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Abstract We examine the evolution of peculiar velocities
of cold dark matter (CDM) in localized arrays of inhomoge-
neous cosmic structures in a ΛCDM background that can be
identified as a frame comoving with the Cosmic Microwave
(CMB). These arrays are constructed by smoothly match-
ing to this cosmological background regions of Szekeres-II
models whose source is an imperfect fluid reinterpreted as
non-comoving dust, keeping only first order terms in v/c.
Considering a single Szekeres-II region matched along two
comoving interfaces to a ΛCDM background, the magni-
tudes of peculiar velocities within this region are compati-
ble with values reported in the literature, while the present
day Hubble expansion scalar differs from that of the ΛCDM
background value by a 10% factor, a result that might provide
useful information to the ongoing debate on the H0 tension.
While the models cannot describe the virialization process,
we show through a representative example that structures of
galactic cluster mass reach the onset of this process at red-
shifts around z ∼ 3.

1 Introduction

It is a well known fact that cosmic structures at different
scales are not comoving with a frame of reference associ-
ated with the CMB and identified as the frame of a ΛCDM
background. This fact follows from measured and inferred
peculiar velocities between CDM structures and the CMB
[1]. These peculiar velocities are clearly non-relativistic (up
to 3000 km/s), which justifies studying their dynamical evo-
lution by means of Newtonian gravity as a good approxima-
tion [2]. However, relativistic effects might not be negligible
when considering the superposition of non-relativistic pecu-
liar velocities on scales comparable with the Hubble horizon.
Studies of large-scale peculiar velocities [3,4] have shown a
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connection between them and the anisotropy and inhomo-
geneity on large but still subhorizon scales.

Since the scale dependence of these velocities is still an
open topic, it is worth studying this dependence by means of
a general relativistic approach that complies with their non-
relativistic magnitudes. This approach involves considering
congruences of observers with different 4-velocities, leading
to distinct energy momentum tensors so that peculiar veloc-
ities result from momentum and energy fluxes between the
congruences [5]. Different congruences of observers define
different Hubble flows characterized by the kinematic quan-
tities associated with their 4-velocities. In particular, Tsagas
has examined the effect of considering peculiar velocities
under this approach on the interpretation of cosmologi-
cal observations (see [6,7] and references therein). Another
example of non-comoving matter can be found in [8], which
examined the evolution of cosmic voids formed by baryons
and CDM.

The simplest example of an observed effect that can be
attributed to non-comoving observers is the peculiar veloc-
ity of our local Hubble flow with respect to the CMB frame,
which manifests itself in the large observed CMB tempera-
ture dipole. In particular, we can define the CMB frame as
the one in which this dipole vanishes [9]. Besides relativistic
models of peculiar non-relativistic velocities in the context
of non-comoving observers [2], there are non-perturbative
models based on exact and numerical solutions of Einstein’s
equations that consider non-comoving observers in complete
generality (tilted models) [8,10,11].

Since spherical symmetry is too idealized and limited,
it is useful to consider the class of exact solutions derived
by Szekeres [12,13] that (in general) do not admit isome-
tries and thus enhance the available degrees of freedom for
applications in cosmology. These solutions are classified in
two classes (I and II, Szekeres-I and Szekeres-II hereafter),
each one of which subdividing in three subclasses: quasi-
spherical, quasi-flat and quasi-hyperbolic, depending on their
symmetrical limits.

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-021-09154-0&domain=pdf
https://orcid.org/0000-0001-9086-343X
https://orcid.org/0000-0003-3774-4452
mailto:sebastian.najera@correo.nucleares.unam.mx


374 Page 2 of 14 Eur. Phys. J. C (2021) 81 :374

The quasi-spherical Szekeres-I models are regarded as the
most suitable for cosmological applications and thus have
been widely used to address the limitations of the spher-
ically symmetric Lemaître–Tolman–Bondi (LTB) models
(see comprehensive discussion in [12–14]) In these models
mass–energy and all physical and geometric objects appear as
the superposition of a dipole on top of the LTB monopole of
spherical symmetry [12], thus allowing for the description of
two or more structures: typically a central monopole (over-
density or void) evolving together with an elongated wall
type structure (“pancakes”) corresponding to the dipole. This
extra degrees of freedom provided a significant enhancement
to the “Big Void” models that were proposed ten years ago
to account for observations without resorting to dark energy
or a cosmological constant [15]. More recently, these mod-
els were used to describe multipole configuration involving
an arbitrary number of structures in a ΛCDM background
[16,17], providing an appealing coarse grained rendering of
CDM structures at 100 Mpc scales that can be made consis-
tent with the observed cosmography [18].

While most applications to cosmology involve the quasi-
spherical Szekeres-I models (see review in [14]), Szekeres-II
models have also been used for studying inflationary sce-
narios [19] and probing the structure growth factor [20,21].
However, we believe that the potential of Szekeres-II mod-
els for cosmological applications has remained largely unex-
plored.

In a recent paper [22] we proved that quasi-plane Szekeres-
II models admit a smooth matching, along an arbitrary num-
ber of matching interfaces, with spatially flat FLRW models.
This fact leads to appealing toy models of evolving arrays
of multiple inhomogeneous and anisotropic “pancake-like”
cosmic structures (regions of Szekeres-II models) embed-
ded in a homogenous and isotropic background (we briefly
review these models in Sect. 6).

In the present paper we extend the results of [22] by con-
sidering Szekeres-II regions whose energy–momentum ten-
sor has an imperfect fluid form with nonzero energy flux,
thus generalizing the exact “heat conducting dust” solutions
found by Goode [23], whose source is no longer interpreted
as a dissipative fluid (difficult to justify for CDM sources),
but as dust in a non-comoving frame (neglecting the sub-
dominant baryon contribution) with non-relativistic pecu-
liar velocities. Since the resulting Szekeres-II regions can
be matched to a ΛCDM background with peculiar velocities
vanishing at the matching interfaces, the comoving frame
associated with this background can be regarded as the CMB
frame in which the dynamical contribution of the photon
gas is neglected. A similar model was derived in [24] but
only considering Szekeres-II models with a comoving dust
source.

Having set up the models, we find that their free param-
eters allow for the description of evolving CDM struc-

tures falling into the comoving CMB frame with pecu-
liar velocities consistent with observed values. Specific
numerical examples are provided in full. By comput-
ing the Hubble scalar we show that its contrast with
respect to its ΛCDM background value H0 is entirely
determined by the shear tensor, producing fluctuations of
H0 of the same order of magnitude ∼ 10 % difference
that has emerged in the “H0 tension”, though peculiar
velocities have a negligible ∼ 0.01 % effect on present
day values of H0 between comoving and non-comoving
frames.

While we show that the parameters allow for an evolu-
tion of Szekeres-II structures that is free from shell crossing
singularities, we argue that these shell crossings mark the
limit of validity of the dust description of CDM which nec-
essarily breaks down at the onset of the virialization pro-
cess. Hence, we present a numerical example of a CDM
structure with mass M ∼ 1015 M� (roughly the mass of
a galactic cluster) arriving to the onset of virialization at cos-
mic times z ∼ 3 that are compatible with structure forma-
tion scenarios derived from numerical n-body simulations
[25].

