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Abstract We explore regions of parameter space that give
rise to suppressed direct detection cross sections in a sim-
ple model of scalar dark matter with a scalar portal that
mixes with the standard model Higgs. We found that even
this simple model allows considerable room in the param-
eter space that has not been excluded by direct detection
limits. A number of effects leading to this result have been
previously noted. Our main new result explores interference
effects between different contributions to DM annihilation
when the DM mass is larger than the scalar portal mass.
New annihilation channels open up and the parameters of
the model need to compensate to give the correct DM relic
abundance, resulting in smaller direct detection cross sec-
tions. We find that even in a very simple model of DM there
are still sizeable regions of parameter space that are not ruled
out by experiment.

1 Introduction

There is considerable evidence forDarkMatter (DM), a type
of matter in the universe which has so far only revealed itself
through gravitational interactions with normal matter [1–
3]. DM at most interacts very weakly with normal matter.
Various means of DM interacting with normal matter have
been explored; Higgs portals, e.g. [2,4–26], vector portals,
e.g. [15,18,27–47], and neutrino portals, e.g. [15,18,48–51].
Higgs portal models have been tightly constrained by exper-
iment, leaving only small regions in the parameter space
viable [40]. In particular, direct detection experiments have
tightly constrained the parameter space. However, there still
exist allowed regions, including regions referred to as blind
spots which are due to cancellations in the direct detection
cross section amplitudes. This has been explored in a num-
ber of papers, for example [10,20,21,23,52–57]. In addition
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to the blind spots mechanism, other mechanisms exist that
suppress direct detection cross sections which we discuss
below.

Many Higgs portal models have a second scalar that mixes
with the Standard Model (SM) Higgs boson [7,9,10,12,14,
17,20–23,25,26,38,54,58–64]. The mechanism leading to
blind spots in such models is the destructive interference
between the Higgs-like scalar and the second scalar in the
direct detection cross section amplitude [9,10,12,17,20,21,
23,26,54,61,63]. Given that detecting dark matter is the
focus of a broad experimental program, we felt it useful to
further explore regions of the parameter space that give rise to
suppressed direct detection cross sections. Our preconceived
bias was that the mixing angle between the two t-channel
exchange bosons could be tuned to create the direct detection
blind spots mentioned above. However, we found that values
of the mixing angle that would give rise to blind spots are
for the most part ruled out by measurements of Higgs boson
properties – most generally by the Higgs signal strengths, but
also by the Higgs invisible width when Higgs decay to dark
matter is kinematically allowed. Another mechanism that can
lead to suppressed direct detection cross sections which has
previously been pointed out [12,18] is the result of a reso-
nance effect occurring when the dark matter mass is roughly
half the value of the scalar portal mass. However, there is a
third mechanism that suppresses the direct detection cross
section when the dark matter particle is more massive than
either the Higgs boson or the portal particle.1 In this case, a
large region of the parameter space has not been ruled out by
any of the theory constraints, any experimental constraints
and, more to the point of this exercise, by direct detection
limits.

For the purposes of this study, we constructed a very
simple toy model consisting of scalar DM and an addi-
tional scalar portal that can mix with the SM Higgs field

1 References [12,21,25] noted a similar effect when mS > mh1,h2

although the details differ from those presented here.
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to study direct detection suppressed regions. We use this toy
model to explore effects for the simplest possible case of
a scalar dark matter portal extension. There are, however,
many possible variations of this simple picture that can give
rise to cancellations in the direct detection cross section. An
incomplete list of possibilities appearing in the literature con-
sists of the scalar portal being replaced with a pseudoscalar
portal [22,55,65–72], or having a complex scalar which
gives rise to a second scalar portal [20,26,26,57,73,74], a
two Higgs doublet model [22,23,55,63,64,69–71,74–77],
higher Higgs representations [78], or supersymmetric mod-
els [22,52,54,79–82]. Before proceeding, we note that, given
that we simply want to push the simplest of models as far as
we could, we haven’t dealt with the issue of UV complete-
ness. However, Gross et al. [20] and Huitu et al. [57] showed
that they could make models very similar to ours UV com-
plete by assuming the system is invariant under a globalU (1)

which is gauged in the UV-completeness. Other examples of
similar UV complete models are [25,26].

Our simple model has eight parameters but two are fixed
to their SM values, one is fixed to give the correct DM relic
abundance, and one is only weakly constrained by DM self-
interactions. This leaves four independent parameters which
we choose to be the scalar DM mass, the scalar portal mass,
the scalar singlet vacuum expectation value, and the mix-
ing angle between the SM Higgs scalar and the scalar por-
tal. We scan through the parameter space and, by transform-
ing to the Lagrangian parameters, we test that perturbative
unitarity holds, that the potential is bounded from below,
and that the parameters result in a consistent set of param-
eters for the desired properties of the model. We next fix
the remaining parameter to give the correct relic abundance.
With these parameter values, we test that the parameters are
consistent with the Higgs boson invisible width, the Higgs
signal strengths, and DM self-interaction limits. Finally, we
calculate the direct and indirect detection cross sections and
compare them to the experimental limits.

