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Abstract We reconsider decays of pseudoscalar mesons
(P) to neutrino pairs and possibly additional photons in
presence of (light) Majorana neutrinos. For this purpose we
derive a model-independent general parametrization of neu-
trino mass matrices with physically interpretable and irre-
ducible set of parameters. The parametrization is valid for
any number of neutrinos and interpolates smoothly between
the heavy Majorana and the (pseudo)Dirac neutrino limits.
We apply the new parametrization to the study of P → νν

and P → ννγ decays within the SM extended by addi-
tional singlet fermions. We update the SM predictions for
the branching ratios of Bs,d → ννγ and discuss the sensi-
tivity of the Bs,d → Emiss(γ ) decays to neutrino mass and
mixing parameters.

1 Introduction

The discovery of neutrino oscillations [1] implies the exis-
tence of at least two massive neutrino species. On the other
hand, many theoretical models of neutrino mass generation,
including the simplest canonical see-saw mechanism [2–
6], predict the existence of additional electromagnetically
neutral massive fermions. In general, the neutrino spectrum
consists of 3 + nN fermions. Three of them are the so-far
observed standard model (SM) like (νM

j ) neutrinos. Possi-

ble additional nN massive neutrinos (NM ) have not yet been
observed. In the following and without loss of generality
we assume them to be of Majorana type.1 In the last few
decades many different mechanisms have been proposed to
explain the smallness of the observed neutrino masses. In

a e-mail: blaz.bortolato@ijs.si
b e-mail: jernej.kamenik@cern.ch (corresponding author)
1 The model of Dirac SM-like neutrinos is a special case with nN = 3
and with all Majorana mass terms set to zero. Its spectrum consists of
3 Dirac neutrino fields, which can be written as a superposition of νM

j

and NM
j fields.

the canonical see-saw mechanism for example, heavy NM
k

neutrinos induce small Majorana masses for the observed
νM
j neutrinos via their Yukawa interactions. In this scenario

NM
k neutrinos are typically too heavy to be directly pro-

duced in terrestrial experiments [7]. On the other hand, in
models with approximate lepton number conservation, these
new degrees of freedom could also naturally appear at low
energies, see e.g. [8]. In fact there are several circumstan-
tial motivations for considering additional light NM

k neutri-
nos. Massive neutral fermions which are long lived enough
compared to the age of the universe and have mass in the
range 2 keV � mNk � 5 keV [9,10] are good warm dark
matter candidates [11–14]. Additional NM

k neutrinos with
masses in the range 1GeV ≤ mNk � 100GeV are also pre-
dicted in models of cosmological Baryon asymmetry genera-
tion through neutrino oscillations [15,16]. Finally, persistent
tensions in the interpretation of some neutrino oscillation
experiments and cosmological observations might imply the
existence of additional NM

k neutrinos with masses at the eV
scale, see e.g. [17].

An important aspect of neutrino mass model building
involves consistently taking into account existing experimen-
tal information on low energy neutrino masses and mixings.
In principle these inputs can be used to reduce the number
of free model parameters. In practice however, this requires
a detailed a priori knowledge of how elements of neutrino
mass and mixing matrices are connected with each other.
In the limit of heavy NM

k neutrinos such connections are
given explicitly by the Casas–Ibara parametrization [18]. In
the last few years, more general parameterizations have been
proposed, which do not rely on expansions in small mass
ratios and are thus valid away from the limit of heavy NM

k
neutrinos. To date such parametrizations have been found
for the case of two [19,20] or three [21–23] additional NM

k
neutrinos. Most recently, a master parametrization applicable
for the most general case including neutrino mass generation
beyond see-saw models has also been proposed [24]. How-
ever, the generality comes with several drawbacks: its param-
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eters lack intuitive physical interpretability, the connections
between the NM

k neutrino masses and the SM-like neutrino
Yukawa couplings are somewhat obscured. In this paper we
build upon and extend previous work [19,23] and derive a
model-independent general parametrization of the neutrino
mass matrices that covers and interpolates between all see-
saw like scenarios, including the heavy Majorana mass limit
and the pseudo-Dirac case for any number of additional NM

k
neutrinos (see e.g. Ref. [25] for an explicit model realization
of such a scenario). Its main purpose is to better map out the
possible neutrino mass parameter space and to help create a
consistent picture of NM

k neutrinos at low energies, which is
a starting point for developing UV neutrino mass models.2