The section by section description of the paper is as
follows. In Sect. 2 we introduce Szekeres-II models and
summarize their kinematic and geometric properties. In
Sect. 3 we present a generalization of the exact solu-
tion found by Goode [23], whose energy–momentum ten-
sor was originally interpreted as “heat conducting dust”,
showing in Sect. 4 that this source can be re-interpreted
as non-comoving dust endowed with non-relativistic pecu-
liar velocities (i.e. v/c � 1). In Sect. 5 we present the
physical, kinematical and geometric variables in dimen-
sionless form and expressed as covariant ’exact’ pertur-
bations of a ΛCDM background. We specify and define
the parameters that will be used in Sect. 7 to examine
in full detail the peculiar velocity field and the relevant
physical, kinematic and geometric variables of the mod-
els, including the evaluation of the contrast in the Hub-
ble scalar due to the inhomogeneity of the models. The
range of validity of the models (i.e. of the dust descrip-
tion for CDM) is examined in Sect. 8 providing a numeri-
cal example of galactic cluster structures starting to virialize
at the expected redshifts. Finally, we provide four appen-
dices: Appendix A presents the general energy–momentum
tensor associated with peculiar velocities between two gen-
eral fluid congruences with distinct 4-velocities. Appendix
B discusses the consistency conditions involved in assum-
ing peculiar velocities up to first order in v/c. Appendix
C provides a summary of junction conditions between the
Szekeres-II regions and the ΛCDM background (which
were derived in [22]). Appendix D presents the ΛCDM
limit in the parameter space without performing a smooth
matching.
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2 Szekeres models of class II: geometric and kinematic
properties

Szekeres models of class II (Szekeres-II hereafter) are exact
solutions of Einstein’s equations characterized by the line
element1 [22] (see also [12,13])

ds2 = −dt2 + S2(t)

[
X2dw2 + dx2 + dy2

f 2

]
,

f = 1 + k [x2 + y2]
4

, k = 0,±1 (1)

where X = X (t, xi ) with xi = w, x, y. The canonical
orthonormal tetrad ea(α) associated to this solution is:

ea(0) = δa0 , ea(w) = 1

SX
δaw, ea(x) = f

S
δax , ea(y) = f

S
δay .

where gab ea(α)e
b
(β) = η(α)(β). In general the models do not

admit isometries, hence all invariant quantities depend on the
four coordinates xa = t, xi .

The rest frames orthogonal to the comoving 4-velocity
ua = ea(0) are conformally flat, while the 2-surfaces marked
by t and w constant in (1) have constant curvature whose
sign is given by k, leading to three general sub-classes:
quasi-spherical (k = 1), quasi-plane (k = 0) and quasi-
hyperbolic (k = −1) models. All sub-classes contain axi-
ally symmetric limits, as well as higher symmetry particular
cases with spherical (k = 1), plane (k = 0) and hyperbolical
(k = −1) symmetries whose natural homogeneous limits are
the spherical, plane and hyperbolic Kantowski–Sachs space-
times (X = X (t)). All models admit smooth matchings with
their Kantowski–Sachs sub-cases, though as proven in [22],
quasi-plane models admit also a smooth matching with spa-
tially flat FLRW models along 3-dimensional hypersurfaces
w = const.

The only nonzero kinematic parameters associated with
ua = ea(0) are the expansion scalar Θ = ua ;a and shear
tensor σab = u(a;b) − (Θ/3)hab given by

Θ = Ẋ

X
+ 3Ṡ

S
, σ a

b = Σ ξab , Σ = − Ẋ

3X
, (2)

where Ẋ = ua X,a = X,t and ξab = δawδw
b − 3hab =

diag[0,−2, 1, 1]. The expansion tensor Θa
b and its three

eigenvalues Θa
b = λ(i)δ

a
b

Θab = h c
a h d

b uc;d = Θ

3
hab + σab,

λ(1) = Θw
w = Ṡ

S
+ Ẋ

X
, λ(2) =λ(3) = Θx

x = Θ
y
y = Ṡ

S
. (3)

provide a covariant description of the kinematic anisotropy
by identifying two equivalent principal directions λ(2) = λ(3)

1 Throughout the article we use geometrical units.

along ea(x) and ea(y), which are clearly different from λ(1) along
ea(w).

The inhomogeneity and anisotropy of the models can also
be appreciated from the local rate of change of redshift z
along null geodesics [5]

dz

z
=

[
1

3
Θ + σabk

akb
]
dϑ, (4)

an expression that must be integrated along light rays,
parametrized by the affine parameter ϑ , with tangent null
vectors ka defined by (1). Note that the redshift distribution
measured by local observations along a comoving worldline
(xi fixed) is isotropic only if hba Θ,b = 0 and σab = 0 along
the worldline.

3 An exact solution with dust and energy flux

In a comoving frame the models described by (1) are com-
patible with the most general energy–momentum tensor [22]

Tab = (ρ + Λ)uaub + (p − Λ)hab + πab + 2q(aub), (5)

where ρ, p, πab and qa are the matter-energy density,
isotropic and anistropic pressure and energy flux. However,
we will consider as source of (1) the particular case of (5)
with p = πab = 0 that generalizes to Λ > 0 the exact
solution found by Goode [23]

Tab = (ρ + Λ)uaub − Λhab + 2q(aub), (6)

Also, we will consider henceforth only the quasi-plane sub-
case k = 0 of (1)

ds2 = −dt2 + S2(t)[X2dw2 + dr2 + r2dφ2], (7)

where r, φ are cylindrical coordinates defined as x = r cos φ,
y = r sin φ (we remark that the quasi-plane subcase is not
spatially flat, see [22]). The dust density ρ and energy flux
vector qa = qrδra + qφδ

φ
a are given by

κ(ρ + Λ) = 3Ṡ2

S2 − X,rr + r X,r − r2X,φφ

r2S2X
+ 2Ṡ Ẋ

SX
, (8)

κqr = Ẋ,r

S2X
, qφ = Ẋ,φ

r2S2X
, (9)

with the metric function X given by

X = A(r, φ,w) + B(r, φ,w)Q(t, w) + F(t, w), (10)

Q = c1(w) + c0(w)

∫
dt

S3 , (11)

A = α3(w)r2 + α2(w)r cos φ + α1(w)r sin φ + α0(w), (12)

B = β3(w)r2 + β2(w)r cos φ + β1(w)r sin φ + β0(w). (13)

where we notice that X has the form of a monopole with two
independent superposed dipoles A(w, r, φ) and B(w, r, φ),
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becoming only a single dipole A(w, r, φ) in the perfect fluid
subcase (qa = 0 and thus Q = 0).

The main advantage of cylindrical coordinates is dealing
with a bounded coordinate 0 ≤ φ ≤ 2π and the fact that
they mark in a simple way the class of privileged observers
along the curve r = 0 (t, w constant) parametrized by w

(or x = y = 0) that is a geodesic and an integral curve of a
Killing vector of the rest frames. Axial symmetry follows by
the restriction α2 = α1 = β1 = β2 = 0 in (12)–(13) so that
X becomes independent of φ.