In Sect. 2, we give the details of our model and exam-
ine the theoretical constraints on its parameters. In Sect. 3,
we describe the details of scanning the parameter space and
the various experimental measurements we use to constrain
parameter points, starting by fitting the DM-portal coupling
to the DM relic abundance. The remaining experimental
constraints are the Higgs invisible width, the Higgs signal
strength, the DM self-interaction, and the DM indirect detec-
tion cross section. We then compare the points that pass all
these constraints to the direct detection limits and examine
the various mechanisms that lead to direct detection sup-
pressed regions. Finally, in Sect. 4, we summarize our con-
clusions.

2 A 2-scalar mediator model with scalar DM

We consider an extension of the Standard Model that con-
sists of two singlet scalar fields ϕ and S, with ϕ a portal
particle that mixes with the SM Higgs field and S the DM
particle. We impose a Z2 × Z2 symmetry on these fields
so that they are odd under their respective Z2’s to ensure
their stability and eliminate terms in the potential odd in ϕ

and S (see for example Refs. [18,22]). We note that the Z2

imposed on ϕ is spontaneously broken when ϕ acquires a vev.
The most general scalar potential with this symmetry is then
given by

V (H, ϕ, S) = −μ2
H H†H + λH (H†H)2

−μ2
ϕ

2
ϕ2 + λϕ

4
ϕ4 + λ4ϕ

2(H†H)

+μ2
S

2
S2 + λS

4
S4 + λϕϕSS

2
ϕ2S2

+λHHSS

2
(H†H)S2. (1)

Following Refs. [18,22], we take λHHSS = 0 so that the
Standard Model complex scalar doublet H does not directly
couple to the dark matter candidate, S, at tree level. This
choice does not affect our conclusions, and we will discuss
the consequences of not taking λHHSS = 0 in Sect. 3.7
after we present our results. This term can be generated
via ϕ loops and the natural size for the resulting vertex
would be the product of the couplings λϕϕSSλ4/(16π2). We
assume that the vertex can be made small enough even if it
requires some amount of tuning. Assuming this term is small
enough, and because the DM thermally averaged annihila-
tion cross section is typically dominated by the s-channel
annihilation cross section and real production of h2, we will
find that it will not have a big effect on the relic abun-
dance and that neglecting it will not qualitatively alter our
conclusions.

We work in the unitarity gauge and shift the fields to the
new minimum; H → (0, (v + h)/

√
2)T and ϕ → (w + φ),

where v and w are the vacuum expectation values (vevs) of
the neutral component of H and φ respectively. We require
that S does not acquire a vev so that the Z2 symmetry
remains unbroken and S is stable. With this substitution,
we then minimize the resulting potential V (h, φ, S) with
respect to the scalar fields and obtain μ2

H = λHv2 + λ4w
2

and μ2
ϕ = λϕw2 + λ4v

2. After substituting these expres-
sions into V (h, φ, S), we find the mass terms from the
resulting potential. Diagonalizing the mass matrix for the
h and φ fields leads to physical states that are linear com-
binations of the the h and φ fields with mixing angle α

given by:
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h1 = h cos α − φ sin α (2)

h2 = φ cos α + h sin α (3)

with

sin(2α) = 2λ4vw√
(λHv2 − λϕw2)2 + 4λ2

4v
2w2

(4)

cos(2α) = λϕw2 − λHv2
√

(λHv2 − λϕw2)2 + 4λ2
4v

2w2
, (5)

and the scalar masses given by

m2
h1

= λHv2 + λϕw2 − λϕw2 − λHv2

cos (2α)
(6)

m2
h2

= λHv2 + λϕw2 + λϕw2 − λHv2

cos (2α)
(7)

m2
S = μ2

S + λϕϕSSw
2. (8)

For small values of α, we identify h1 with the 125 GeV scalar
associated with the Standard Model Higgs boson. Because
of the mixing, both h1 and h2 act as portals between the
Standard Model and the dark matter candidate S.

When we scan the parameter space, we will use the phys-
ical parameters mh1 , mh2 , α, v, and w, but the theoretical
constraints described below constrain the Lagrangian param-
eters. We will therefore need the relationships between the
physical and the Lagrangian parameters, which are given by

λH = 1

4v2

((
m2

h1
+ m2

h2

)
−

(
m2

h2
− m2

h1

)
cos 2α

)
(9)

λϕ = 1

4w2

((
m2

h1
+ m2

h2

)
+

(
m2

h2
− m2

h1

)
cos 2α

)
(10)

λ4 = sin 2α

4vw

(
m2

h2
− m2

h1

)
. (11)

In the following subsections, we examine the theoretical
constraints on the Lagrangian parameters.

2.1 Constraints from partial wave unitarity

We start by using partial wave unitarity (PWU) of the 2 → 2
scattering amplitudes to constrain the Lagrangian parame-
ters. In the high energy limit, only tree level diagrams involv-
ing four-point scalar interactions contribute, as diagrams
involving propagators are suppressed by the square of the col-
lision energy. Under these conditions, only the zeroth partial
wave amplitude a0 contributes to the 2 → 2 amplitudes M,
so that the constraint |a0| < 1

2 corresponds to M < 8π . In
the high energy limit, we can also use the Goldstone equiva-
lence theorem to replace the gauge bosons with the Goldstone
bosons.