We demonstrate the usefulness of the parametrization
using the example of P → νν and P → ννγ decays, previ-
ously studied in Ref. [27] in the context of light dark matter
searches, where P is a neutral pseudoscalar meson and ν

includes both νM
j as well as possibly NM

k if kinematically
allowed. We estimate the contribution of these two decay
topologies to the effective invisible decay widths of neutral
mesons (assuming NM

k are long lived enough to escape the
detectors) and show how they are sensitive to neutrino mass
and mixing parameters. Along the way we also update the
theoretical predictions for Bs,d → ννγ in the SM using
state-of-the-art inputs [28] for the relevant hadronic parame-
ters and the associated uncertainties. The P → νν decays are
helicity suppressed and therefore negligible in the SM with
Dirac neutrinos [27] as well as in the limit of heavy NM

k .
However in models with light NM

k , such that they can appear
in the final state, their branching fractions can become signif-
icant. On the other hand P → νννν decays are not helicity
suppressed [29], however their contributions to the invisi-
ble P decay widths turn out (within our assumptions) to be
completely negligible. Experimentally, the best sensitivity
is expected from Bs,d meson decays into unobserved decay
products (registered as missing energy Emiss in the detec-
tor) which have already been searched for by the Belle [30]
and BaBar [31] collaborations. At present the tightest upper
limit of Br(Bd → Emiss) < 2.4 × 10−5 at 90% confidence
level is provided by BaBar [31]. While searches for invisible
Bs decays have not yet been attempted, they are planned at
the Belle II experiment, which is also expected to improve
significantly the upper bound on Br(Bd → Emiss) [32].

The paper is organized as follows. In Sect. 2 we derive
a general parametrization of neutrino mass matrices for an
arbitrary number of additional massive fermionic singlets and
explore the heavy Majorana neutrino limit and the pseudo-
Dirac limit. We also present the basic properties of the
parametrization and how these can be used to extract neu-

2 We note that in UV models where B − L is gauged (like in
U (1)B−L [26] or left-right symmetric models [3,4]), anomaly cancel-
lation requires exactly three right-handed neutrinos (nN = 3).

trino parameters from experiments. In Sect. 3 we study the
P → νν and P → ννγ decays separately, estimate their
contributions to the invisible decay widths of Bd,s mesons,
and discuss their dependence on the neutrino parameters. We
summarize our findings in Sect. 4. Analytical expressions for
the P → νν and P → ννγ decays as well as the details on
the perturbative and non-perturbative QCD inputs used in
this work are given in Appendix A, while Appendix B con-
tains the details on the derivation of a lower bound on the
Frobenius norm of the neutrino mixing matrix.

2 Parametrizing neutrino masses and mixing in
presence of light Majorana neutrinos

2.1 Setup and notation

We consider a family of neutrino models at low energies
which are described by the Lagrangian3 L = LSM + LN ,
where LSM is the Standard Model (SM) Lagrangian and LN

is given by:

LN = −
3∑

a=1

n∑

b=1

νaL (MD)abNbR + h.c.

−1

2

n∑

b=1

n∑

b′=1

(NbR)c (MM )bb′Nb′R + h.c.

+
n∑

b=1

NbR iγ μ∂μNbR . (1)

The first term is the Dirac mass term where the Yukawa
coupling matrix y is implicit in MD = v/

√
2y, where v

is the Higgs VEV. The second term is the Majorana mass
term of chiral right-handed neutrinos NbR . The mass matri-
ces of models which preserve SM local symmetries and are
renormalizable (chiral left handed neutrino mass terms are
forbidden) form a symmetric block matrix M of the form4

L ⊃ −1

2

(
νL (NR)c

) ( 03×3 (MD)3×n

(MT
D)n×3 (MM )n×n

)(
(νL)c

NR

)

+h.c.. (2)

The matrix M can be diagonalized by the unitary matrix L
in the following way

Mdiag = L†
(

0 MD

MT
D MM

)
L∗ =

(
Dν 0
0 DN

)
, where

3 We use the formalism presented in Ref. [33]. A comprehensive dis-
cussion of Dirac, Weyl and Majorana fields is given in Ref. [34].
4 The symmetric nature of M is typical for see-saw like models of
neutrino mass generation and is central to our parametrization. For more
general scenarios leading to non-symmetric M , the parametrization of
Ref. [24] applies.
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L =
(
U3×3 V3×n

Xn×3 Yn×n

)
. (3)

Here Dν = diag(mν1,mν2 ,mν3) is the diagonal mass matrix
of SM-like neutrinos (νM

j = [ν j L + (ν j L)c]m) and DN =
diag(mN1 , . . . ,mNn ) is the diagonal mass matrix of N neu-
trinos (NM

k = [NkR +(NkR)c]m), where (ν j L)m and (NkR)m
are the mass eigenstates which are connected to the gauge
interaction eigenstates via