The functions S(t) and F(t, w) are found by solving the
differential equations

2S̈

S
+

(
Ṡ

S

)2

= Λ, (14)

F̈ + 3

(
Ṡ

S

)
Ḟ = 2

S2 [Qβ3 + α3]. (15)

with (14) formally identical to the Friedman equation for the
pressure in FLRW models, thus suggesting an identification
of S(t) with an FLRW factor, an identification that we discuss
rigorously in Sect. 6 and in Appendix C in terms of a smooth
matching of Szekeres-II models with a spatially flat FLRW
spacetime along surfaces of constant w (see also [22]).

4 Non-comoving CDM

Since a thermally dissipative “heat conducting dust” source
is not appropriate for a late time cosmological model, we
propose a wholly different interpretation for (6) as non-
comoving cold dark matter (CDM) in which qa is no longer
a heat conducting vector, but an energy flux proportional to
the peculiar velocity of a dust source T̂ ab = (ρ̂ + Λ) ûa ûb

where the 4-velocity ûa is related to the comoving 4-velocity
ua = ea(0) by the generalized boost

ûa = γ (ua + va), γ = 1√
1 − vava

, vau
a = 0, (16)

where va becomes the peculiar velocity field of CDM associ-
ated with ûa with respect to the CMB frame of aΛCDM back-
ground associated with ua . From (A.2)–(A.5) in Appendix A
this non-comoving dust energy–momentum tensor referred
to ua takes the form (5) with

ρ = γ 2ρ̂ + Λ, p = −Λ + 1

3
vavaγ

2ρ̂, (17)

qa = γ 2 ρ̂va, πab = γ 2ρ v〈avb〉, (18)

with ρ, qa linear and p, πab quadratic in va . However,
observed and inferred peculiar velocities of large scale
structures with respect to the CMB frame are clearly non-
relativistic, thus it is well justified to keep only terms that

are first order in va , so that γ ∼ 1 + O(v2), p ∼ O(v2)

and πab ∼ O(v2), leading (up to first order in va) to the
energy–momentum tensor

T ab = (ρ + Λ) uaub − Λhab + 2ρ v(aub), (19)

which coincides with (6) by identifyingqa ≈ ρ̂ va and ρ ≈ ρ̂

(since γ ≈ 1). This energy–momentum tensor in the comov-
ing frame can be regarded as an approximation to a more
realistic one given by

T ab = (ρcmb + ρ + Λ) uaub + (pcmb − Λ) hab + 2ρ v(aub),

pcmb = ρcmb

3
, ρ = ρcdm + ρb, (20)

where the comoving CMB radiation and non-comoving
baryon densities: ρcmb and ρb can be neglected in com-
parison with the non-comoving CDM density and Λ (i.e.
ρcmb + ρ ≈ ρCDM). We believe that this interpretation of
their energy–momentum tensor furnishes a solid physical and
observational connection to the models under consideration.

To complement the interpretation of energy flux as non-
comoving CDM, it is useful to compute the Hubble scalar for
the non-comoving 4-velocity Θ̂ = ĥabû

b ;a with ûa defined
by (16). In the linear regime of peculiar velocities vav

a/c2 �
1 we obtain the following relation [6]

Θ̂ = Θ + ϑ, ϑ = ĥbav
a ;b, (21)

where ĥab = gab + ûa ûb ≈ hab and va = qa/ρ (at linear
order).

5 Dynamical variables

In order to work with dimensionless variables we normalize
the dynamical variables with respect to the present day criti-
cal density 8πG/(3H2

0 c
4) where H0 the present day Hubble

length (we use geometric units c = G = 1). The energy den-
sity can be expressed as the sum of a purely time dependent
ΛCDM density (a solution of (14)) plus a term depending
on all coordinates that can be conceived as an exact fluctua-
tion over this homogeneous background (see comprehensive
discussion on this in [22])

Ωρ ≡ 8πρ

3H2
0

= Ω̄ρ + δΩ, (22)

Ω̄ρ = Ωm
0

S3 + ΩΛ
0 , ΩΛ

0 = 8πΛ

3H2
0

, (23)

δΩ = 8π
[
X,φφ − r X,r − r2X,rr

]
3H2

0 r
2S2X

− 2S,τ X,τ

3SX
, (24)

where a tilde denotes quantities identified with the homoge-
neous background (see next section) and S is given by the
analytic solution of (14)
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S(τ ) =
(

Ωm
0

ΩΛ
0

)1/3

sinh
2
3

(
3

2

√
ΩΛ

0 τ

)
, (25)

with τ = H0t the dimensionless time and Ωm
0 is the Omega

factor associated with CDM (neglecting the baryon contri-
bution). The peculiar velocity field follows from qa = ρ va
(first order on va/c). From the field equations we have
qa = qrδra + qφδ

φ
a with qw = 0, hence:

Ωqr ≡ 8πqr
3H2

0

= Xr,τ

3H2
0 S

2X
⇒ vr = Ωqr

Ωρ
(26)

Ωqφ ≡ 8πqφ

3H2
0

= Xφ,τ

3H2
0 r

2S2X
⇒ vφ = rΩqφ

Ωρ
. (27)

To examine the inhomogeneity and anisotropy of Szekeres-II
models it is useful to consider the contrasts of the normalized
density Ωρ and Hubble scalar with respect to their ΛCDM
values

ΔΩρ = Ωρ(τ, r, w, φ) − Ω̄ρ(τ )

Ω̄ρ(τ )
= δΩ

Ω̄ρ(τ )
, (28)

ΔH = H(τ, r, w, φ) − H̄(τ )

H̄(τ )
= δH

H̄(τ )
, (29)

where (from (2))

H = Θ

3H0
, H̄ = S,τ

S
, δH = X,τ

3X
, (30)

It is important to remark that (see [22]) the quantities δΩ

and δH are covariant fluctuations respectively related to the
electric Weyl and shear tensors (Eab and σab)

δΩ = Ω̄ρ ΔΩρ = −ξabEab

3H2
0

, δH = H̄ΔH = −ξabσab

6H0
,

(31)

where ξab = ea(w)e
b
(w) − 3hab. The peculiar velocities are

connected to the magnetic Weyl tensor Hab

ηabcv
c = 2Hab

3ΩρH2
0

, (32)

where ηabc = −√−gεabcdud is the Levi-Civita antisym-
metric volume form. The variables δΩ, δH and va deter-
mine the inhomogeneity and anisotropy of the Szekeres-II
regions through (31)–(32) in a coordinate independent man-
ner. In fact, these quantities satisfy evolution equations that
reduce in the linear limit to covariant dust perturbations in
the comoving gauge [22].

It is important to remark that first order in va does not
(necessarily) imply that gradients of peculiar velocities are
also small. The general conditions for self consistency of the
linear approximation to peculiar velocities are presented in
Appendix B.

