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Abstract The geometry of the Ellis–Bronnikov wormhole
is implemented in the Rastall and k-essence theories of grav-
ity with a self-interacting scalar field. The form of the scalar
field potential is determined in both cases. A stability anal-
ysis with respect to spherically symmetric time-dependent
perturbations is carried out, and it shows that in k-essence
theory the wormhole is unstable, like the original version of
this geometry supported by a massless phantom scalar field
in general relativity. In Rastall’s theory, it turns out that a per-
turbative approach reveals the same inconsistency that was
found previously for black hole solutions: time-dependent
perturbations of the static configuration prove to be excluded
by the equations of motion, and the wormhole is, in this sense,
stable under spherical perturbations.

1 Introduction

Black holes and wormholes are remarkable predictions of
the General Relativity theory (GR). The detection of grav-
itational waves emitted by merging of compact objects [1]
and the recent image of a supermassive object at the center of
the galaxy M87 [2] have brought black holes to the status of
astrophysical objects whose existence in nature leaves little
doubt. On the other hand, wormholes remain a hypothetical
prediction of GR. In its simplest configuration, a wormhole
is composed of two asymptotically flat Minkowskian space-
times connected by a kind of tunnel. The two flat asymptotic
regions are usually considered as different universes that are
connected by a throat. One of the problematic aspects of
wormhole configurations is the necessity of having negative
energy, at least in the vicinity of the throat, in order that
they could exist. Negative energy, which implies violation of
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the standard energy conditions, brings two main problems:
the configuration can be unstable; or generally, the throat
may not be traversable, in the sense that tidal forces may be
huge, and possibly only pointlike objects may cross it from
one universe to the other, except for some special cases. For
a pedagogical description of wormhole properties, see Ref.
[3].

The Ellis–Bronnikov (EB) wormhole [4,5] is one of the
simplest solutions of GR leading to a structure of two flat
asymptotics connected by a throat. As a matter content, the
EB wormhole solution uses a free massless scalar field with
negative energy. Such field is normally denoted as a phan-
tom scalar field. The configuration is, as could be expected,
unstable due to the repulsive nature of the scalar field, see,
e.g., [6,7] and references therein. Studies of static, spheri-
cally symmetric configurations in the presence of scalar fields
have a long history, see [8,9] for the first seminal works on
these lines. In parallel, there has been much effort to obtain
wormhole solutions which, besides being traversable, would
be stable and do not require exotic matter. However, it is hard
to fulfill these requirements in the context of GR and even
in its extensions for a simple reason: in order to cross the
throat by coming from one region and arriving in the other,
the geodesics must first converge and later diverge, and this
property requires repulsive properties of matter which should
thus violate at least some of the standard energy conditions.
Still in the framework of GR there are, on the one hand,
an example [10] of a stable wormhole supported by some
kind of phantom matter, and, on the other hand, examples
of phantom-free rotating cylindrically symmetric wormholes
whose stability properties are yet unknown [11,12].

It is well known that a given metric may be a solution
of the field equations of different theories of gravity or even
in a single theory with different matter sources. An exam-
ple is [10] where the EB wormhole in GR is supported by a
particular kind of phantom perfect fluid instead of a scalar
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field as in [4,5]. In the case of different theories, the matter
content should naturally depend on the theory under consid-
eration. In this paper we explore the EB wormhole metric
in two different theories. The first one is Rastall’s theory of
gravity [13] that abandons one of the cornerstones of GR,
the usual conservation law for matter fields. The second one
is the k-essence theory [14] which modifies the matter sec-
tor by introducing non-canonical forms for the kinetic term
of a scalar field. The k-essence proposal may be connected
with some fundamental theories inspired by quantum grav-
ity. In both cases our goal is to verify if it is possible to avoid
the usual difficulties in wormhole construction and to obtain
stable solutions.

Previously, both Rastall and k-essence theories with a
self-interacting scalar field have been studied in attempts
to obtain static, spherically symmetric black hole solutions
[15,16]. The solutions turned out to be quite exotic, mainly
due to the asymptotic properties at infinity. A stability anal-
ysis has shown that those k-essence solutions were unstable
[17]. However, surprisingly, the perturbation analysis of the
Rastall solutions was shown to be inconsistent, and the sta-
bility issue remained unclear [18]. It has been speculated that
this property of the Rastall solutions is connected with the
absence of a Lagrangian formulation of this theory. A curi-
ous aspect of these k-essence and Rastall solutions is that
they share some duality properties, in spite of quite different
structures of the theories themselves [19].