(
νL

(NR)c

)
= L

(
νL

(NR)c

)

m
. (4)

Without loss of generality, all diagonal elements of Dν and
DN can be taken as real (via suitable unphysical phase rota-
tions of the neutrino fields). With this notation one can write
down the interaction terms in the Lagrangian expressed by
νM
j and NM

k neutrino mass eigenstates and by lm ∈ {e, μ, τ }
charged lepton mass eigenstates,

L ⊃ −gW+
μ√
2

∑

lm∈{e,μ,τ }

⎛

⎝
3∑

j=1

(U †OL) jmνM
j γ μPLlm

+
n∑

k=1

(V †OL)kmNM
k γ ν PLlm

)
+ h.c.

− gZμ

2 cos θW

⎛

⎝
3∑

j, j ′=1

(U †U ) j j ′ νM
j γ μPLνM

j ′

+
n∑

k,k′=1

(V †V )kk′ NM
k γ ν PLN

M
k′

⎞

⎠

− gZμ

2 cos θW

⎛

⎝
3∑

j=1

n∑

k=1

(U †V ) jk νM
j γ μPLN

M
k + h.c.

⎞

⎠ ,

(5)

where OL and OR are unitary matrices diagonalizing the
mass matrix Ml of the charged leptons via the biunitary
transformation O†

LM
lOR = diag(me,mμ,mτ ) and PL ,R =

(1 ∓ γ5)/2.

2.2 Derivation

In this section we consider a model with nν neutrinos νM
j and

nN neutrinos NM
k . Matrices U , V , X and Y clearly depend

on the neutrino masses, thus it is appropriate to have a simple
parametrization of these matrices in terms of physical neu-
trino parameters. Parametrization of this type can be derived
with a few simple steps. We start by decomposing the V

matrix into

V =
{
gS : nN > nν,

gP : nN ≤ nν,
(6)

where g is a nν ×nν complex matrix, S is given by Snν×nN =
[Inν×nν , Ŝnν×(nN−nν )] and Pnν×nN is a projection matrix
which in the case of a normal hierarchy of νM

j neutrino
masses is given by

P =
(

0(nν−nN )×nN
InN×nN

)
. (7)

The Ŝ matrix is a general complex nν × (nN −nν) matrix. Its
elements can be chosen freely. By using the definition of the
transition matrix, LMdiagLT = M one obtains the relation

UDνU
T + V DNV

T = 0, (8)

which, depending on nN , can be rewritten as

UD1/2
ν D1/2

ν UT

= g(−SDN S
T )1/2(−SDN S

T )1/2gT : nN > nν, (9a)

UDνU
T

= gP(−DN )1/2(−DN )1/2PT gT : nN ≤ nν . (9b)

Equation (9a) is already in the desired form. With a
few assumptions it can be written as RRT = I , where R
is an invertible orthogonal complex squared matrix, which
connects UD1/2

ν with g(−SDN ST )1/2. On the other hand
Eq. (9b) is not yet of the desired form. In the special case
nN = nν the projection matrix P becomes the identity
matrix, and we can decompose the left-hand side of Eq. (9b)
into UDνUT = UD1/2

ν D1/2
ν UT . Notice that on both sides

all matrices have the same shape. In the case nN < nν the
diagonal mass matrix Dν is not invertible. This can be seen
directly by looking at the block mass matrix M ,

M =
(

0nν×nν (MD)nν×nN
(MT

D)nN×nν (MM )nN×nN

)
. (10)

Of the first nν rows, maximally nN are independent. Simi-
larly, of the last nN rows, also maximally nN are independent.
Therefore one can construct at leastnν+nN−2nN = nν−nN
independent eigenvectors for the matrix M with zero eigen-
values. From here, there are maximally nN non zero masses
mν j in Dν . This property can be written as

Dν = P(PT Dν P)PT , (11)

where PT DνP is a nN × nN diagonal matrix of all non zero
eigenvalues of Dν , therefore an invertible positive definite
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matrix. By specifying Dν one can use this property to find
P . Using Eq. (11) one can finally rewrite the left-hand side
of Eq. (9b) in terms of nN × nN matrices,

(P̃TU P)(PT D1/2
ν P)(PT D1/2

ν P)(PTU P̃)

= (P̃T gP)(−DN )1/2(−DN )1/2(PT gT P̃). (12)

Here we have multiplied the equation by a nν × nN arbitrary
matrix P̃ from the right-hand side and by P̃T from the left-
hand side.