6 Smooth matching with ΛCDM regions

6.1 Pancake models

Szekeres-II models in general do not satisfy a strict Coper-
nican principle at any scale. However, we can achieve an
approximation to a Copernican principle by considering
arrays of localized Szekeres-II regions embedded in a spa-
tially flat ΛCDM background by smooth matchings and thus
evolving jointly with it, as in the “pancake models” derived
and discussed in [22]. In fact, in that paper we presented
a brief illustrative example of Szekeres-II regions character-
ized by an energy–momentum tensor like (6), with qa associ-
ated with CDM peculiar velocities as in (19), but with Λ = 0
(hence the matched FLRW background was an Einstein de
Sitter model). We will consider in the following sections the
case Λ > 0 of the above mentioned example.

The regions of a ΛCDM model to be matched to the
Szekeres-II regions are characterized by the following metric
(in cylindrical coordinates), energy–momentum tensor and
Friedman equation

ds2 = −dt2 + a2(t)[dw2 + dr2 + r2dφ2], (33)

T ab = (ρ̃ + Λ)uaub − Λhab, (34)

Ω̃ρ ≡ 8π

3H2
0

(ρ̃ + Λ) = Ω̃m
0

a3 + Ω̃Λ
0 = H̃2

H2
0

, (35)

where ρ̃ is the CDM density, H̃ = ȧ/a = Θ̃ is the Hubble
expansion scalar (a tilde denotes FLRW quantities).

As shown in Appendix C (see also [22]), the “pancake
models” of [22] described above rely on the fact that quasi-
plane Szekeres-II model with metric (7) and the spatially flat
ΛCDM model with metric (C.13) admit a smooth matching
along an arbitrary number of hypersurfaces Z i = 0, i =
1..n parametrized in the cylindrical coordinates of (C.13)
as xa = [t, wi

0, r, φ] where wi
0 are arbitrary constants. The

resulting configurations are sequences of arbitrary numbers
of Szekeres-II and ΛCDM patches separated by matching
hypersurfaces w = wi

0, i = 1..n. The junction condi-
tions for these matchings in cylindrical coordinates are (see
Appendix C)

S(τ ) = a(τ ), X |Z i = 1,

X,τ |Z i = 0, X,r |Z i = 0, X,φ |Z i = 0

X,ττ |Z i = 0, X,rτ |Z i = 0, X,φτ |Z i = 0,

X,rφ |Z i = 0, X,rr |Z i = 0, X,φφ |Z i = 0,

(36)

where |Z i denotes evaluation at w = wi
0 for arbitrary

(τ, r, φ). These junction conditions must be applied to the
functions F, Q, A, B in the analytic form of X given in
(10)–(15).
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It is important to remark that the connection between
the Szekeres-II model and a ΛCDM background that we
are considering is based on performing smooth matchings
between different Szekeres-II regions with metric (7) and
ΛCDM regions of metric (C.13) as discussed above (based
on [22] and illustrated by Fig. 1), with the parameters of the
Szekeres-II regions only restricted by fulfilling the matching
conditions (36). This is a completely different approach to
reaching an FLRW limit by a sequence of Szekeres-II mod-
els whose parameters approach an FLRW spacetime for the
full extension of the manifold (as shown in Appendix D such
limit in the parameter space does exist).

6.2 Building up a model

While the “pancake model” configurations described in sec-
tion 6.1 allow for multiple Szekeres-II regions that can be
different as long as (36) hold, we will consider the case of a
single Szekeres-II region extending along a continuous range
of w, matched with a ΛCDM background along timelike
hypersurfaces marked by the minimal and maximal values of
w in this range. This configuration is depicted schematically
in Fig. 1. The free parameters of the metric functions (10)–
(13) characterizing the Szekeres-II region must be restricted
to comply with (36). These restrictions are described as fol-
lows:

For the α parameters in (12) α0(w) = cos2(ν0w),
with the remaining free functions given as Ci sin2(νiw),
hence the matching interfaces are at w = w1 = 0 and
w = w2 = 2π/ν0, while the arbitrary constants Ci must

Fig. 1 Schematic picture of the time evolution of a single Szekeres-
II region “sandwiched” (smoothly matched) between two asymptotic
ΛCDM regions (metrics (7) and (C.13) with coordinates r, φ fixed).
The Szekeres-II region extends in the range w1 < w < w2 between
the matching hypersurfaces w1 = 0 and w2 = 2π/ν0, with ν0 defined
in the text. Notice how the CDM 4-velocity ûa tilts in the Szekeres-II
region with respect to the comoving ua common to the ΛCDM regions
and the CMB frame

comply with 0 < Ci < 1 in order to fulfill the compatibil-
ity conditions (see Appendix B). We assume νi ≥ 2H0/c
to have Szekeres-II sections extending well below the
present day Hubble radius, though this length scale can
always be modified.
For the β parameters in (13) the compatibility condi-
tions and vav

a � 1 require β2
i � 1 and βiβ j � 1

with i, j = 0, 1, 2, 3, hence these free functions must
have the form βi (w) = εiϕi (w), with ϕi (w) bounded
functions and the constants εi complying with εiε j � 1
and satisfying (36). In particular, we consider the choice
φi = sin2(νiw).
In the analytic form (25) of S(τ ) for the ΛCDM regions
we define present cosmic time from S(τ0) = 1 leading
to τ0 = 0.9662. We select the values Ωm

0 = 0.3 and
ΩΛ

0 = 0.7 so that present day Ω̄0 = 1. The present day
peculiar velocity in (26)–(27) and the density and Hubble
scalar contrasts in (28)–(29) become

Δ
Ωρ

0 = δΩ
0 , ΔH

0 = δH0 , (37)

vr0 = [vr ]0 = Ω
qr
0 , vφ0 = [

vφ

]
0 = rΩ

qφ

0 . (38)

The function F follows from the numerical solution of
(15), with initial conditions given by F,τ (τ0, w) = 0
and F(τ0, w) = ε0ϕ0(w), where ε0 is a constant that
satisfies 0 < ε0 < 1, while ϕ0(w) is a sinusoidal
function complying with the form stated in the spec-
ification of the β parameters in (13) discussed above.
We selected initial conditions at present cosmic time
only as a matter of convenience, as they can be cho-
sen at any fixed τ . Since (15) is a second order lin-
ear ODE, its general solution must be of the form
F = ϕ+(w)F+(τ, w) + ϕ−(w)F−(τ, w), guaranteeing
that initial conditions F(τ, wi ) = F,τ (τ, wi ) = 0 can
always be fulfilled by fixed values w = wi at any value
of τ .

It is worth commenting that X has a very weak dependence
on the angular coordinate φ, thus it is possible to get a robust
notion of all quantities in terms of a single representative
angle. After various trials, we choose the following numerical
values for constant parameters: ε1 = 0.7, ε2, ε3 = Cc1 =
Cc0 = 0.001 and νi = 2H0/c, while the rest of the constants
Ci were taken as random numbers such that 0 < Ci < 1,
with numerical trials showing very weak dependence on the
choice of these numbers. In general, it is necessary to test
numerically values for the constants εi , Cci and forms or the
functions ci to avoid shell crossings and to obtain peculiar
velocities whose magnitudes comply with the range of values
for peculiar velocities of large scale structures found in the
literature.
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7 Results

All plots in Figs. 2, 3, 4 and 5 correspond to τ0 = H0 t0 fixed
at present time S(τ0) = 1. Plotted quantities are displayed
as functions of w and r normalized with the Hubble length.
As mentioned before, w = 0 and w = π mark the matching
hypersurfaces between the Szekeres-II region and theΛCDM
background, with the the Szekeres-II region encompassing
the range 0 ≤ w ≤ π with its edges separated a comoving
distance of ∼ 1.5 times the Hubble radius at τ0.