Here we show that the EB wormhole metric can be a solu-
tion of both Rastall and k-essence theories under the condi-
tion that the potential describing the self-interaction of the
scalar field is nonzero. We determine the form of this poten-
tial in each case. In the k-essence theory we use a power-
law expression of the kinetic term, as in Ref. [16]. We per-
form a perturbation analysis of these solutions using a gauge-
invariant approach, and we find that the k-essence solution
is unstable. Unlike that, in Rastall gravity the inconsistency
found previously for black hole solutions re-appears here, and
no time-dependent spherically symmetric perturbations can
exist. Thus the EB metric in this framework may be said to
be stable under such perturbations, but the existence of non-
perturbative time-dependent solutions cannot be excluded,
to say nothing of possible instabilities under less symmetric
perturbations.

The paper is organized as follows. In Sect. 2 some general
expression to be used in the calculations are settled out. In
Sect. 3, the EB wormhole solution in GR is reproduced for
comparison. In Sect. 4, the corresponding wormhole solu-
tion and the stability issue is presented for Rastall gravity. A
similar analysis is carried out in k-essence theory in Sect. 5.
In Sect. 6 we present our conclusions.

2 General relations

The goal of the present section is to give some general rela-
tions that will be used in the rest of the paper. We assume
spherical symmetry but not necessarily staticity. This allows
us to easily consider a static configuration which we will call
the background and linear perturbations around it.

Spherical symmetry can be described by a metric of the
form

ds2 = e2γ (t,x)dt2 − e2α(t,x)dx2 − e2β(t,x)d�2, (1)

where d�2 is the metric on a unit 2-sphere. If the config-
uration besides being spherically symmetric is also static,
the metric coefficients α, β and γ depend only on the radial
coordinate x . There is freedom to reparametrize the radial
coordinate, and its particular choice can be made by postu-
lating a condition connecting the coefficients α, β and γ .

For the metric (1) the components of the Ricci tensor and
expression for the d’Alambertian operator acting on a scalar
field are given by

R0
0 = e−2γ

[
α̈ + 2β̈ + α̇2 + 2β̇2 − γ̇ (α̇ + 2β̇)]

−e−2α
[
γ ′′ + γ ′(γ ′ − α′ + 2β ′)

]
,

R1
1 = e−2γ

[
α̈ + α̇(α̇ − γ̇ + 2β̇)

]

−e−2α
[
γ ′′ + 2β ′′ − α′(γ ′ + 2β ′) + γ ′2 + 2β ′2],

R2
2 = e−2γ

[
β̈ + β̇(α̇ − γ̇ + 2β̇)

]

−e−2α
[
β ′′ + β ′(γ ′ − α′ + 2β ′)

] + e−2β,

R01 = 2β̇ ′ + 2(β ′ − γ ′)β̇ − 2β ′α̇, (2)

�φ = e−2γ
[
φ̈ + (α̇ − γ̇ + 2β̇)φ̇

]

−e−2α
[
φ′′ + (γ ′ − α′ + 2β ′)φ′]. (3)

where dots denote ∂/∂t and primes ∂/∂x .
In the case of a static space-time, all time derivatives dis-

appear. However, in the study of small time-dependent per-
turbations around a given static solution at linear order, the
linear terms with time derivatives become relevant.

In what follows we will discuss wormhole configurations
in GR, Rastall’s theory of gravity in the presence of a scalar
field, and k-essence theories. In all these cases, the gravita-
tional field equations can be written as the Einstein equations
with appropriate stress-energy tensors T ν

μ ,

Rν
μ − 1

2
δν
μR = −T ν

μ , (4)

or alternatively,

Rν
μ = −T ν

μ + 1

2
δν
μT

ρ
ρ , (5)

where we are using units in which (in usual notations) c =
8πG = 1. These expressions are also valid in Rastall gravity,
under a suitable redefinition of the stress-energy tensor.
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3 Wormhole solution in GR with a free scalar field

3.1 The (anti-)Fisher solution and the simplest wormhole

Let us begin with recalling a derivation of the Ellis–
Bronnikov wormhole solution in the context of GR. The
equations in the presence of a free massless scalar field φ

are given by

Rν
μ − 1

2
δν
μR = −ε

(
φ;μφ;ν − 1

2
δν
μφ;ρφ;ρ

)
, (6)

�φ = 0, (7)

where the parameter ε indicates if the scalar field is of ordi-
nary (canonical) (ε = 1) or phantom (ε = −1) type. The
Einstein equations rewritten in the form (5) read

Rν
μ = −εφ;μφ;ν . (8)

Let us consider the static metric (1) and a scalar field φ =
φ(x). The set of Eqs. (6) and (7) is then most conveniently
solved using the harmonic coordinate condition α = 2β + γ

[5] (under which we will denote the radial coordinate by u).
Indeed, under this condition, the scalar field equation (7) and
two independent equations among (8) (specifically, R0

0 = 0
and R0

0 + R2
2 = 0) take the form

φ′′ = 0, γ ′′ = 0, β ′′ + γ ′′ = e2β+2γ , (9)