At this point we assume that all matrices, which are prod-
ucts of matrices inside brackets in Eqs. (12) and (9a), are
invertible, DN matrix is invertible for all pairs (nν, nN ) and
that matricesU and g are also invertible in the case nν < nN .
Cases in which these assumptions do not hold can still be han-
dled by the parametrization we are deriving, by taking appro-
priate limits. Within our assumptions, both Eqs. (9a) and (12)
can be expressed in the form RT R = I or RRT = I equiva-
lently, where R is a min(nν ×nν, nN ×nN ) general complex
orthogonal matrix. It links U and V matrices through

V = UQ, (13)

where the nν × nN matrix Q is given by

Q =
{
D1/2

ν R(−SDN ST )−1/2 S : nN > nν,

D1/2
ν PR(−DN )−1/2 : nN ≤ nν .

(14)

In case nν > nN one obtains the relation P̃T (V −UQ) = 0
which leads toV = UQ, since P̃T is arbitrary up to the above
assumptions. Eq. (13) together with the unitarity condition
LL† = I finally leads to the desired parametrization of U
and V matrices

UU † + VV † = I, (15a)

U
√
I + QQ†

√
I + QQ†U † = I, (15b)

U = A
(
I + QQ†

)−1/2
. (15c)

Here A is a nν × nν unitary matrix. The I + QQ† hermitian
matrix is positive definite, which means that it has precisely
one positive definite square root which is also invertible.
Parametrizations of X and Y matrices are similarly obtained
from the unitary condition LL† = I using the above derived
results.

2.3 Main formulae

Below we give the full set of equations which define the
parametrization of the neutrino mixing matrices:

U = A
(√

I + QQ†
)−1

, (16a)

V = A
(√

I + QQ†
)−1

Q, (16b)

X = −B
(√

I + Q†Q
)−1

Q†, (16c)

Y = B
(√

I + Q†Q
)−1

, (16d)

where Anν×nν and BnN×nN are unitary matrices and Q is
defined by

Q =
{

−iD1/2
ν R(SDN ST )−1/2 S : nN > nν,

−iD1/2
ν PRD−1/2

N : nN ≤ nν .
(17)

The MD = v/
√

2y and MM matrices are therefore
parametrized via

MD = UDνX
T + V DNY

T , (18a)

MM = XDνX
T + Y DNY

T , (18b)

where Dν and DN are diagonal neutrino mass matrices Dν =
diag(mν1, . . . ,mνnν

) and DN = diag(mN1, . . . ,mNNn
)

defined up to arbitrary phases (for each diagonal ele-
ment). The derived parametrization expresses neutrino mix-
ing matrices appearing in the Lagrangian in terms of uni-
tary matrices A and B, complex orthogonal matrix R, neu-
trino masses contained in Dν and DN and in case nN > nν

also a general complex matrix Ŝ which is hidden inside
S = [Inν×nν , Ŝnν×(nN−nν )]. The projector P in casenν ≥ nN
must be chosen such that PT Dν P is a diagonal matrix
of all non zero eigenvalues of Dν and that the relation
PPT Dν PPT = Dν holds. If nν > nN , the choice of P
depends on the hierarchy of νM

j neutrino masses.

2.4 Physical case nν = 3

In the following we discuss the explicit form of our
parametrization, it’s limits and parameter counting, for the
realistic case nν = 3 and various possible choices of nN .

In the case nν = nN = 3 previously studied in Ref. [23]
the R matrix can be parametrized with 3 complex angles:

R =
⎛

⎝
c1 ±s1 0

−s1 ±c1 0
0 0 1

⎞

⎠

⎛

⎝
c2 0 ±s2

0 1 0
−s2 0 ±c2

⎞

⎠

⎛

⎝
1 0 0
0 c3 ±s3

0 −s3 ±c3

⎞

⎠ ,

(19)

where c j = cos(φ j + iθ j ) and s j = sin(φ j + iθ j ) with
φ j ∈ [0, 2π) and θ j ∈ IR for j ∈ {1, 2, 3}. Free signs in
each of the three matrices must be equal (both + or both −
in each matrix). The projector P in this case reduces to the
identity matrix.

In the case nν = 3 with nN = 2 previously studied in
Ref. [19] one of the νM

j neutrinos is massless, thus the Dν
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matrix can be parametrized by Dν = diag(0,mν2 ,mν3) in
case of normal hierarchy (NH) or by Dν = diag(mν1 , 0,mν3)

in case of inverted hierarchy (IH). In both scenarios the R
matrix is described by one complex angle:

R =
(

cos(φ + iθ) ± sin(φ + iθ)

− sin(φ + iθ) ± cos(φ + iθ)

)
, (20)

where φ ∈ [0, 2π) and θ ∈ IR. As before the free signs in the
R matrix must be equal (both + or both −). The projector P
for NH (IH) is given by:

PNH =
⎛

⎝
0 0
1 0
0 1

⎞

⎠ and P IH =
⎛

⎝
1 0
0 1
0 0

⎞

⎠ . (21)

Also, in the case nν > nN one can rename the PR matrix
to Rnν×nN , since the projector P is always multiplied by R
from the right-hand side.

