it is important to verify via simulations
that these particles have the same mass (if we recover a non-
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broken phase of SUSY in the continuum limit). A similar
investigation in this direction is to study a three-gluino opera-
tor, fo19293 31 (39233 in order to explore baryonic states
in SYM.

In the future, we aim to compute the renormalization of
the supercurrent tr. (Ay*o”’u pv) in the context of SYM the-
ory. The renormalization of the supercurrent and its potential
mixing also require the calculation of Green’s functions with
an external gluino and gluons. A further direction in this con-
text regards supersymmetric Ward identities in order to study
the lattice artifacts and the recovery of supersymmetry in the
continuum limit [16]. Finally, we plan to carry out extensive
perturbative study of the Gluino-Glue operator and of the
supercurrent in Supersymmetric QCD (SQCD). The Green’s
functions of the above operators in SQCD exhibits a very
complicated mixing pattern under renormalization, involv-
ing also squark and quark fields.
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Appendix A: Transformation properties and vertices in
the continuum

This appendix briefly recalls standard transformation prop-
erties in the continuum, and lists all continuum vertices of
the action and of the Gluino-Glue operator.

Gauge trasformations act on the fields as:

W, =G UG+ (3,676, X =G '2G, G) =W
g

(AD)

where 7% are the generators of su(N), and w*(x) are real
parameters. Using the Faddeev—Popov gauge fixing proce-
dure leads to a gauge fixing term:
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1 2

Ser = ———— [ d*x (8"u%)", A2

or =5y | 4 () (A2
where B is the gauge parameter (8 = 1(0) corresponds to
Landau (Feynman) gauge), and a ghost action:
SGhost = — / d*x (¢ 9" DSPcP) . (A3)
The ghost field ¢ is a Grassmann scalar which transforms in
the adjoint representation of the gauge group, and: D, c =

duc +igluy, c]. Consequently, the total action in the con-
tinuum has the form:

StotalsYM = SsyM + SGF + SGhost - (A4)

By construction, Syoaisym 1S Not gauge invariant; however
it is invariant under Becchi—Rouet—Stora—Tyutin (BRST)
transformations. The latter involve parameters that take their
values in a Grassmann algebra. The BRST trasformations for
the fields of the full SYM action can be found by setting w*
in Eq. (A1) equal to ¢*n, where n is a Grassmann variable.
Thus, the fields appearing in Eq. (A4) behave as follows:

— upy + (9 + gfaﬁycﬂul’:) n,
AY = A% — g fU PP g

e %f“ﬂycﬂcy n,

o

1
— %+ —%MZ n. (A5)

1-8
We turn now to the expressions for the continuum vertices.
Our conventions for Fourier transformations are:

o

A
() = f S i(q) (A6)
A = / %e"‘f"%(q) (A7)
) = / (j;”;4ef‘f"‘i<q) (A8)
c(x) = / (j;‘f)’4efq'x &) (A9)
5(x)=/(;1;q)4e—"‘1'* @) (A10)

In the rest of the paper we omit the tilde from Fourier-
transformed fields.

There are in total 4 vertices in those diagrams of Fig. 1
which show up in the continuum. Two of them (VO) come
from the operator O and the other two (V5) from the action
S. A factor f d*k/ (27)*X (k) is understood for each field
X appearing in the vertices. [In our conventions, indices
for different fields appear in the following order: gluons,
antigluinos, gluinos, antighosts, ghosts. Repeated indices are
summed over. k; denote momenta; «, B are color indices
in the adjoint representation; (;, o, o are Lorentz indices.
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Furthermore, for compactness, vertices have not yet been
symmetrized over identical particles.]

The vertices of operator Og, with gluino/gluon fields and
gluino/gluon/gluon fields are shown below.