(the prime stands here for d/du). All of them are immediately
integrated giving

φ = Cu, γ = −mu, m,C = const, (10)

(where two other integration constants are suppressed by
choosing the scale of t and the zero point of φ), and

(β ′ + γ ′)2 = e2β+2γ + k2 sign k,

k = const, (11)

where one more integration constant is suppressed by choos-
ing the zero point of u. The solution of (11) depends on the
sign of k:

e−β−γ = k−1 sinh(ku), k > 0,

e−β−γ = u, k = 0,

e−β−γ = k−1 sin(ku), k < 0, (12)

which can be jointly written as

e−β−γ = s(k, u) ≡
⎧
⎨

⎩

k−1 sinh(ku), k > 0,

u, k = 0,

k−1 sin(ku), k < 0.

(13)

Lastly, substituting (10) and (11) into the
(1

1

)
component

of Eq. (6) (which is an integral of other components), we
obtain a relation between the integration constants:

k2 sign k = m2 + 1

2
εC2. (14)

The metric takes the form

ds2 = e−2mudt2

− e2mu

s2(k, u)

(
du2

s2(k, u)
+ d�2

)
, (15)

The constants m and C have the meaning of the Schwarz-
schild mass and the scalar charge, respectively. The coor-
dinate u is defined (without loss of generality) at u > 0,
and u = 0 corresponds to spatial infinity (since there
r(u) ≡ eβ → ∞), at which the metric is asymptotically
flat.

Equations (10), (14) and (15) give a joint representation
of all static, spherically symmetric solutions to Eqs. (6), (7):
Fisher’s solution [8] of 1948 (repeatedly rediscovered after-
wards) corresponding to ε = 1 (hence k > 0) and all three
branches of the solution for ε = −1 [9] according to the
signs of k (sometimes called anti-Fisher solutions). Detailed
descriptions of the corresponding geometries can be found,
e.g., in [5,6,20,21]. Note that the instability of Fisher’s solu-
tion under small radial perturbations was shown in [22], and
that of anti-Fisher solutions in [6,7].

Our interest here is with wormhole solutions, which form
the branch ε = −1, k < 0: in this case, we have two flat
spatial infinities at u = 0 and u = π/|k|. The solution looks
more transparent after the radial coordinate transformation

x = b cot(bu), b := |k|, (16)

which brings the solution to the form

ds2 = e−2m[π/2−arctan(x/b)]dt2

−e2m[π/2−arctan(x/b)]dx2

−(x2 + b2)d�2, (17)

φ = C
[
π/2 − arctan(x/b)

]
, (18)

where x is the so-called quasiglobal coordinate correspond-
ing to the “gauge” α + γ = 0 in terms of the metric (1). The
simplest configuration is obtained in the case of zero mass,
m = 0:

ds2 = dt2 − dx2 − (x2 + b2)d�2, (19)

φ = ±b
√

2
[
π/2 − arctan(x/b)

]
. (20)

It is this solution that is called the Ellis wormhole [4],
or the Ellis–Bronnikov (EB) wormhole, since this and more
general scalar-vacuum and scalar-electrovacuum configura-
tions were obtained and discussed in [5]. In terms of the
metric (1), we have in (19)

α ≡ γ ≡ 0,

β ≡ log r(x) = 1

2
log(x2 + b2). (21)
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3.2 Ellis wormhole instability in GR

Consider now linear time-dependent spherically symmetric
perturbations of the EB wormhole, described by additions
δα, δβ, δγ and δφ of the corresponding static (background)
quantities, characterized by some smallness parameter ε. Fol-
lowing [6,21,22], we choose the perturbation gauge δβ = 0.
Then the perturbation equations following from (7) and (6)
in the order O(ε) can be written as

e2(α−γ )δφ̈ − δφ′′ − [2β ′ + γ ′ − α′]δφ′

−[δγ ′ − δα′]φ′ = 0. (22)

e2(α−γ )δα̈ − δγ ′′

−δγ ′(2γ ′ − α′ + 2β ′) + γ ′δα′ = 0, (23)

e2(α−γ )δα̈ − δγ ′′ + δα′(γ ′ + 2β ′)
+(α′ − 2γ ′)δγ ′ = 2εφ′δφ′, (24)

β ′(δγ ′ − δα′)
−2e2(α−β)δα = 0, (25)

−β ′δα̇ = −ε

2
φ′δφ̇. (26)

These equations are written with an arbitrary radial coor-
dinate x in the background static metric but with a particular
choice (δβ = 0) of the perturbation gauge fixing the refer-
ence frame in perturbed space-time. We see that Eq. (26) can
be integrated in t giving

δα = −η

2
δφ + ξ(x),

η = φ′

β ′ , (27)

with an arbitrary function ξ(x); we will put ξ(x) ≡ 0 since
only time-dependent perturbations are of interest.