The matching hypersurfaces depicted in Fig. 1 as vertical
lines correspond to w = w1 = 0 and w = w2 = π in
panels (b) of Figs. 2, 3, 4 and 5 with the ΛCDM background
extending for w = w1 < 0 and w = w2 > π . The horizontal
red line depicts the zero contrast level corresponding to the
ΛCDM background.

Figure 2 displays the profile of the present day density
contrast δΩ

0 given by (37) as a function of r (panel a), w

(panel b), both normalized by the Hubble length, and φ (panel
c). The panels reveal nearly the same value density contrast

(a) (b) (c)

Fig. 2 Density contrast at present cosmic time for a Szekeres-II region
matched to a ΛCDM background. The panels display δΩ

0 given by
(37). a As a function of r̄ = cr/H0 and fixed φ = π/4, for w =
0, π/3, 2π/3, 14π/15, respectively depicted by solid, dotted, dashed
and dot dashed curves. b As a function of w̄ = cw/H0 and fixed

φ = π/4, for r̄ = 0, 1/3, 2/3, 1, respectively depicted by solid, dotted,
dashed and dot dashed curves. c As a function of φ and fixed r̄ = 0.5
and fixed values w = 0, π/3, 2π/3, 14π/15, respectively depicted by
solid, dotted, dashed and dot dashed curves

(a) (b) (c)

Fig. 3 Contrasts of the Hubble scalar at present cosmic time for a
Szekeres-II region matched to a ΛCDM background. The panels dis-
play δH0 given by (37). a As a function of r̄ = cr/H0 and fixed φ = π/4,
for w = 0, π/3, 2π/3, 14π/15, respectively depicted by solid, dotted,
dashed and dot dashed curves. b As a function of w̄ = cw/H0 and fixed

φ = π/4, for r̄ = 0, 1/3, 2/3, 1, respectively depicted by solid, dotted,
dashed and dot dashed curves. c As a function of φ and fixed r̄ = 0.5
and w = 0, π/3, 2π/3, 14π/15, respectively depicted by solid, dotted,
dashed and dot dashed curves
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(a) (b)

Fig. 4 Difference between the Hubble scalar in the comoving and
non-comoving frames in the Szekeres-II region. The panels display
DH0 = Ĥ0 − H0 given by (39) (see also (21)). a As a function
of r̄ = cr/H0 and fixed φ = π/4, for w = 0, π/3, 2π/3, 14π/15,
respectively depicted by solid, dotted, dashed and dot dashed curves (to

improve the depiction solid and dotted curves are displayed in red). b As
a function of w̄ = cw/H0 and fixed φ = π/4, for r̄ = 0, 1/3, 2/3, 1,
respectively depicted by solid, dotted, dashed and dot dashed curves.
Notice in b that DH0 = 0 as the region matches to the ΛCDM back-
ground

(a) (b) (c)

Fig. 5 Radial peculiar velocities at present cosmic time for a Szekeres-
II region matched to a ΛCDM background. The panels display vr given
by (26). a As a function of r̄ = cr/H0 and fixed φ = π/4, for fixed val-
ues w = 0, π/3, 2π/3, 14π/15, respectively depicted by solid, dotted,
dashed and dot dashed curves. b As a function of w̄ = cw/H0 and fixed

φ = π/4, for fixed values r̄ = 0, 1/3, 2/3, 1, respectively depicted by
solid, dotted, dashed and dot dashed curves. c As a function of φ and
fixed r̄ = 0.5 for fixed values w = 0, π/3, 2π/3, 14π/15, respectively
depicted by solid, dotted, dashed and dot dashed curves

δΩ
0 ∼ 0.4 with respect to the ΛCDM background in the

directions of r and w, with a very weak dependence on φ.
While the Szekeres-II regions are clearly inhomogeneous and
anisotropic for every observer, these graphs show relatively
small local variations of δΩ

0 among observers. In fact, the free
parameters allow to adjust the scale variation of the density
contrast depending on a desired set of limits.

Figure 3 depicts the profiles of the present day contrast
of the Hubble scalar δH0 given by (37), as a function of

r (constant w,φ), w (constant r, φ) and φ (with constant
r, w). As with the density contrast, the contrast of the Hub-
ble scalar shows small local variation in different directions,
as well as weak angular dependence, thus allowing for a con-
trolled description of a desired level of inhomogeneity and
anisotropy. Figure 4 displays the difference between present
day values of the Hubble scalar in the comoving frame H0

and the non-comoving one Ĥ0 derived in (21)
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Fig. 6 Profiles of the density
and Hubble scalar contrasts at
different cosmic times. The
solid, dotted, dashed and dot
dashed curve, respectively
denote z = 0, 0.5, 1, 2. All
plotted quantities are displayed
as functions of r̄ = cr/H0 for
fixed values of w = π/3. a and
b Respectively display ΔΩρ and
ΔH given by (28)–(29)

DH0 ≡ Ĥ0 − H0 = ϑ0

3H0
= [ĥabvb ;a]0

3H0
, (39)

which is valid for va ∼ O(v/c) so that ĥab ≈ hab up to
O(v/c). Panels (a) and (b) respectively display (39) as a
function of r (constant w,φ) and w (constant r, φ) (depen-
dence on the angle φ is very similar to that displayed in panels
(c) of Figs. 2 and 3, so it is not displayed). Both panels show
that DH0 ∼ 10−4, a value consistent with va ∼ O(v/c) and
with the consistency conditions in Appendix B, though it is
three orders of magnitude below the 10 % associated with the
observed H0 tension.

Figure 5 displays the present day radial velocity vr0 =
[vr ]0 given by (38) as a function of r̄ (with w constant), w̄

(with constant r ) and φ (with constant r, w). Numerical val-
ues of the velocities are fractions of c, with their magnitude
in the expected range |vr | < 800 km/s. As with the con-

trasts δ
Ωρ

0 and δH0 , the radial velocities have similar values
in different directions and very weak angular dependence.

We examine the time variation of the radial profile (for
fixed w and φ) of the density and Hubble scalar contrasts
(28)–(29) in Fig. 6. Both of these contrasts take near constant
shapes that steadily decrease from z = 2 to their present
values.

8 Structure formation

Following a careful parameter selection it is possible to obtain
configurations free from shell crossings at least up to scales
within the Hubble horizon, though some parameter combi-
nations lead to divergent peculiar velocities even without
shell crossings. This divergent behavior and the shell cross-
ings signal the limit of validity of the description of CDM
as dust. Thus, we restrict the parameters of the models to
|vr | < 0.01c, a reasonable range of validity for structure for-
mation involving non-relativistic conditions, so that space-

time points where this bound is violated can be associated
with the onset of virialization whose proper description is
beyond the scope of these models.