On the other hand, matrix B is a general nN × nN uni-
tary matrix for all pairs (nν, nN ), while matrix A is a general
nν × nν unitary matrix only if nν ≤ nN , since if nν > nN
not all generators of U(nν) are required to form A so that the
(MD)nν×nN and (MM )nN×nN matrices are fully parametrized
with all n2

N + nN (2nν + 1) parameters. The number of real
parameters for each matrix which appears in the derived
parametrization for the case nν = 3 is given in Table 1.

2.5 Heavy Nk limit

In the limit where ||Dν ||/||DN || � 1 and ||Q|| � 1 the
parametrization simplifies as U ≈ A, V ≈ AQ, X ≈
−BQ†, Y = B resulting in

MD =
{

−iAD1/2
ν R (SDN ST )−1/2 SDN BT : nN > nν,

iAD1/2
ν PR D1/2

N BT : nN ≤ nν,

(22)

and

MM ≈ BDN BT . (23)

In case nN ≤ nν we immediately recognize the original
Casas–Ibara parametrization [18]. By combining the expres-
sions of MD and MM matrices one can also construct the
well known effective νM

j neutrino mass matrix

Meffective
ν ≡ −MDM

−1
M MT

D ≈ ADν A
T . (24)

This formula is valid for all pairs (nν, nN ). In this scenario
the PMNS matrix which is given byUPMNS = O†

LU ≈ O†
L A

(see Eq. (5)) is approximately unitary. To clarify, the PMNS

matrix maps fields of observed neutrinos from the mass basis
into the flavor (gauge) basis. In the heavy neutrino limit low
energy processes can only involve νM

j neutrinos.

2.6 Dirac neutrino limit

In the scenario with n ≡ nν = nN and MM = 0 neutri-
nos can be described by Dirac fields (linear combinations of
Majorana fields which are not Majorana fields). The condi-
tion MM = 0 is equivalent to R†|Dν |2R∗ = |DN |2. The
phases in front of neutrino masses are arbitrary and do not
affect any measurable quantities. Therefore we can fix the
phases by choosing D ≡ Dν = DN , where D is a posi-
tive definite mass matrix. From here, one finds Q = −iR,
where R = diag(±1, . . . ,±1). Signs are arbitrary and inde-
pendent of each other. The transition matrix L then takes the
following form

L = 1√
2

(
A −iAR

−iBR B

)
. (25)

At this point one can diagonalize MD through a biunitary
transformation

MD = −iARDBT . (26)

Therefore the mass term in the Lagrangian can be written as

L ⊃ −νDDνD, (27)

where

νD = 1√
2

(
i RνM

j + NM
j

)
, (28)

are Dirac neutrino fields (not Majorana fields). One can use
this equation to define νM

j and NM
j Majorana fields start-

ing from the Dirac field. Such definition of Majorana fields
can then be applied outside the Dirac limit. In this way,
the obtained model is fully consistent with both the general
Majorana neutrino model (outside the Dirac limit) as well as
with the Dirac neutrino model (in the Dirac limit). We use
this model in Sect. 3. Finally, the Lagrangian (for the case
n = 3) can be written as

L ⊃
3∑

k=1

νD
k

(
iγ μ∂μ − D

)
νD
k

+ g

2 cos(θW )
Zμ

3∑

k=1

νD
k γ μPLνD

k

+ g√
2
W+

μ

∑

lm∈{e,μ,τ }

3∑

k=1

(A†OL)km νD
k γ μPLlm + h.c..
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Table 1 Number of parameters in the derived parametrization of the
neutrino mass matrices of the extended SM with nν = 3 and nN = n
additional chiral right-handed neutrinos. Note that interactions between

neutrinos (both ν j and Nk ) and other SM particles do not depend on the
Bn×n matrix

n (Dν)3×3 (DN )n×n Rmin(n×n, 3×3) Ŝ3×(n−3) A3×3 Bn×n total n2 + 7n

n = 1 1 1 0 / 5 1 8

n = 2 2 2 2 / 8 4 18

n = 3 3 3 6 / 9 9 30

n > 3 3 n 6 6(n − 3) 9 n2 n2 + 7n

(29)