There are therefore six fields to consider in the scatter-
ing amplitudes: S, ϕ, and the four Goldstone bosons η0,
η0∗, η+, and η−. The PWU condition must be applied to
each of the eigenvalues of the coupled-channel scattering

matrixM for all pairs of incoming and outgoing scalar fields.
Because the scalar potential is invariant under SU (2)×U (1)

symmetry, the scattering processes conserve electric charge
and hypercharge, and can be classified by the total electric
charge (Q) and hypercharge (Y ) of the incoming and outgo-
ing states. S and ϕ are SM gauge singlets and the Goldstone
bosons come from the SU (2)L doublet with Y = 1 (where
Qem = T3+Y/2). A symmetry factor of 1/

√
2 is included for

each pair of identical particles in the initial and final states.
Starting with the Q = 2 and Y = 2 quantum numbers,

there is only one scattering channel, η+η+ → η+η+, which
leads to the constraint

|λH | < 4π. (12)

Likewise, the only scattering amplitude for Q = 1 andY = 0
is η+η0∗ → η+η0∗

, which yields the same constraint.
For Q = 0 and Y = 1, there is only the η0ϕ → η0ϕ

scattering amplitude, leading to the constraint

|λ4| < 4π. (13)

Likewise, the only scattering amplitude for Q = 1 andY = 1
is η+ϕ → η+ϕ, which yields the same constraint.

For the Q = 0 and Y = 0 quantum numbers, there are
five states: η0η0∗, η+η−, ϕϕ, ϕS, and SS. This results in
a 5 × 5 scattering matrix consisting of a 4 × 4 block and
the ϕS → ϕS channel. The ϕS → ϕS channel leads to the
constraint

∣∣λϕϕSS
∣∣ < 4π. (14)

We can partially diagonalize the 4 × 4 matrix into a 3 × 3
matrix and a diagonal term. The diagonal term leads to the
constraint |λH | < 4π . To find the remaining constraints, we
diagonalize the 3 × 3 matrix by taking its determinant and
imposing that the roots of the resulting polynomial satisfy
|Roots (p(x))| < 8π , where

p(x) = (x − 3λS)
(
−4λ2

4 + (x − 6λH )
(
x − 3λϕ

))

− (x − 6λH ) λ2
ϕϕSS .

(15)

We follow the procedure of Ref. [83] to which we direct the
interested reader for details, and replace the bounds on the
roots of p(x) with the three equivalent conditions:

16π >

∣∣∣∣6λH + 3λϕ ±
√(

6λH − 3λϕ

)2 + 16λ2
4

∣∣∣∣ (16)

λS <
1

3

[
8π + (6λH − 8π) λ2

ϕϕSS

(6λH − 8π)
(
3λϕ − 8π

) − 4λ2
4

]
(17)

λS >
1

3

[
−8π + (6λH + 8π) λ2

ϕϕSS

(6λH + 8π)
(
3λϕ + 8π

) − 4λ2
4

]
. (18)
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Thus, the constraints on the Lagrangian parameters from par-
tial wave unitarity are given by Eqs. (12), (13), (14), (16), (17)
and (18).

2.2 Constraints from the Bounded from Below
Requirement

We next include constraints on the Lagrangian parameters
that ensure that the scalar potential is bounded from below.
Because the quartic terms dominate at large field values, this
constraint acts on the quartic terms in the potential.

We use the approach described in Ref. [78] (see also Ref.
[83]) in which we use a hyperspherical coordinate system
replacing the scalar fields by the following parameters:

r =
√

|H |2 + ϕ2 + S2 (19)

r sin β cos γ = |H |2 (20)

r sin β sin γ = ϕ2 (21)

r cos β = S2. (22)

The quartic part of the potential can be then be written as

r4

(1 + tan2 β)(1 + tan2 γ )
xᵀAy (23)

where

A = 1

4

⎡
⎣

λS 2λS λS

0 2λϕϕSS 2λϕϕSS

4λH 4λ4 λϕ

⎤
⎦ (24)

x =
⎡
⎣

1
tan β

tan2 β

⎤
⎦ (25)

y =
⎡
⎣

1
tan γ

tan2 γ

⎤
⎦ . (26)

Since the prefactor is strictly positive, the requirement for the
potential to be bounded from below is that xᵀAy be positive.
This term can be written as a quadratic in tan2 β with fac-
tors themselves quadratics in tan2 γ , or vice-versa. Requiring
these expressions to be positive leads to the following con-
straints:

λH > 0 (27)

λϕ > 0 (28)

λS > 0 (29)

λ4 > −√
λHλϕ (30)

λϕϕSS > −√
λϕλS . (31)

2.3 Constraints from consistency of the potential

With the sign conventions in our potential, for the H and ϕ

fields to obtain a vev and for S to not obtain a vev we require
μ2
H > 0, μ2

ϕ > 0, and μ2
S > 0. This leads to the following

three constraints:

μ2
H = λHv2 + λ4w

2 > 0 (32)

μ2
ϕ = λϕw2 + λ4v

2 > 0 (33)

μ2
S = m2

S − λϕϕSSw
2 > 0. (34)

Imposing these constraints gives the only consistent set of
parameters with a DM candidate. Under these conditions,
the potential and minima are unique.