After several numerical trials we found how to set up the
free parameters to control the placing the locus marking the
beginning of shell crossings (and divergent peculiar veloci-
ties) at specific spatial positions and cosmic times measured
by redshifts of the ΛCDM region. Considering the same
choice of parameters as in Sect. 6.2, we found sufficient
parameter freedom to describe structure formation scenar-
ios in which the onset of virialization takes place at redshift
values compatible with observations [26], for example, with
|vr | → 0.1c at z ≈ 3. Considering redshifts in the ΛCDM
region given by S(t) = 1/(1+z) we plot vr in Fig. 7 as func-
tion of r and z. Notice that the velocities tend to increase their
magnitude with increasing z.

We illustrate how peculiar velocities can become larger
than the bound |vr | < 0.01c for z < 3 by plotting the time
evolution of vr in Fig. 7. Panel (a) depicts the profile of vr
as function of r (w constant) for z = 0, 1, 2, 3. The limit
velocity 0.01c is reached at z = 3, marking the onset of
virialization. Panel (b) depicts the profile of vr as function of
z with w constants for various values of r . Again, the onset
of virialization occurs at z = 3.

Finally, we examine in Fig. 8 the time evolution of the
difference between the Hubble scalar in the comoving and
non-comoving frames DH = Ĥ − H defined in (39). This
difference remains small, as expected from the compatibility
conditions discussed in Appendix B. However, DH begins
increasing from z = 3 onwards which sets the limits of valid-
ity of the non-relativistic approximation of peculiar veloci-
ties relating the two frames. However, we can argue that that
times at which the models cease to be valid mark the onset
of virialization.

From the locus of the shell crossing in the example dis-
played in Fig. 7 we estimated the approximate conserved
mass of the structure undergoing virialization as follows:
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Fig. 7 Evolution of the radial
peculiar velocity vr . a Displays
the profile of vr for constant w

and z = 0, 1, 2, 3 (solid, dotted,
dashed and dot-dashed curves).
b evolution of vr as function of
z at r = 0, 1/3, 2/3, 1 (solid,
dotted dashed and dot dashed
curves)

(a) (b)

Fig. 8 The difference between comoving and non-comoving Hubble
scalars DH = Ĥ−H (see (39)) at different cosmic times. The solid, dot-
ted, dashed and dot dashed curve, respectively denote z = 0, 0.5, 1, 2.
All plotted quantities are displayed as functions of r̄ = cr/H0 for fixed
values of w = π/3

Considering the energy density from (8) and (22)–(24) for
X and S given by (10) and (25), with F and Q obtained
by numerical integration of (11) and (15) for the parameters
from Sect. 6 at the onset of virialization z = 3, we com-
puted the conserved mass from the following proper volume
integral∫

ρ(zi , r, θ, w)
√
h d3x ∼ 1015 M�, (40)

evaluated at fixed initial redshift zi = 3 (i.e. at a fixed time
corresponding to such redshift computed for the ΛCDM
region) and we verified that vr ≤ 0.1c remained valid along
the integration domain. The obtained rest mass roughly cor-
responds to a galactic cluster whose onset of virialization at
z = 3 is plausible.

9 Final discussion and conclusions

We have found for the Szekeres-II models under consid-
eration an appealing physical interpretation as models that
describe CDM and dark energy modeled as a Λ term with the
novelty of incorporating peculiar velocities va = qa/ρ for a
non-comoving CDM source, all this in the context of appeal-
ing “pancake models” of cosmological inhomogeneities
described by regions of Szekeres-II solutions embedded by
smooth matchings to a ΛCDM background, introduced in
previous work [22]. We have also provided a complementary
view to previous work looking at the effects of cosmologi-
cal sources (for example baryons and CDM) evolving along
different 4-velocity frames [8]).

In order to illustrate the effects of local inhomogeneity and
anisotropy brought by the models we compared their dynami-
cal variables with their values in the ΛCDM background. For
this purpose, we considered a configuration made of a single
Szekeres-II region extending 1.5 times the Hubble radius in
the w direction, smoothly matched to a ΛCDM background
on both extremes. We obtained (see Figs. 2, 3) by numeri-
cal integration of the field equations the present cosmic time
contrasts respect to this background of the density and Hub-

ble scalar (δ
Ωρ

0 and δH0 from (37)), also at different cosmic
times (see Fig. 6). In all quantities the variation with respect
to the angular coordinate was very weak, thus identifying
an anisotropy based on differences along (essentially) two
directions: r and w (as suggested by looking at the metric (1)
in rectangular-like coordinates x, y instead of r, φ).

Figures 2 and 3 reveal present cosmic time values of den-
sity and Hubble scalar contrasts within the Szekeres-II region
respectively varying from zero to maximal values of 0.4 and
0.1 roughly in the same pattern along both directions r and
w. We tested various combinations of initial conditions and
found roughly the same variation patterns with different max-
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imal values, thus indicating a relatively mild deviation of
from local isotropy that can be controlled by suitable choices
of free parameters at least in scales up to the Hubble radius.

Figure 3 reveals that the contrast of the Hubble scalar, δH0 ,
exhibits fluctuations with respecto to the background value,
H0, of the same order of magnitude ∼ 10 % associated with
the “H0 tension”. However, peculiar velocities have a negli-
gible effect on δH0 , which differs by ∼ 0.01 % when com-
puted for the Szekeres-II model with the same parameters
without these velocities (vr = vφ = 0). This fact stands in
agreement with observations indicating that peculiar veloci-
ties provide fluctuations of at most 0.1% to the H0 tension,
[27]. We believe these are interesting results which should
be examined in an observational context.

The behavior of present day radial peculiar velocity vr0 =
[vr ]0 is displayed in Fig. 5. Notice how vr0 vanishes at r = 0
and approximately increases linearly with r for all w within
the Szekeres-II region, while in the w direction it takes larger
values as r increases (vanishing as required by junction con-
ditions at the w values marking the matching interface). This
pattern illustrates how r = 0 for varying w denotes the coor-
dinate locus of privileged observers, analogous to observers
along the symmetry center of spherical symmetry. However,
this is not a mere coordinate effect, as the curve along r = 0
parametrized by w is a spacelike geodesic and Killing vector
of the hypersurfaces orthogonal to the comoving 4-velocity
(see [22]).

We found free parameter choices that lead to an evolution
free from shell crossings with peculiar velocities remaining
in the non-relativistic regime |vr |0 < 0.01c at least in scales
of the order of the Hubble radius in the main directions r
and w. However, we also found free parameter combina-
tions that lead to shell crossings around z = 3, with peculiar
velocities growing and even diverging, thus identifying these
spacetime points as marking the onset of virialization when a
model based on a dust description of CDM is no longer valid.
We estimated a CDM mass of ∼ 1015 contained in a region
associated with these shell crossings that can be identified
with a large galactic cluster.

We fully acknowledge the limitations of the models we
have studied in this paper: they are basically toy models of
inhomogeneities in a ΛCDM background that are valid only
in the scales and cosmic times in which CDM can be mod-
eled as dust. The novelty of our approach (with respect to
previous usage of Szekeres models in this context) is that we
consider the class Szekeres-II and that CDM is not comov-
ing with the frame associated with the CMB and the ΛCDM
background. Evidently, these toy models cannot describe a
highly complex process like virialization, but we can assume
that shell crossings (which are a generic feature) can mark
the limit of validity of the models due to the onset of this
process.