From the last equation one can recognize the (unitary)
PMNS matrix as UPMNS = O†

L A = √
2O†

LU . Its matrix ele-
ments are precisely the same as in the heavy neutrino limit
if we keep A matrix unchanged. However, now the observed
neutrinos are 3 Dirac fermions which are specific linear com-
binations of νM

j and NM
j fields. Note that the measured values

of the PMNS matrix can be directly related to the under-
lying neutrino parameters only in the heavy neutrino and
(pseudo-)Dirac limits. Outside these two limits the precise
relations are non-trivial, since the PMNS matrix is no longer
unitary. However, results from experiments which measure
the PMNS matrix elements can still be used to constrain
parameters of the general low energy neutrino models.

2.7 Scaling relations

Matrices U †U , U †V and V †V satisfy the relation:

||U †U ||2 + 2||U †V ||2 + ||V †V ||2 = nν, (30)

where ||U †V ||2 = ∑ j j ′ |(U †V ) j j ′ |2 is the Frobenius norm

and nν is the number of νM
j neutrinos. The property can be

derived by a few simple steps. First define matrix U as

U =
(
U †U U †V
V †U V †V

)
. (31)

Its relevant properties are U† = U and U2 = U . The last one
holds due to the unitarity condition UU † + VV † = Inν×nν .
From here, one gets

∑nν+nN
E=1 UCEUED = UCD . Therefore

nν+nN∑

C,D=1

|UCD|2 =
nν+nN∑

C,D=1

UCDUDC = Tr{U} = nν, (32)

where the identity Tr{V †V } = Tr{VV †} was used. By the
definition of the Frobenius norm, relations like |(U †V ) jk | <

||U †V || hold. These can be used to constrain matrix elements
especially in scenarios with nearly degenerated NM

k neutrino
masses. In the heavy Majorana mass limit mν/mN � 1

Frobenius norms can be used as direct measures of non-
unitarity in the 3×3 light neutrino sector, complementary to
the PMNS matrix (U †OL ), since in this limit exact 3×3 uni-
tarity implies ||U †U || = nν , while ||U †V || = ||V †V || = 0.

In general ||UU †||, ||UV †|| and ||VV †|| norms can be
expressed as a function of eigenvalues μ j of the QQ† matrix:

||U †U ||2 =
nν∑

j=1

1

(1 + μ j )2 ,

||U †V ||2 = ||V †U ||2 =
nν∑

j=1

μ j

(1 + μ j )2 ,

||V †V ||2 =
nν∑

j=1

μ2
j

(1 + μ j )2 , (33)

where the first identity can be related to the determinant of
the PMNS matrix defined in the mν/mN � 1 limit since
det(U †U ) = ∏nν

j=1 (1 + μ j )
−1. Number of νM

j neutrinos
is also number of required quantities to completely describe
norms.

In a special case in which nν = nN = 3 and neutrino
masses are degenerated, Dν = mν I and DN = mN I , equa-
tions above can be simplified,

||U †U ||2 = 1
(

1 + mν

mN

)2

+ 1
(

1 + mν

mN
λ
)2 + 1

(
1 + mν

mN

1
λ

)2 , (34)

||U †V ||2 = mν

mN

⎛

⎜⎝
1

(
1 + mν

mN

)2

+ λ
(

1 + mν

mN
λ
)2 +

1
λ(

1 + mν

mN

1
λ

)2

⎞

⎟⎠ , (35)

||V †V ||2 =
(
mν

mN

)2

⎛

⎜⎝
1

(
1 + mν

mN

)2
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+ λ2

(1 + mν

mN
λ)2 +

1
λ2

(
1 + mν

mN

1
λ

)2

⎞

⎟⎠ , (36)

where λ is the largest eigenvalue of the R†R matrix. Proper-
ties used to derive these equations are described in Appendix
B. In this special case norms depend only on λ ∈ [1,∞) and
mν/mN ratio. However if mν/mN � 1 equations above can
be reduced to:

||U †U ||2 ≈ 1

(1 + ξ2)2 + 2,

||U †V ||2 ≈ ξ2

(1 + ξ2)2 ,

||V †V ||2 ≈ ξ4

(1 + ξ2)2 , (37)

where ξ = √
mν/mN

√
λ. Expressions in Eq. (37) can be

regarded as scale relations for norms with respect to a dimen-
sionless scale parameter ξ . Again the first identity is closely
related to det(U †U ) ≈ 1/(1 + ξ2) measuring PMNS matrix
unitarity. If R matrix depends only on one θ angle, we find
λ = exp(2|θ |). In other cases λ depends on all parameters
of R matrix, however if R matrix is parametrized in one of
specific ways, λ depends only on θk angles and not on φk

angles. More details in Appendix B. Dependence of norms
with respect to θk and φk parameters are shown in Figs. 1 and
2.