3 Parameter scan and relic abundance

The model has eight independent parameters. At the Lagrangian
level, these parameters are λH , λϕ , λ4, λS , λϕϕSS , μH , μϕ ,
and μS . However, it is more transparent to use more physi-
cal parameters. We take these to be mh1 , mh2 , mS , the h-ϕ
mixing angle α, the two vacuum expectation values v and
w, and retain the Lagrangian parameters λϕϕSS and λS . The
relationship between these and the Lagrangian parameters
was given by Eqs. (9), (10), (11), (32), (33) and (34).

We identify v with the SM Higgs vacuum expectation
value and mh1 with the observed 125 GeV scalar mass, leav-
ing six parameters. Of these, λS is constrained by dark matter
self-interaction and Eqs. (17) and (18). When these two con-
straints are not mutually exclusive, λS can be set to an arbi-
trary value that satisfies these constraints without impacting
any other quantity of interest. λϕϕSS directly influences the
dark matter annihilation cross section, and we fix its value to
give agreement with the measured relic abundance after all
other parameters have been fixed. This leaves mh2 , mS , α,
and w as free input parameters.

Our procedure is to randomly choose values for mh2 ,
mS , α, and w. We can limit the allowed range on α using
the measured Higgs boson signal strengths to constrain
| cos α| � 0.97. This will be checked later by comparing
the calculated and measured signal strengths. We typically
scan the four parameters by randomly varying w andmS from
1 GeV to 1 TeV, mh2 from 100 GeV to 1 TeV, and α from
0.969 < | cos α| < 1.0. We take λS = 0.2. We note that we
find no qualitative difference in our results or conclusions
by increasing the scan range for mS , mh2 , and w to larger
values so that scanning to 1 TeV is sufficient to reveal the
characteristics we are exploring.

We then check the resulting Lagrangian parameters
against the relevant theoretical constraints. For the parameter
sets that pass this test, we use the micrOMEGAs program [84]
to search for values of λϕϕSS that agree with the measured
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Fig. 1 Dark matter relic abundance as a function of λϕϕSS for α = 0.2,
mh2 = 200 GeV, mS = 300 GeV, and for the fixed values of w given
in the legend. The dashed line is for the measured value of ΩDM =
0.1200(12) h−2 [85]

value for the relic abundance of ΩDM = 0.1200(12) h−2

[85]. We then check the Lagrangian parameters against the
remaining theoretical constraints. For those that pass this test,
we calculate and compare to experimental measurements the
Higgs boson invisible branching ratio, the Higgs boson signal
strength, and the dark matter self-interaction cross section.
For those parameter points that pass all these constraints, we
calculate the indirect detection cross sections for all possi-
ble final states and the direct detection cross section using
micrOMEGAs [84]. The goal is to see if parameter points
that pass all these theoretical and experimental tests are either
ruled out or allowed by current limits on direct and indirect
detection cross section measurements.

In the following subsections, we describe the details of
how we do these calculations.

3.1 Fitting λϕϕSS with the relic abundance

We calculate the relic abundance and other DM properties
using the micrOMEGAs program [84]. For each set of input
parameters, we perform a search by varying λϕϕSS until we
obtain agreement between the calculated value for ΩDM and
the measured value. However, when mS � mh2 , the relic
abundance is no longer a monotonic function of λϕϕSS , which
complicates the search and can lead to up to three solutions.
For these cases, the relic abundance starts by decreasing with
increasing λϕϕSS but then increases again due to a cancella-
tion in the DM annihilation cross sections. This is illustrated
in Fig. 1.

The cancellation is due to interference between the dia-
grams contributing to the SS → h2h2 cross section that, for
small h1-h2 mixing angles, occurs at λϕϕSS ≈ m2

S/2w2. This
is a consequence of the Feynman rules for the various vertices
entering these matrix elements; the details are presented in
Appendix A. As is well known, when the annihilation cross

Fig. 2 The dark matter annihilation cross section to scalar channels as
a function of λϕϕSS for α = 0.2, w = 300 GeV, mh2 = 200 GeV, and
mS = 300 GeV, for a center of mass energy of 125 GeV. The value
of λϕϕSS where the cross section is a minimum is different for each
channel

section decreases, the relic abundance increases due to earlier
freeze-out. For finite values of the mixing angle, this effect
is also present in the h1h2 and h1h1 final states, although
it occurs at different values of λϕϕSS for each channel; this
can be seen in Fig. 2. While the h2h2 final state generally
dominates because the h1h2 and h1h1 are suppressed by fac-
tors of sin α and sin2 α respectively, all channels contribute
to the relic abundance so that there is no simple formula for
the location of the maximum in ΩDM. As a consequence, we
use the small mixing angle formula given above to approxi-
mate the position of the maxima. While the value of mS only
affects the amplitude of the maxima, α does influence their
position, so this formula is not very accurate for large values
of α. Nonetheless, the formula is an adequate approximation
for the local maximum in ΩDM for the purposes of searching
for the values of λϕϕSS that give the correct relic abundance
value ΩDM = 0.1200(12) h−2 [85].