For the Ellis wormhole solution (19), (20), such that γ =
α = 0 and ε = −1, the remaining equations read

δφ̈ − δφ′′ − 2β ′δφ′ − φ′(δγ ′ − δα′) = 0. (28)

δα̈ − δγ ′′ − 2β ′δγ ′ = 0, (29)

δα̈ − δγ ′′ + 2β ′δα′ = −2φ′δφ′, (30)

β ′(δγ ′ − δα′) − 2e−2βδα = 0, (31)

Subtracting equations (29) and (30) and using (27), we
obtain

δγ ′ = 1

2
(η′δφ − ηδφ′). (32)

Knowing δα and δγ ′, or equivalently using directly (31),
we can eliminate the metric perturbations from the scalar field
equation, which results in the following master equation:

δφ̈ − δφ′′ − 2β ′δφ′ − η′φ′δφ = 0. (33)

Assuming the time dependence of δφ as a single spectral
mode, δφ ∝ eiωt ,

δφ′′ + 2β ′δφ′ + (ω2 + η′φ′)δφ = 0. (34)

Eliminating δφ′ by the substitution δφ = e−β y(x), we
arrive at the Schrödinger-like equation

y′′+
{
ω2 + η′φ′ − β ′′ − β ′2

}
y = 0, (35)

which coincides with the master equation found in [6] in the
special case where α = γ = 0 and no scalar field potential
is present. Using our expressions for φ and β in the Ellis
wormhole solution, we find

y′′+
{
ω2−

[
b2(3x2 + 2b2)

x2(x2 + b2)2

]}
y = 0. (36)

The stability analysis requires imposing boundary condi-
tion. In our case, for x → ±∞ it is reasonable to require
δφ → 0, or y = o(|x |). We can note that, asymptotically,
Eq. (36)) has solutions in terms of Bessel functions,

y(x) = A±
√|x |J±ν(ω|x |), ν =

√
3b2 + 1/4, A± = const.

(37)

If ω = iω̄ (an imaginary frequency describing an insta-
bility), the solutions become

y(x) = √|x |
[
A1Kν(ω̄|x |) + A2 Iν(ω̄|x |)

]
,

A1,2 = const. (38)

where Kν and Iν are modified Bessel functions. The function
Kν tends to zero at large |x |, therefore, correct boundary con-
ditions with imaginary ω are compatible with an instability.
On the other hand, the positive nature of the effective poten-
tial Veff(x) in Eq. (36) (the expression in brackets) seems to
exclude “energy levels” ω2 < 0. However, this argument
cannot be directly applied because of a pole of this effec-
tive potential near the wormhole throat x = 0, Veff ≈ 2/x2.
This potential can be regularized by the appropriate Darboux
transformation as described in [6,7]. The regularized poten-
tial turns out to contain a sufficiently deep well leading to
the existence of an unstable perturbation mode, related to
an evolving throat radius. The same result was previously
obtained by a numerical study [23] which proved that an
Ellis wormhole can either collapse to a black hole or inflate,
depending on the sign of the initial perturbation.

The gauge condition we are using, δβ = 0, seems to pre-
vent considering perturbations connected with a changing
throat radius. But a more thorough investigation shows [6,7]
that the unknown δφ in the master equation Eq. (33) is actu-
ally a gauge-invariant quantity. Indeed, a perturbation gauge
may be described as a small coordinate shift xμ → xμ + ξμ
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with ξμ = O(ε), or, in the (x, t) subspace,

t = t̄ + ξ0(x, t),

x = x̄ + ξ1(x, t).

Then it can be directly verified that quantities likeβ ′δφ−φ′δβ
do not change under such coordinate shifts and are thus
gauge-invariant, as well as their products with any back-
ground quantities, for example, 1/β ′. It follows that δφ in
our consideration is the specific form of the gauge-invariant
quantity ψ = δφ − φ′δβ ′/β ′ in the gauge δβ = 0. Other
functions involved in (33) are combinations of the back-
ground quantities, therefore we can safely replace there δφ

with ψ and conclude that the whole master equation is gauge-
invariant. It can thus be used for considering any perturba-
tions, including those with an evolving throat radius.

The gauge invariance issue is presented in more detail in
[6,7,21], and its analogue for perturbations in cosmology
is discussed in [24]. In our further consideration we obtain
gauge-invariant master equations for spherical perturbations
in a similar way.