2.8 Extracting neutrino parameters

Elements of the O†
LU matrix contain information about NM

k
and νM

j neutrino masses, R matrix and S matrix elements.
In the case nν = nN with fixed Dν one can simply obtain R
and DN by properly diagonalizing the left-hand side of

D−1/2
ν

[
(U †U )−1 − I

]
D−1/2

ν = R(−DN )−1R†, (38)

where U †U = (O†
LU )†(O†

LU ), since OL is unitary. In case
nν > nN projectors P on both sides should be added, but
if nN > nν the diagonalization becomes meaningless, since
the S matrix appears in various places on the right-hand side
of the equation.

Processes involving neutrinos, but not charged leptons in
the initial and final state usually do not depend on matrices
O†

LU and O†
LV , since masses of charged leptons (in loops)

are small compared to the masses of W and Z bosons. There-
fore observables in these processes depend only on neutrino
masses, R matrix elements and if nN > nν also on S̃ matrix
elements. In the heavy Nk and pseudo-Dirac neutrino limits
such processes are sensitive to (small) non-unitary correc-
tions to the PMNS matrix, but not to PMNS matrix elements

themselves. As explained above, outside of both limits the
precise relation between the experimentally measured PMNS
matrix elements and neutrino parameters is highly nontrivial
and thus more difficult to interpret.

3 Neutral meson decays to two neutrinos and
(un)resolved photons

In this section we consider the decays of pseudoscalar mesons
(P) to neutrinos and possibly additional photons (γ ), as
prospective venues to constrain low energy neutrino param-
eters. We consider both signatures of P → Emiss as well
as P → Emissγ , where Emiss is an energy imbalance regis-
tered in the particle detector. Within our theoretical setup and
assuming a 4π detector coverage with finite EM energy res-
olution, the decay products which contribute to P → Emiss

include stable enough neutrinos as well as unresolved (soft)
photons

Br(P → Emiss) = Br(P → νν) + Br(P → ννγ ∗)
+Br(P → νννν) + · · · , (39)

where the dots denote additional multibody decay channels
which are further suppressed. The energy of photons present
in the final state (γ ∗), should be less than the energy reso-
lution E0 of the EM detector. According to Refs. [36] and
[37] the EM calorimeter of Belle II has the energy resolu-
tion in the range of 20–50 MeV. For concreteness, we use
the value E0 = 50 MeV throughout this paper. Light neu-
trinos are clearly invisible to the detector, while heavy neu-
trinos may decay into lighter and observable decay products
before they escape. Thus in general non-trivial conditions
which depend on neutrino parameters are imposed on the
branching ratio Br(P → Emiss(γ )). We aim to study this
dependence and in particular to estimate theoretical upper
bounds on Br(P → Emiss(γ )) based on the relevant experi-
mental constraints. To do so, we first briefly discuss the basic
properties of P → νν and P → ννγ decays in the follow-
ing framework.5 We use the Majorana neutrino model with
nν = nN = 3. Details about the model and all relevant equa-
tions to reproduce the results are described in Appendix A.
We use the following compact notation

νC =
{

νM
C : C ∈ {1, 2, 3},
NM
C−3 : C ∈ {4, . . . , 3 + n}, (40)

along with the U matrix to estimate the relevant branching
ratios.6 Numerical results and plots in this section are cal-

5 As we discuss in detail in Sect. 3.2, the P → νννν contributions are
always negligible in our framework.
6 We note in passing that observables which do not depend on U†OL
and V †OL matrix elements can contain UCD in two forms: |UCD |2

123



388 Page 8 of 16 Eur. Phys. J. C (2021) 81 :388

Fig. 1 Examples of the
||U†U ||, ||U†V || and ||V †V ||
norms as functions of the θ2 and
θ3 parameters in a model with
nν = nN = 3. The other model
parameters are fixed as θ1 = 0
and φk = 0 for all k (implying
θk → −θk for each k). Light
neutrino masses are set to satisfy
present experimental constraints
with normal mass hierarchy [35]
and mν2/mν1 = 2. The NM

k
neutrino masses are set to
mN = 1 GeV (upper plots) and
mN1 = 1 MeV, mN2 = 1 GeV
and mN3 = 100 GeV (lower
plots)

Fig. 2 The ||U†U || norm as a function of θ3 and φ2 at φ1 = 0 (left),
as well as φ2 and φ1 at θ3 = 12 (right), in a nν = nN = 3 scenario
with mN1 = 1 MeV, mN2 = 1 GeV and mN3 = 100 GeV. Other θ j and

φ j parameters are set to zero. Light neutrino masses are set to satisfy
present experimental constraints with normal mass hierarchy [35] and
mν2/mν1 = 2

culated using expressions and numerical inputs described
in Appendix A. For light neutrino masses mν j we impose
experimental constraints from [35]. For concreteness, in
cases where observables significantly depend on light neu-
trino masses, we assume a normal mass hierarchy with
mν2/mν1 = 2.