. i L :
Vi, ko) = 282 O 00 (ko — Kiodpu)
(A11)
VO;u‘u,)L(kl’ ko, k3) = _% fotlazozg ei(k1+kz+k3)xo.p05pm80#2‘

M1, 2
(A12)

Vertices coming from the continuum action, with gluino/
antigluino/gluon fields and with three gluons are:

VISR ki ko, ka) = £ @) 01 — ka4 k) 1

(A13)
S;u,u,
Vironas K1- k2. k3)
= —igQm) 8 (ki + ko + k3) fU120 82 <k, + Ko, ).
(A14)
Figure 2 contains also the four-gluon action vertex:
Siuu.u,
Viei o isons k1o k2, k3. ka)
1
= Zgz(zn)“a(kl ko + k3 + ka) f103P pPO2ss S
(A15)
Finally, Fig. 3 contains the ghost vertex:
VIR Clky, ky, k3) = —igm) 8 (ki — ka + k3) fU12% 0k,
(A16)

Appendix B: Perturbative one-loop renormalization of
Z, and Z) on the lattice in the MS scheme

The renormalization for the gluon field, Z,,, in the continuum,
can be evaluated from the gluon propagator (u}' (g1)uy*(g2)) DR
The corresponding one-loop Feynman diagrams are shown
in Fig. 4. Their contributions, taken separately, are not trans-

verse; however their sum does have this property. We find:

W% (g)u (q2)) ik

= 2m)*8(q1 + q2)8™ “2{ G191y

1-p
g> N, 1

5 1
+ (78 — ) [ 1= 555 (@ +p)

14 82 (ﬂ2>)
+5 —2+5 +Q+Blog| = “ (B1)
3 2 q1

The one-loop result for Z,? R.MS

from the above.

(Eq. (35)) follows directly

inv *

Since there is no one-loop longitudinal part for the gluon
self-energy, the renormalization factor for the gauge param-
eter receives no one-loop contribution.

On the lattice, all seven diagrams appearing in Fig. 4 con-
tribute to the gluon one-loop inverse propagator. We find:

Ul (qu (q2)),

= 2m)*8(q1 + qz>8“1“2{

l_ﬁquIlv
2 2 1
+ (918/w - ‘IULQI\J) [1 ~ o2 [ — 19.7392FC

2
+N, <19.5109 + 0.3862948 + % + 1.59389 cswr

—18.8508 cZy, — (1 + g) log (a2q12)) ]] } (B2)

We notice that this result is proportional to the tree-level two-
point Green’s function of the gluon field. Some diagrams
contribute a quadratically divergent mass term (1/a” contri-
bution). But when all Feynman diagrams are summed these
divergences are found to cancel out, as expected from gauge
invariance. By demanding the following:

R ulyiny =27 h ul)f,. (B3)
we find ZE'MS (Eq. (56)).

We turn now to Z,. The one-loop diagrams contributing
to the inverse gluino propagator are shown in Fig. 5.

In DR, we find:

(A% (g)A* (q2)) DR

= @) *8(q1 — q2>§ 5 g, [1
_ =2
(1—;43+(1 ’3)+(1—,6)1og<“2)>].
€ ql

The DR renormalization factor of the gluino field in the MS
scheme follows directly (see Eq. (36)).

On the lattice the gluino inverse propagator is given at the
one-loop order by:

g2 Ne

+16n2

(B4)

(A (A2 (q2)) ey
= 2m)*8(q1 — q2)8% “2{341 [1

g2 Ne
712

+(1 - B)log (azq%)]]

2
g &1<514347r—274663c — 22,8606 ¢2 r)
1672 2 a \7 : SW s sWh

[1 1.8524 + 4.79208 — 4.4977 cswr — 5.5891 cdy

(BS)
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Fig. 4 One-loop Feynman diagrams contributing to the two point Green’s function (ufi‘ (q1)uy?(q2)). A wavy (dashed) line represents gluons
(gluinos). The “double dashed” line is the ghost field. Only the first three diagrams appear in DR

Fig. 5 One-loop Feynman diagrams contributing to the two point Green’s function (A% (g1)A%2(g2)). A wavy (dashed) line represents gluons
(gluinos). Only the first diagram appears in DR

The renormalization factor of the gluino field is deter- 2. F.Quevedo, S. Krippendorf, O. Schlotterer, Cambridge Lectures on

mined in the MS scheme by imposing the condition: Supersymmetry and Extra Dimensions. arXiv:1011.1491 [hep-th],
B _ and references therein
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