Nevertheless, we believe that these toy models have a valu-
able potential for cosmological applications: first, they allow
to study the observed non-relativistic peculiar velocities in
the framework of an exact solution of General Relativity, thus
potentially contributing to improve our understanding of the
role of peculiar velocities in cosmic dynamics, not only at
local deep subhorizon scales, but even at scales comparable
to the Hubble horizon. Also, a better understanding of the
dynamics of peculiar velocities and Hubble flows from dif-
ferent congruences of observers can contribute to address the
H0 tension. Finally, the models can serve as an exact solution
to probe numerical codes in the emerging field of numerical
relativistic cosmology.
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Appendix A: Imperfect fluids in terms of peculiar veloc-
ities

Given a 4-velocity field the most general form of the energy–
momentum tensor is given by (5)

T ab = (ρ + Λ)uaub + (p − Λ)hab + πab + 2q(aub),

where

ρ + Λ = uaubT
ab, p − Λ = 1

3
habT

ab,

πab = T 〈ab〉 =
[
h(a
c hb)d − 1

3
habhcd

]
T cd , qa = −ubTab

with hab = uaub + gab being the projection operator,
ρ, p, πab, qa are the mass–energy density, the isotropic
pressure, the spacelike tracefee anisotropic pressure tensor
and the spacelike energy flux vector.
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The energy–momentum tensor (5) is also referred to as
describing “imperfect fluids” because of the terms πab, qa

that are usually identified with dissipative stresses, shear vis-
cosity and heat conduction, in thermal and hydrodynamical
systems (see examples in [13]). However, this interpretation
is not suitable for gravity dominated long range interacting
cosmic sources: CDM is best described at large scales as
dust, a description also applicable to baryons whose internal
energy and thermal dissipative effects are also negligible in
these scales [28].

A more useful interpretation for the “imperfect fluid”
terms πab, qa in a cosmological context follows as 4-
momentum fluxes identified with peculiar velocities associ-
ated with a non-comoving 4-velocity with respect to a comov-
ing frame. In particular, we can assume a 4-velocity comov-
ing with a ΛCDM background for the CMB frame, with
CDM and baryons evolving along a 4-velocity field that is
not comoving with respect to this frame.

To examine the connection between energy–momentum
tensors associated with different frames, we consider two
general congruences of spacetime observers with different 4-
velocities ua and ûa . Choosing ua as a comoving 4-velocity,
the non-comoving 4-velocity ûa is given by the generaliza-
tion of the Special Relativity boost

ûa = γ (ua + va), γ = 1√
1 − vava

(A.1)

where va is the spacelike peculiar velocity measured by the
observer ua and vaua = 0. Following [29] and assuming the
energy–momentum for the non-comoving frame to have the
general form (5), the relations between dynamical quanti-
ties of the non-comoving and comoving energy–momentum
tensors are given by

ρ = ρ̂ + Λ + 2γ q̂ava +
{
γ 2vava(ρ̂ + p̂) + Π̂abvavb

}
, (A.2)

p = p̂ − Λ + 2

3
γ q̂ava + 1

3

{
γ 2vava(ρ̂ + p̂) + Π̂abvavb

}

(A.3)

qa = q̂a + (ρ̂ + p̂)va +
{
(γ − 1)q̂a − γ q̂bvbû

a

+γ 2vbvb(ρ̂ + p̂)va + Π̂abvb − Π̂abvbvcû
a
}

(A.4)

Πab = Π̂ab +
{
γ 2(ρ̂ + p̂)v〈avb〉 − 2u(aΠ̂b)cvc

+Π̂cdvcvd û
a ûb − 1

3
Π̂cdvcvd ĥ

ab − 2γ q̂cvcu
(avb)

+2γ v〈aq̂b〉
}

, (A.5)

where (as in [29]) we have written terms linear in va outside
the curly brackets. Notice that the isotropic and anisotropic
pressure are mostly associated with therms that are non-linear
(at least quadratic) in va .

Appendix B: Compatibility conditions

For the sake of completeness we include the compatibility
conditions we presented in [22].

The energy–momentum tensor of a dust source in the
frame of a non-comoving observer, ûa is

T̂ab = ρûa ûb = ργ 2 (
uaub + 2u(avb) + vavb

)
.

Using the decomposition (5), we considered p = 0,
Πab = 0 and searched under what conditions, in the limit
vav

a → 0, Tab = T̂ab . To order zero, limvava T̂ab =
ρ

(
uaub + 2u(avb)

)
, obtaining ρu(avb) = u(aqb). Even

though we take vav
a � 1, this does not imply the derivatives

are small, so we must search conditions to first order. As both
energy–momentum tensors are conserved,

T̂ ab
;b − T ab

;b = 0, (B.6)

we obtain the second condition when we obtain an identity
from this equation 0 = 0 in the limit vava → 0. From the
previous conditions, and considering the derivatives of the γ

factor:

qa;b = ρ̃;bγ 2va + 2ρ̃γ γ;bva + ρ̃γ 2va;b , (B.7)

ρ;b = ρ̃;bγ 2 + 2ρ̃γ γ;b. (B.8)

From (B.6)–(B.8) and the zero order relations it is straight-
forward to verify that

ρ̃γ 2(vavb);b + (ρ̃;bγ 2 + 2ρ̃γ γ;b)vavb = 0. (B.9)

Neglecting quadratic terms on va we obtain the second con-
dition:

(vavb);b = 0. (B.10)

This implies vavb is constant, which we take as vava <<

1 for consistency with our initial hypothesis vava << 1.
Therefore our conditions for compatibility are

ρu(avb) = u(aqb), (B.11)

(vavb);b = 0. (B.12)

With these considerations the energy conservation uaT ab
;b

is proportional to (H0/c)3 which justifies our approximation.

Appendix C: Junction conditions

A smooth matching between two spacetimes, (M(+), g(+))

and (M(−), g(−)), which we consider to be Szekeres-II
described by (1) and FLRW by

ds2 = −dt2 + a2(t)[dw2 + dx2 + dy2]
[1 + 1

4 k̃(w
2 + x2 + y2)]2

, (C.13)

is given by the Darmois conditions [30,31] which demand
continuity of the first and second fundamental forms at a
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matching hypersurface Z(xα) = 0,

[γab] = γ
(+)
ab − γ

(−)
ab = 0, γab = gab + εnanb, (C.14)

[Kab] = K (+)
ab − K (−)

ab = 0, Kab = −na;b, (C.15)

where γ
(±)
ab = γ |Z(±)

= limw→w±
0

γab (as well as for Kab),
na denotes a unit normal vector to Z and ε = 1,−1 is the
vectors tangent to Z are (respectively) timelike or space-
like. Considering the identification of coordinates (t, xi ) and
orthonormal tetrads in (1) and (C.13), we consider the equa-
tion w − w0 = 0, where w0 is an arbitrary constant, to mark
the hypersuface given by Z = 0. Then na = e(a)

a = SXδw
a

and the first fundamental form γab is parametrized by the
coordinates xα = [t, w0, x, y], where w is fixed to the arbi-
trary value w0. The first fundamental form has the following
components