4 Wormholes in Rastall gravity

In Rastall’s theory, if the source of gravity is a scalar field
φ with a self-interaction potential V (φ), the field equations
can be written as [15,18]

Rν
μ − 1

2
δν
μR = −ε

{
φ;μφ;ν + 2 − a

2
δν
μφ;ρφ;ρ

}

−(3 − 2a)δν
μV (φ), (39)

�φ + (a − 1)
φ;ρφ;σ φ;ρ;σ

φ;αφ;α
= −ε(3 − 2a)Vφ, (40)

wherea is a constant parameter of the theory, and at its special
value a = 1 we return to GR. Thus the effective stress-energy
tensor of the scalar field reads

T ν
μ = ε

{
φ;μφ;ν − 2 − a

2
δν
μφ;ρφ;ρ

}
+δν

μW (φ), (41)

where W (φ) = (3 − 2a)V (φ). The modified Einstein equa-
tions can be rewritten as

Rμν = −ε

{
φ;μφ;ν + 1 − a

2
gμνφ

;ρφ;ρ
}
+gμνW (φ). (42)

For the static metric (1) and φ = φ(x), the Rastall equa-
tions reduce to

aφ′′ + [γ ′ − aα′ + 2β ′]φ′

= εe2αWφ, (43)

γ ′′ + γ ′(γ ′ − α′ + 2β ′)
= −ε

2
(1 − a)φ′2 − e2αW, (44)

γ ′′ + 2β ′′ − α′(γ ′ + 2β ′) + γ ′2 + 2β ′2

= −ε

2
(3 − a)φ′2 − e2αW, (45)

β ′′ + β ′(γ ′ − α′ + 2β ′) − e2(α−β)

= −ε

2
(1 − a)φ′2 − e2αW, (46)

where Wφ = dW/dφ.
These equations become identical to the GR equations

with a massless scalar field if we put

ε

2
(1 − a)φ′2 = −e2αW. (47)

where we should take into account that Wφ = W ′/φ′. Then
all solutions for α, β, γ and φ′ are the same as in GR. But,
a new element in Rastall gravity is that one needs a nonzero
potential in order to create these solutions. For any given spe-
cial solution, the potential can be determined from Eq. (47)
or from any of the Eqs. (44)–(46).

In particular, for the Ellis wormhole solution (19), (20)
the potential is found to be

W (φ) ≡ (3 − 2a)V (φ)

= b2(1 − a)

(x2 + b2)2

= 1 − a

b2 cos4(φ/
√

2). (48)

Thus we have the simplest Ellis wormhole solution in
Rastall gravity for any value of the Rastall parameter a.

4.1 Wormhole stability in Rastall gravity

To obtain the linear perturbation equations, we are consider
Eqs. (40) and (42) using the expressions (2) for the Ricci
tensor components, the gauge δβ = 0 and the potential (48)
as a function of φ. The equations read

e2(α−γ )δφ̈ − aδφ′′ − (γ ′ − aα′ + 2β ′)δφ′ − φ′(δγ ′ − aδα′)
= −εe2α(2Wφδα + Wφφδφ), (49)

e2(α−γ )δα̈ − δγ ′′ − (2γ ′ − α′ + 2β ′)δγ ′ + γ ′δα′

= ε(1 − a)φ′δφ′ + e2α(2Wδα + Wφδφ), (50)

e2(α−γ )δα̈ − δγ ′′ + (γ ′ + 2β ′)δα′ + (α′ − 2γ ′)δγ ′

= ε(3 − a)φ′δφ′ + e2α(2Wδα + Wφδφ), (51)

β ′(δγ ′ − δα′) − 2e2(α−β)δα

= −ε(1 − a)φ′δφ′ − e2α(2Wδα + Wφδφ), (52)

−β ′δα̇
= − ε

2
φ′δφ̇. (53)

For our simplest case γ = α = 0, ε = −1, the equations
read

δφ̈ − aδφ′′ − 2β ′δφ′ − φ′(δγ ′ − aδα′)
= −ε(2Wφδα + Wφφδφ), (54)

123
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δα̈ − δγ ′′ + 2β ′δγ ′

= ε(1 − a)φ′δφ′ + (2Wδα + Wφδφ), (55)

δα̈ − δγ ′′ − 2β ′δα′

= ε(3 − a)φ′δφ′ + (2Wδα + Wφδφ), (56)

β ′(δγ ′ − δα′) − 2e−2βδα

= −ε(1 − a)φ′δφ′ − (2Wδα + Wφδφ), (57)

β ′δα̇ = −1

2
φ′δφ̇. (58)

In [18] it has been shown that the stability problem for the
Rastall theory in static, spherically symmetric configurations
is inconsistent unless all perturbations are zero. It turns out
that here we come across the same problem, as could be
expected in view of those results. Indeed, from Eq. (58) we
obtain, as previously in GR,

δα = −1

2
ηδφ, η = φ′

β ′ . (59)

From the difference of (55) and (56) we obtain

δγ ′ = ε

2
(ηδφ′ − η′δφ). (60)

On the other hand, from Eqs. (57) and (59) it follows

δγ ′ = −1

2

(
ηδφ′ − η′δφ

)

+(1 − a)η

[
δφ′ +

(
η

4
φ′ + φ′′

β ′

)
δφ

]
. (61)

In this expression we have separated the terms contained
in (59) from the others.