In general, as pointed out above, there can be up to three
values of λϕϕSS that give ΩDM = 0.12 h−2. We must there-
fore take some care in our search so that we do not miss
one of these solutions. For mS < 200 GeV, the maximum
is not high enough to yield additional solutions for λϕϕSS .
It is therefore sufficient to perform a simple search proce-
dure starting at λϕϕSS = 0. From this starting point, we
increase λϕϕSS in small increments until ΩDM falls below
0.12 h−2, after which we perform a binary search between
the last two values of λϕϕSS until we find a value of λϕϕSS

that yields ΩDM = 0.12 h−2. If this does not occur before
λϕϕSS reaches 4π , the scan is aborted.

For larger values of mS , we determine the position of
the maximum in ΩDM using λmax

ϕϕSS = m2
S/2w2. If ΩDM <

0.12 h−2 for λmax
ϕϕSS , there are no additional solutions due to

the maximum, and we follow the procedure described above
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starting at λϕϕSS = 0 to determine the unique solution, if it
exists.

If ΩDM > 0.12 h−2, we follow the procedure described
above starting at λmax

ϕϕSS to find a solution to the right of the
maximum. We repeat this procedure, this time decreasing
λϕϕSS from λmax

ϕϕSS to find a solution to the left of the maxi-
mum. If one is found, the procedure is repeated starting from
λϕϕSS = 0 to find the final solution.

This yields a list of points in the parameter space that give
the correct relic abundance. We then check to see that the
values of λϕϕSS satisfy the remaining theoretical constraints
given by Eqs. (17), (18), (31) and (34).

Once we have a set of parameters that give the correct
relic abundance and satisfy the theoretical constraints, we
test them against the experimental constraints.

3.2 Constraints from the Higgs invisible width

The current limits on the invisible width of the H0 boson
at 125 GeV is BRinvis < 0.26 at 95% C.L. (ATLAS [86])
and BRinvis < 0.19 at 95% C.L. (CMS [87]). We use the
less constraining limit of BRinvis < 0.26 but this has very
little effect on our results. Identifying h1 with the H0, the h1

invisible BR is given by

BRinv = Γinv

Γtotal
= Γinv

ΓSM cos2 α + Γinv
(35)

where ΓSM = 4.07 GeV [85] (see also HDECAY [88]),
which is modified by the h1–h2 mixing, cos α. The h1SS
vertex is 2iλϕϕSSw sin α, so that the invisible width is given
by

Γinv = λ2
ϕϕSSw

2 sin2 α

8πmh1

√√√√1 − 4
m2

S

m2
h1

. (36)

This constraint eliminates points for mS � mh1/2, where the
kinematically allowed decay h1 → SS results in a large Γinv.

3.3 Constraints from the Higgs signal strength

The Higgs signal strength μ is given by

μ =
∑
i

ciωi , (37)

where the sum runs over all channels, and where the channel
signal strength ci and the SM channel weight ωi are given by

ci = [σ × BR]i
[σSM × BRSM]i

(38)

ωi = εi [σSM × BRSM]i∑
j ε j [σSM × BRSM] j

(39)

for channel i with cross section σ (σSM) and branching ratio
BR (BRSM) in the BSM (SM) model and εi the experimental
efficiency for that channel [89]. For the Standard Model, the
Higgs signal strength parameter is μ = 1. The current PDG
quoted average for the signal strength is μ = 1.13± .06 [85].
In our model, μ ≤ 1. As such, relative to this best fit point,
the 95% C.L. limit is μ > 0.94.

For our model, all production channels are modified
equally by the h1–h2 mixing, cos α. This leads to a factor
of σi/σSMi = cos2 α for the production channels. The decay
channels are slightly different as one needs to include the
modification of the invisible width in the total width, so that

BRi

BRSMi
= ΓSM

ΓSMi

Γi

Γ
= cos2 α

ΓSM

Γ
(40)

where Γ = ΓSM cos2 α +Γinv. Putting it together we obtain

μ = cos4 α
ΓSM

Γ
, (41)

which can be used to apply the constraint μ > 0.94. This
constraint eliminates parameter points for which cos α �
0.97, as anticipated. Additionally, when h1 is kinematically
allowed to decay to SS, the h1 width is significantly larger
than the Standard Model value so that the signal strength is
altered, also eliminating parameter points.

3.4 Constraints from dark matter self-interaction

At tree level, the strength of dark matter self-interaction is
determined by λS from the quartic coupling and λϕϕSS from
t-channel and s-channel processes. Once λϕϕSS is set by the
relic abundance, we compare the predicted self-interaction
cross section to current limits on σDM. Constraints from the
Bullet Cluster give a limit of σSIDM/mS < 1.25 cm2/g
[90], while constraints from colliding galaxies clusters give
σDM/m < 0.47 cm2/g (95% CL) [91]. We use the tighter
constraint of σSIDM/mS < 0.47 cm2/g ≈ 2.2 × 103 GeV−3.
However, σSIDM only constrains λS , and we have chosen a
value that avoids this limit.

3.5 Constraints from indirect detection

Dwarf spheroidal satellite galaxies (dSphs) are typically DM
dominated, and so are a good place to study dark mat-
ter. We calculated cross-sections for our model using the
micrOMEGAs program [84] which outputs σIDv at rest. We
compared our results to a global analysis by Hoof et al. [92]
of DM signals from 27 dwarf spheroidal galaxies using 11
years of observations by Fermi-LAT [93].