γ
(±)
αβ = ea(α)e

b
(β)g

(±)
ab , γ

(+)
t t = γ

(−)
t t = −1,

γ (+)
xx = γ (+)

yy = S2

f 2 , γ (−)
xx = γ (−)

yy = − a2

f̃ 2(w0)
, (C.16)

while the non-zero components of the second fundamental
form are

K (+)
tw = (X Ṡ + Ẋ S)(+), K (+)

t x = (SX,x )
(+),

K (+)
t y = (SX,y)

(+), K (−)
tw = (ȧ)(−). (C.17)

The Darmois conditions combined with (C.16)–(C.17) imply:

X (+) = 1, (Xx )
(+) = (Xy)

(+) = (Ẋ)(+) = (Ẍx )
(+) = 0,

S(τ ) = a(τ ), k = k̃ = 0 ⇒ f = f̃ = 1, (C.18)

therefore a smooth matching at Σ marked by w = w0 is
only possible between quasi-plane Szekeres-II models and
a spatially flat FLRW model respectively described by (7)
and (C.13). The free functions appearing in in X (see (10)–
(15)) must fulfill the matching conditions (C.18). Therefore,
matching between quasi-flat Szekeres-II and spatially flat
FLRW models can de performed along an arbitrary number of
hypersurfaces marked by constant w. Note that these match-
ings can be performed with a single (but arbitrary) FLRW
background, but the Szekeres-II patches can be different and
need not correspond to the same source (as long as condi-
tions (C.18) hold at the matching hypersurfaces). We refer
to such configurations as pancake models (see [22] for more
detail). In particular, we considered in this paper the specific
pancake configuration in which the FLRW spacetime is a
ΛCDM model matched with a single Szekeres-II region at
two hypersurfaces marked by constant w.

Appendix D: The FLRW limit in the parameter space

The form of the line element presented in [23] is

ds2 = −dt2 + S2(t)[e2ν(dx2 + dy2) + X2dw2] (D.19)

where X = eν[A+ BQ]+ F , and eν = (1 + k(x2 + y2))−1.
The perfect fluid case arises for B = 0, [23], this election
can be made considering the form of B given by Goode,

B = β3(w)r2 + β2(w)r cos θ + β1(w)r sin θ + β0,

by taking β3(w) = h2(w) = β1(w) = β0 = 0. Krasinski
presents the Szekeres-II with a perfect fluid source with the
following line element

ds2 = −dt2 + e2αdw2 + e2β(dx2 + dy2), (D.20)

where eβ = eνS(t), eα = λ(t, w) + S(t)Σ(x, y, w), and λ

a function determined by a differential equation. From the
form of the functions stated in [13,23] it is easy to show
that λ(t, w) = S(t)F(t, w), while Σ = Aeν . Therefore, the
condition stated by Krasinki at the end of section 2.1.1 holds.
As mentioned in the introduction there is no natural FLRW
limit for this model, quoting [13] “the FLRW limit results
unnaturally in this subfamily: the additional symmetries of
the FLRW models appear from nowhere.” It is worth noting
that the FLRW limit is a limit in the space of parameters and
not a limit in the manifold or an extension of the manifold
itself.
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14. K. Bolejko, A. Krasiński, C. Hellaby, M.-N. Célérier, Structures in
theUniverse byExactMethods: Formation, Evolution, Interactions
(Cambridge University Press, Cambridge, 2010)

15. K. Bolejko, R.A. Sussman, Cosmic spherical void via coarse-
graining and averaging non-spherical structures. Phys. Lett. B
697(4), 265–270 (2011)

16. R.A. Sussman, I.D. Gaspar, Multiple nonspherical structures from
the extrema of Szekeres scalars. Phys. Rev. D 92(8), 083533 (2015)

17. R.A. Sussman, J.C. Hidalgo, I.D. Gaspar, G. Germán, Nonspherical
Szekeres models in the language of cosmological perturbations.
Phys. Rev. D 95(6), 064033 (2017)

18. R.A. Sussman, I.D. Gaspar, J.C. Hidalgo, Coarse-grained descrip-
tion of cosmic structure from Szekeres models. J. Cosmol.
Astropart. Phys. 2016(03), 012 (2016)

19. J.D. Barrow, A. Paliathanasis, Szekeres universes with homoge-
neous scalar fields. Eur. Phys. J. C 78(9), 767 (2018)

20. M. Ishak, A. Peel, Growth of structure in the Szekeres class-II
inhomogeneous cosmological models and the matter-dominated
era. Phys. Rev. D 85(8), 083502 (2012)

21. A. Peel, M. Ishak, M.A. Troxel, Large-scale growth evolution in the
Szekeres inhomogeneous cosmological models with comparison to
growth data. Phys. Rev. D 86(12), 123508 (2012)

22. S. Nájera, R.A. Sussman, Pancakes as opposed to Swiss cheese.
Class. Quantum Gravity 38(1), 015016 (2020)

23. S.W. Goode, Spatially inhomogeneous cosmologies with heat flow.
Class. Quantum Gravity 3(6), 1247 (1986)

24. I.D. Gaspar, T. Buchert, Lagrangian theory of structure formation in
relativistic cosmology. VI. Comparison with Szekeres exact solu-
tions 9 (2020)

25. S. Borgani, A. Kravtsov, Cosmological simulations of galaxy clus-
ters. Adv. Sci. Lett. 4(2), 204–227 (2011)

26. S. Weinberg, Cosmology (Oxford University Press, Oxford, 2008)
27. T.M. Sedgwick, C.A. Collins, I.K. Baldry, P.A. James, The effects

of peculiar velocities in SN Ia environments on the local H 0 mea-
surement. Mon. Not. R. Astron. Soc. 500(3), 3728–3742 (2021)

28. D.H. Rudd, A.R. Zentner, A.V. Kravtsov, Effects of baryons and
dissipation on the matter power spectrum. Astrophys. J. 672(1), 19
(2008)

29. R. Maartens, T. Gebbie, G.F.R. Ellis, Cosmic microwave back-
ground anisotropies: nonlinear dynamics. Phys. Rev. D 59(8),
083506 (1999)

30. W. Israel, Singular hypersurfaces and thin shells in general relativ-
ity (1965–1970). Il Nuovo Cimento B 44(1), 1–14 (1966)

31. M. Mars, J.M.M. Senovilla, Geometry of general hypersurfaces
in spacetime: junction conditions. Class. Quantum Gravity 10(9),
1865 (1993)

123


	Non-comoving cold dark matter in a ΛCDM background
	Abstract 
	1 Introduction
	2 Szekeres models of class II: geometric and kinematic properties
	3 An exact solution with dust and energy flux
	4 Non-comoving CDM
	5 Dynamical variables
	6 Smooth matching with ΛCDM regions
	6.1 Pancake models
	6.2 Building up a model

	7 Results
	8 Structure formation
	9 Final discussion and conclusions
	Acknowledgements
	Appendix A: Imperfect fluids in terms of peculiar velocities
	Appendix B: Compatibility conditions
	Appendix C: Junction conditions
	Appendix D: The FLRW limit in the parameter space
	References