The expressions (59) and (61) coincide only if a = 1, that
is, when the Rastall theory reduces to GR, or if the quantity
in brackets in (61) vanishes. In the second case, we can find
explicitly the behavior of δφ:

δφ = φ1(t) exp

(
− 3

2
x + 2b arctan

x

b

)
,

φ1(t) = arbitrary function. (62)

It is easy to see that, according to Eqs. (54) and (59), in the
solution (62) the only possibility is φ1(t) = 0. Hence, there
is no perturbation at linear level, the same result as in [18].
Quite similarly to [18], it implies the absence of perturbations
in all orders of smallness.

5 Wormholes in k-essence theories

5.1 Static wormholes

Let us consider the theory defined by the Lagrangian density

L = √−g
[
R + f (X) − 2V (φ)

]
, (63)

with the definitions

X = ηφ;ρφ;ρ, η = ±1. (64)

The scalar field equation has the form

η fX�φ + 2 fX Xφ,ρφ,σ φ;ρ;σ = Vφ, (65)

where the subscripts X and φ denote derivatives with respect
to the corresponding variables. The Einstein equations have
the form (4) with the stress-energy tensor

T ν
μ = fXηφ,μφ,ν − 1

2
δν
μ f + δν

μV . (66)

In the form (5) they can be written as

Rν
μ = η fXφ,μφ,ν − 1

2
δν
μ(− f + X fX + 2V ). (67)

Let us now consider static, spherically symmetric space-
times with the metric (1) and φ = φ(x) and choose

f (X) = ε f0X
n, n > 0,

f0 > 0, ε = ±1. (68)

To avoid the possibility of complex values of f (X), we
must then fix η = −1, so that

X = e−2αφ′2. (69)

The resulting equations of motion are

n f0e
−2nαφ′2n−2

×
{
(2n − 1)φ′′ + [2β ′ + γ ′ − (2n − 1)α′]φ′} = −εVφ,

(70)

γ ′′ + γ ′(2β ′ + γ ′ − α′)

= − ε f0
2

(n − 1)e2(1−n)αφ′2n − e2αV, (71)

γ ′′ + 2β ′′ − α′(γ ′ + 2β ′) + γ ′2 + 2β ′2

= f0
2

(n + 1)e2(1−n)αφ′2n − e2αV, (72)

β ′′ + β ′(2β ′ + γ ′ − α′) − e2(α−β)

= − ε f0
2

(n − 1)e2(1−n)αφ′2n − e2αV . (73)

If we assume that the Ellis wormhole is a solution to
Eqs. (70)–(73), we substitute there the expressions (21) and
find that the sum and difference of (71) and (72) lead to the
relations

V = ε f0
2

(n − 1)e2nγ φ′2n,

n f0εφ
2n = 2r ′′

r
= 2b2

(x2 + b2)2 . (74)

It follows that ε = −1, which is natural for a wormhole
solution that must violate the Null Energy Condition, so that
T 0

0 − T 1
1 < 0. As a result, we obtain the following explicit

expressions for φ′ and the potential V :

φ′ = C(x2 + b2)−1/n,

123
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C =
(

2b2

n f0

)1/(2n)

, (75)

V = f0
2

(1 − n)φ′2n

= f0
2

(1 − n)
C2n

(x2 + b2)2 . (76)

Substituting the expression for φ′ to (70) to find Vφ , one
can verify that the latter coincides with Vφ = V ′/φ′ obtained
directly from (76), thus confirming the correctness of the
solution.

One can integrate φ′ given by (75) to obtain

φ = Cxb−2/n
2F1

×
(

1

2
,

1

n
,

3

2
; − x2

b2

)
+ φ0,

φ0 = const. (77)

It is not simple to obtain a closed expression for V (φ)

(to do that, we must invert the hypergeometric function).
However, V (φ) is well defined since φ′ > 0 at all x . Also,
at some special values of n the hypergeometric function can
reduce to simpler expressions.

Thus the Ellis wormhole solution is consistent with k-
essence theory with a potential.