In Fig. 3, we show our results along with the Fermi-LAT
limits for the bb̄, τ+τ−, and W+W− final states. Because
σIDv is evaluated at threshold, the lower bound is dictated by
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the kinematic threshold and each plot has a different lower
bound. Below mS ≈ mh1/2, the cross sections are relatively
insensitive to mS . In this region, the h1,2SS vertices are pro-
portional to λϕϕSSw, which appears in both σID and 〈σv〉
(which feeds into the relic abundance via the Boltzmann
equation [94]). As a consequence, any change in w leads
to a corresponding change in the value for λϕϕSS to give the
correct relic abundance so that the product λϕϕSSw remains
constant for a given value of mS . In any case, the points for
mS � mh1/2 are almost always ruled out by BRinv when
the decay h1 → SS is kinematically allowed because of the
resulting large Γinv. The dip at mS ≈ mh1/2 is due to the
Higgs resonance in the annihilation cross section entering in
the calculation of the relic abundance, forcing λϕϕSS to be
small to give the correct relic abundance and resulting in a
dip in the indirect detection cross section.

While the indirect detection limits do reject some param-
eter points for bb̄ and τ−τ+ final states, most of these were
already rejected by previous constraints. Only a few points
are rejected for the W+W− final state, but modest improve-
ments in experimental sensitivity will start ruling out regions
of the parameter space allowed by other constraints.

3.6 Constraints from direct detection

Now that all the theoretical constraints and various experi-
mental constraints have been applied to the parameter scan,
we turn to our original purpose of confronting the surviving
points with the direct detection experimental limits. In this
section we compare our parameter points to the limits from
the XENON1T experiment [95]. We want to see if patterns
emerge with respect to regions in the parameter space where
the direct detection cross section is suppressed. We start with
an overview of the direct detection cross sections (σDD) for
the scan of parameter points and then examine specific char-
acteristics of the results.

In our model, the Higgs boson t-channel exchange from
a Higgs portal is replaced with t-channel exchange of the h1

and h2 which is shown in Fig. 4. The direct detection cross
section for scalar DM with a Higgs portal is given by [96]

σDD = 1

4π

M2
N

(mS + MN )2

f 2
N M

2
N

v2

(
λhs

m2
h

)2

(42)

with mh the Higgs boson mass, λhs the Higgs-scalar DM
coupling, MN = 938.95 MeV the nucleon mass, and fN =
0.30 the Higgs nucleon coupling so that h1 and h2 exchange
results in the following substitution

(
λhs

m2
h

)2

→
(
gh1SS cos α

m2
h1

+ gh2SS sin α

m2
h2

)2

Fig. 3 Product of dark matter annihilation cross section and velocity
at v ≈ 0 as a function of the mass of the dark matter candidate S for the
bb̄, τ+τ−, and W+W− final states for the theoretically available points
in our scan. Points labeled as “rejected” are points that do not satisfy at
least one of the invisible width, Higgs signal strength, or self-interaction
constraints

Fig. 4 Feynman diagrams for the t-channel exchange involved in
direct detection, where N is the nucleon

123



405 Page 8 of 14 Eur. Phys. J. C (2021) 81 :405

Fig. 5 The dark matter direct detection cross section as a function of
mS for the 8148 theoretically allowed points from our scan of 10,000
points. Points labeled as “rejected” are points that do not satisfy at least
one of the invisible width, Higgs signal strength, self-interaction, or
indirect detection constraints

= 4 cos2 α sin2 αλ2
ϕϕSSw

2

(
1

m2
h1

− 1

m2
h2

)2

, (43)

where we used the relations from Eqs. (48) and (49). One
notes the cancellation between the two t-channel exchanges
and, more importantly, that the direct detection cross section
is proportional to λ2

ϕϕSS which, as pointed out above, is fitted
to give the correct relic abundance.

Figure 5 shows the direct detection cross sections calcu-
lated using micrOMEGAs [84] for the 8148 points of the
original 10,000 points that passed the theoretical constraints
in our parameter scan. The red points were rejected by at least
one of the invisible width, Higgs signal strength, dark matter
self-interaction, or indirect detection constraints. We remind
the reader that, for a given value of mS , we vary mh2 , cos α,
and w. We fit λϕϕSS to give the correct relic abundance, and
since λS is mainly constrained by the self-interaction cross
section, we chose a value that passes this constraint.

In the region below mS ≈ mh1/2, σDD is mainly deter-
mined by mS as can be seen from Eq. (42) with slight varia-
tions due to the value of α, and is largely independent of the
other parameters. This is for the same reason as with indirect
detection as discussed in Sect. 3.5: the h1,2SS vertices are
proportional to λϕϕSSw, which appears in both σDD and 〈σv〉,
so that any change in w leads to a corresponding change in
the value for λϕϕSS to give the correct relic abundance and
the product λϕϕSSw remains constant for a given value of
mS . Likewise, as also discussed in Sect. 3.5, the dip in σDD

around mS ≈ mh1/2 is due to the Higgs resonance where
λϕϕSS needs to be small to compensate for the enhancement
in the SS annihilation cross section to obtain the correct relic
abundance.