5.2 Instability of the k-essence solution

The perturbation equations in the gauge δβ = 0, under the
condition α = γ = 0 (but their perturbations are nonzero)
can be written as

δφ̈ − (2n − 1)δφ′′ − 2β ′δφ′−
{
δγ ′ − (2n − 1)δα′

}
φ′

= 1

n f0
φ′(1−2n)

×
{
Vφφφ′δφ + Vφ

[
2nφ′δα + 2(1 − n)δφ′

]}
, (78)

δα̈ − δγ ′′ − 2β ′δγ ′ = f0(n − 1)φ′2n−1

×
[
(1 − n)φ′δα + nδφ′] +

(
2V δα + Vφδφ

)
, (79)

δα̈ − δγ ′′ − 2β ′δα′ = − f0(n + 1)φ′2n−1

×
[
(1 − n)φ′δα + nδφ′] +

(
2V δα + Vφδφ

)
, (80)

β ′(δγ ′ − δα′) − 2e−2βδα = f0(1 − n)φ′2n−1

×
[
(1 − n)φ′δα + nδφ′] −

(
2V δα + Vφδφ

)
, (81)

−β ′δα̇ = n

2
f0φ

′2n−1
δφ̇. (82)

From Eq. (82) one obtains

δα = −n

2
η̄δφ,

η̄ = f0
φ′2n−1

β ′ . (83)

Using this result, and combining Eqs. (79) and (80), we
obtain

δγ ′ = n

2
(1 − 2n)η̄δφ′

+n

2

[
η̄′ + (1 − n)nη̄2φ′

]
δφ. (84)

This expression is consistent with (61) if n = a = 1 and
ε = −1.

Using Eq. (81), the relation (83) and the background equa-
tions, we find again Eq. (84). Hence, unlike the Rastall case,
the k-essence perturbation analysis is consistent, quite simi-
larly to the results of [17,18].

In addition, we can obtain an expression for δα′ by com-
bining (81) with the difference of (79) and (80) as

δα′ = 1

2β ′
[ − n f0φ

′2n−1 − 2e−2βδα

−2(1 − n) f0β
′φ′2n−1δφ

]
. (85)

This expression coincides with the one obtained by
directly differentiating (83), which verifies the correctness
of the model and the calculations.

Now, to obtain the master equation for δφ, we use the
previous results and insert them into (78), along with the
relations due to the background equations,

Vφ = −nη̄β ′
[
(2n − 1)

φ′′

φ′ + 2β ′
]

= 4b2

Cn
(n − 1)x(b2 + x2)−3+1/n, (86)

Vφφ = −n

{
4ηβ ′′ β ′

φ′ + η̄′ β ′

φ′

[
(2n − 1)

φ′′

φ′ + 2β ′
]

+(2n − 1)η̄

[
β ′′φ′′

φ′2 + β ′
(

φ′′′

φ′2 − φ′′2

φ′3

)]}

= 4b2(n − 1)

C2n2 (b2 + x2)−4+2/n

×(nb2 + (2 − 5n)x2). (87)

The final form of the master equation is

−δφ̈ + (2n − 1)δφ′′ +
{

2β ′ + 2
(1 − n)

n

Vφ

η̄β ′

}
δφ′

+
{
n2η̄′φ′ + n(1 − n)

2
η̄2φ′2 − n

φ′

β ′ Vφ + φ′Vφφ

nη̄β ′

}
δφ = 0,

(88)

or explicitly,

δφ̈ − (2n − 1)δφ′′ − 2β ′
[

1 − 2(n − 1)2

n

]
δφ′

+U (x)δφ = 0,

123
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U (x) = 2b4(2n − 1)

x2(x2 + b2)2 + 2

n2(x2 + b2)2

×
[
nb2(n2 + n − 1) − x2(5n2 − 7n + 2)

]
. (89)

In general, the analysis of Eq. (89) is quite complicated.
Let us begin with a simple example which shows a particular
case where it is possible to explicitly prove the instability.
Particularly, let us fix n = 1/2. This case has been inves-
tigated in [16,18] in search for black hole solutions and a
study of their stability. In fact, there are some exotic types
of black hole, but they are unstable. Now we are considering
the same problem for the Ellis wormhole.

With n = 1/2, Eq. (89) greatly simplifies and reads

δφ̈ − 2x2 + b2

(x2 + b2)2 δφ = 0, (90)

which is easily integrated giving

δφ = K1(x)e
H(x)t + K2(x)e

−H(x)t ,

H(x) =
√

2x2 + b2

x2 + b2 , (91)

where K1(x) and K2(x) are arbitrary functions. This evi-
dently demonstrates the instability of the background config-
uration since the expression (91) exponentially grows with
time if K1 	= 0.

If n = 1, we return to the situation in GR.
If n < 1/2, Eq. (89) loses its hyperbolic nature, and the

system is hydrodynamically unstable for the same reason as
described in [17] and other papers.