The region for mS � 80 GeV shows numerous param-
eter points not ruled out by direct detection limits. There
are two effects contributing to this. The first is due to the

Fig. 6 The dark matter direct detection cross section as a function of
mS for random theoretically allowed points with fixed values of mh2 .
Points labeled as “rejected” are points that do not satisfy at least one of
the invisible width, Higgs signal strength, self-interaction, or indirect
detection constraints

Fig. 7 All points allowed by invisible width, Higgs signal strength,
self-interaction, indirect detection, and direct detection constraints plot-
ted on the mh2 -mS plane. The dotted line indicates mh2 = 2mS

resonance effect of the portal scalar when mS ≈ mh2/2,
which is analogous to the Higgs resonance effect described
above [9,18,21]. Near the h2 resonance, the SS annihilation
cross section increases, requiring a smaller value for λϕϕSS to
obtain the correct relic abundance, resulting in a small direct
detection cross section. This is illustrated in Fig. 6 which
shows, in addition to the Higgs/h1 resonance, dips in the
direct detection cross section atmS = 100, 200 and 300 GeV
corresponding to mh2 = 200, 400 and 600 GeV respectively.
The linear relationship corresponding to mh2 ≈ 2mS shows
up clearly as a cluster of points along the diagonal in Fig. 7,
which plots the parameter points allowed by direct detec-
tion on a plot of mh2 vs mS . The cluster of points in the
vertical band at mS ≈ 62.5 GeV corresponds to the Higgs
resonance, and the cluster of points below the diagonal in the
bottom right portion of the plot reflects a second effect which
we discuss next. The lack of points along mS = mh2 simply
reflects the fact that there are no similar effects in that region.
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This second effect results in a big spread of the direct
detection cross section and the allowed parameter points, and
is more interesting due to non-trivial relationships between
the parameters w and λϕϕSS and how this influences the anni-
hilation cross sections as described in Sect. 3. We refer to
Fig. 8 to examine the details of this behavior. For mS < mhi
where i = 1 or 2, the annihilation cross section is domi-
nated by SS → W+W− and Z Z , while for mS > mhi the
annihilation cross sections into h1 and h2 become impor-
tant for achieving the correct relic abundance. In Fig. 8, we
see that the resulting direct detection cross section drops at
mS = mH = 125 GeV and again at mS = mh2 = 200 GeV,
the value used formh2 in this figure. These points correspond
to where the SS → hi hi annihilation channels open up so
that a smaller value of λϕϕSS is needed to achieve the correct
relic abundance.

When mS > mhi , the direct detection cross section in
Fig. 8 depends on the value of w because it is the product
wλϕϕSS that enters the expressions for the s-channel annihi-
lation cross sections for SS → hi h j , where i, j = 1 or 2. In
this situation, as seen in Fig. 1, there can be multiple values
of λϕϕSS that give the correct relic abundance for a given set
of the free parameters, mh2 , mS , α, and w, due to the peak
in ΩDM at λϕϕSS ≈ m2

s/2w2. This results in the multiple
values for the direct detection cross section seen in Fig. 8.
Referring to Fig. 1, we can see that this situation only arises
for intermediate values of w. This is because for small val-
ues of w the peak shifts to large values of λϕϕSS where ΩDM

falls below the observed value, while for large values of w

the calculated value of ΩDM sits above the measured value
until after the peak. As such, for small and large values of w,
there is only one solution for λϕϕSS . The multiple values of
λϕϕSS for intermediate values of w result in multiple values
for the direct detection cross section, although it should be
noted that the additional points with large values of λϕϕSS

are more likely to be inconsistent with direct detection limits.
We can see how the solutions evolve with w from a differ-

ent perspective in Fig. 9, where we plot σDD versus w while
keeping the other parameters fixed and as usual fitting λϕϕSS

to give the correct relic abundance. The horizontal lines are
the XENON1T limits, so points below the lines are allowed
and points above are ruled out. The regions of parameter
space at both small and large values of w are allowed by
the direct detection limits. In the intermediate region, start-
ing with small values of w, there are multiple values for the
direct detection cross sections reflecting the multiple solu-
tions for λϕϕSS that give the correct relic abundance. In this
region, some solutions give rise to large direct detection cross
sections that are ruled out by experimental limits while others
are allowed. As w increases further, we leave the region of
multiple solutions and the remaining solutions are ruled out
by direct detection limits until eventually they fall below the
XENON1T limits. The size of the ruled out region depends

Fig. 8 The dark matter direct detection cross section as a function of
mS for theoretically allowed points with α = 0.2, mh2 = 200 GeV, and
the fixed values of w given in the legend

Fig. 9 Dark matter direct detection cross section as a function of w

for theoretically available points with α = 0.1, mh2 = 200 GeV, and
the fixed values of mS given in the legend. The dotted lines correspond
to the XENON1T limit for each corresponding value of mS . For each
value of mS shown, there is an intermediate range of w values that have
no points below the direct detection cross section limit

on the cancellations of the dark matter annihilation cross sec-
tions for the available scalar channels. In our model, when
kinematically allowed, the SS → h2h2 channel dominates.
However, this region could be larger for cases where multiple
scalar channels are comparable in importance.

3.7 Effect of taking λHHSS 	= 0

We end this section with some comments on the conse-
quences of not setting λHHSS to zero in Eq. (1). We chose
λHHSS = 0 to highlight the interplay between parameters
of the model, and altering this choice will not affect our
conclusions. Allowing λHHSS 	= 0 introduces an additional
parameter so that for this case it is a linear combination of
λϕϕSS and λHHSS that is fitted to reproduce the observed
relic abundance. This gives a family of solutions for these two
Lagrangian parameters when keeping the rest of the param-
eters fixed. This is illustrated in Fig. 10 where the relic abun-
dance is plotted as a function of λϕϕSS and λHHSS with the
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Fig. 10 Dark matter relic abundance as a function of λϕϕSS and λHHSS
for α = 0.2, mh2 = 200 GeV, mS = 300 GeV, and w = 300 GeV. The
grey plane is for the measured value of ΩDM = 0.1200(12) h−2 [85]

other parameters fixed to the same values given in Fig. 1;
α = 0.2, mh2 = 200 GeV, mS = 300 GeV, with the choice
w = 300 GeV. We see that there is now a continuum of solu-
tions, with our choice in this paper corresponding to solutions
where λHHSS = 0. Rotating from the λHHSS = 0 axis to
the λϕϕSS = 0 axis simply corresponds to another choice
of parameters. For the parameters used in Fig. 10, we can
obtain the correct relic abundance for a continuum of λHHSS

and λϕϕSS values, but the multi-valueness of ΩDM is only
present near the λHHSS = 0 axis, so that when λHHSS 	= 0
the prediction for the direct detection cross section is more
straightforward. Thus, taking λHHSS 	= 0 does not qualita-
tively change our results but misses the subtleties and rich-
ness of the effects that are discussed in this paper.

4 Conclusions

We studied a simple model of scalar DM with a scalar portal
that can mix with the SM Higgs. Our purpose was to explore
regions of parameter space with a suppressed direct detec-
tion cross section for a Higgs portal model. We found that
even in this simple model there remains significant regions
of parameter space that are not ruled out by direct detection
measurements, with many points lying below the neutrino
floor. Three of the mechanisms leading to these regions have
been discussed previously; a small Higgs-portal mixing angle
leading to a small coupling with the DM, the Higgs resonance
effect which requires a small DM-portal coupling to compen-
sate for the enhanced DM annihilation cross section due to
the Higgs resonance, and the similar effect as a result of the
portal resonance.

An additional effect is the result of a heavy DM particle
with a lighter portal. This opens up new DM annihilation
channels so that the parameters controlling this annihilation
need to compensate, resulting in a smaller direct detection
cross section. For certain regions of the parameter space,

destructive interference between diagrams leads to multiple
solutions for the DM-portal couplings, resulting in a spread
of allowed parameter points. We therefore find, contrary to
common lore, that even in a very simple model of DM there
are sizeable regions of parameter space that are still allowed
by direct detection limits.
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AppendixA: Interference in the darkmatter annihilation
amplitude

The model presented in Sect. 2 features a dark matter candi-
date S which couples only to the other two physical scalars
h1 and h2, giving three annihilation channels: SS → h1h1,
SS → h1h2, and SS → h2h2. At tree-level, each of these
channels features the five diagrams shown in Fig. 11: two
s-channels with h1 and h2 mediators, t- and u-channels with
an S mediator, and a quartic vertex.

The relevant vertices are given by

gh1h1h1 = 6i(λHvc3
α − λ4wc2

αsα + λ4vcαs
2
α

−λϕws3
α) (44)

gh1h1h2 = 2i(λ4wc3
α − (2λ4 − 3λH ) vc2

αsα

− (
2λ4 − 3λϕ

)
wcαs

2
α + λ4vs

3
α) (45)

gh1h2h2 = 2i(λ4vc
3
α + (

2λ4 − 3λϕ

)
wc2

αsα

− (2λ4 − 3λh) vcαs
2
α − λ4ws3

α) (46)

gh2h2h2 = 6i(λϕwc3
α + λ4vc

2
αsα + λ4wcαs

2
α

+λHvs3
α) (47)

gh1SS = −2iλϕϕSSwsα (48)

gh2SS = 2iλϕϕSSwcα (49)

gh1h1SS = 2iλϕϕSSs
2
α (50)
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Fig. 11 Feynman diagrams contributing to the SS → h2h2 process

gh1h2SS = −2iλϕϕSScαsα (51)

gh2h2SS = 2iλϕϕSSc
2
α, (52)

where cα = cos α and sα = sin α. In the limit α → 0, using
Eqs. (10) and (9), these vertices become

gh1h1h1 = 3i
m2

h1

v
(53)

gh2h2h2 = 3i
m2

h2

w
(54)

gh2SS = 2iλϕϕSSw (55)

gh2h2SS = 2iλϕϕSS, (56)

with all other couplings going to 0, effectively decoupling h1

from the other scalars.
Under this approximation, the amplitudes of SS → h1h1

and SS → h1h2 vanish, and the amplitude of SS → h2h2 is
given by

MSS→h2h2 = gh2h2SS − igh2h2h2gh2SS

s − m2
h2

− ig2
h2SS

t − m2
S

− ig2
h2SS

u − m2
S

(57)

≈ 4iλϕϕSS − 8i
w2λ2

ϕϕSS

m2
S

, (58)

where we used a threshold approximation to set the Mandel-
stam variables to s = (

2mh2

)2 and t = u = 0. The resulting
amplitude is zero at both λϕϕSS = 0 and λϕϕSS = m2

S/2w2.
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