Of more interest is the situation where n > 1/2, in which
Eq. (89) has a wave nature. It is then reasonable to get rid of
the term containing δφ′ by putting

δφ = e−pβ y(x, t),

p = 2n2 − 5n + 2

n(1 − 2n)
, (92)

after which the equation acquires the form

ÿ − (2n − 1)y′′ + [U (x) + (2n − 1)(β ′′ + pβ ′2)]y = 0,

(93)

or, assuming a single spectral mode, y ∝ eiωt , so that ÿ =
−ω2y,

y′′ +
[

ω2

2n − 1
− Veff(x)

]
y = 0,

Veff(x) = U (x)

2n − 1
+ pβ ′′ + p2β ′2. (94)

It is the Schrödinger-like equation usually appearing in
stability studies, for which the corresponding boundary-
value problem should be solved in order to obtain stabil-
ity conclusions. For perturbations of wormholes with phan-
tom scalar fields, the effective potentials Veff(x) contain

a singularity on the throat which can be regularized with
proper Darboux transformations [6,7,21] under the condi-
tion that Veff(x) = 2/x2 + O(1) near the throat (where x
is the “tortoise” coordinate in the wormhole space-time, and
x = 0 is the throat). This condition is generally satisfied for
wormholes supported by phantom scalar fields with arbitrary
potentials [21]. Surprisingly, this condition also holds for the
effective potential Veff(x) in our equation (94) for worm-
holes in k-essence theory, so that the stability problem can
be solved along the lines of [6,7,21]. This requires a separate
study, to be performed in the near future.

6 Conclusions and discussions

The Ellis–Bronnikov solution represents the simplest analyt-
ical wormhole solution that can be obtained in GR. It consists
of two asymptotically flat regions connected by a throat. This
wormhole requires a massless, minimally coupled phantom
scalar field: this means that all space, not only the throat, is
filled with a field having negative energy density. In spite of
being a very elegant and simple solution, the EB wormhole
has a major drawback: it is unstable under linear perturba-
tions. To look for a simple wormhole solution like the EB one
that may not require phantom fields and/or that are stable is
a challenge, even if some extensions of GR are employed.

It is well known that the same metric can be a solution of
different gravitational theories. We have exploited this fact
in order to investigate the conditions at which the EB worm-
hole metric can be a solution in the context of two extended
gravity theories, Rastall gravity and k-essence. Rastall grav-
ity is a more radical departure from GR since it modifies
the usual expression for the conservation law. In some sense,
Rastall gravity may be recast in the structure similar to GR
where the expression for the energy-momentum tensor must
be modified. Unlike that, k-essence is essentially a modifica-
tion of the matter sector, keeping a Lagrangian formulation,
by generalizing the usual kinetic expression. Both theories
have applications, for example, in cosmology [14,25,26] and
black hole physics [15,16].

We have shown that the EB metric can be a static, spheri-
cally symmetric solution in both Rastall and k-essence theo-
ries. To achieve that, a potential must be added in both cases,
implying that, as opposed to GR, a self-interacting scalar
field is required. The next step was to investigate the stability
of these solutions in Rastall and k-essence cases. In Rastall
gravity we face the same feature that was already found for
black hole solutions: the usual perturbative approach leads to
inconsistencies forcing to set all fluctuations near the back-
ground solution equal to zero. Perhaps this curious property
is connected with the absence of a Lagrangian formulation.
In k-essence theory, we have shown that the wormhole is
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unstable with respect to linear perturbation at least for the
parameter n in the range n ≤ 1/2.

Some remarks must be added concerning these results of
the perturbation analysis. First, only the simplest version of
a wormhole metric has been investigated. This restriction is
motivated by technical reasons since more complex config-
urations lead to very cumbersome expressions for the per-
turbations, even if a master equation can be obtained. Very
probably, a numerical investigation can be necessary, which
may imply new technical challenges. However, this remark
mainly concerns the k-essence case. In Rastall gravity the
situation may be more involved since we can expect that
the inconsistency found here in the perturbative approach
must remain, then a nonperturbative approach must be imple-
mented. We hope to address these problems in future studies.

Finally, we remark that there has been quite a long discus-
sion on the equivalence of GR and Rastall gravity. In fact, the
number of degrees of freedom is the same in both cases, and
this may allow for redefining the energy-momentum tensor
to recast the Rastall equations in the same form as in GR.
In the vacuum case, when the energy-momentum tensor is
zero, the two theories simply coincide. However, we see that
the situation changes if we consider particular forms of mat-
ter. Thus, in the present case, the self-interacting scalar field
has the equation of motion different from that in GR, and
so the change is not reduced to only redefining the energy-
momentum tensor. Thus, even though the number of degrees
of freedom is the same in both theories, their coupling is
different. The peculiar structure of this coupling in Rastall
gravity manifests itself in stability study leading to the failure
to apply a perturbation approach. Nevertheless, to be precise,
we cannot exactly conclude that the Rastall wormhole con-
figuration displayed here is stable since it is possible (even
if much more difficult) to use a nonperturbative approach
which may lead to nontrivial results on the stability of the
solution.
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