3.1 P → νν

The P → νCνD decay is helicity suppressed and there-
fore highly sensitive to neutrino masses as can be seen from
Eq. (A9). Assume for the moment that U and R matrices are
purely real or have a negligibly small imaginary part. Then
the dependence of the decay width on U matrix elements
can be factorized such that B̃r(P → νCνD) ≡ Br(P →

and/or Re(U2
CD). Both are unaffected by the change UCD → U∗

CD .
In the case nN ≤ nν , this implies a symmetry θ → −θ , since
R(φ1, φ2, φ3, θ1, θ2, θ3)

∗ = R(φ1, φ2, φ3,−θ1,−θ2,−θ3). Exchang-
ing θk with−θk for a single k is in general not a symmetry of observables.

νCνD)/|UCD|2 becomes independent of |UCD | and its depen-
dence on neutrino masses mνC and mνD is shown in Fig. 3.

Note the different kinematical behavior of P → NM
k NM

k′
and P → νM

j NM
k due to the the sign difference sgn[Re

((U †V )2
jk)] = −sgn[Re((V †V )2

k′k′′)], see Eq. (A9). Fur-
thermore, assuming that neutrinos are (nearly) degenerate
DN ≈ mN I , Dν ≈ mν I with mN � mν , we can decom-
pose the branching fraction of the P → νν decay into

Br(P → νν) ≈ ||U †U ||2 B̃r(P → νM
j νM

j ′ )

+2 ||U †V ||2 B̃r(P → νM
j NM

k )

+||V †V ||2 B̃r(P → NM
k NM

k′ ). (41)

In this scenario, norms satisfy scaling relations described
in Sect. 2.7. From here it is easy to see that within these
assumptions the branching ratio Br(P → νν) is largest if
mN is of a non-negligible fraction of the P mass and the ξ

scale is sufficiently large. This can be seen from Fig. 4 for the
case of Bs decays. Due to scaling relations similar behavior
like in Fig. 4 is expected in case θ3 is exchanged by

∑
k θk .

123



Eur. Phys. J. C (2021) 81 :388 Page 9 of 16 388

Fig. 3 Branching ratio
Br(Bs → νCνD) dependence
on neutrino masses mνC and
mνD assuming (V †V )kk′ matrix
element is real (left) and
(U†V ) jk imaginary (right). See
text for details

In general the branching fractions Br(P → νν) are min-
imal in the Dirac limit. Precise values depend on the light
neutrino masses, but are in any case negligibly small com-
pared to experimental resolution of any currently foreseen
experiments [27]. On the other hand, the maximal values of
B̃r(P → νCνC ′) are reached at mNk = mN ′

k
≈ 0.4mP for

P → NM
k NM

k′ , and at mNk ≈ 0.6mP for P → νM
j NM

k .

In particular we find B̃r(Bs → NM
k NM

k′ )max � 3.5 ×
10−6, B̃r(Bd → NM

k NM
k′ )max � 1.1 × 10−7 at mNk =

mNk′ � 2.2 GeV, and B̃r(Bs → νM
j NM

k )max � 1.3 × 10−6,

B̃r(Bd → νM
j NM

k )max � 4.2 × 10−8 at mNk � 3 GeV.
The maximal values of Br(P → νν), however, also cru-
cially depend on the experimentally allowed values of U
matrix elements. It turns out that currently the constraints
are mildest for mNk in the range of a few GeV [38], in par-
ticular, there |(U †V ) jk |2 < 5 × 10−5 as reported by the
DELPHI collaboration [39]. This bound implies ξ � 1 and
in turn ||V †V || � ||U †V ||. If we thus assume approximately
degenerate Nk with masses mNk � 0.6MB ∼ 3 GeV, and all
(U †V ) jk matrix elements saturating the current experimental
bound in that mass region we obtain

Br(Bs → νν)

� 2||U †V ||2B̃r(Bs → νM
j NM

k )max < 1.2 × 10−9,

(42a)

Br(Bd → νν) < 3.8 × 10−11. (42b)

3.2 P → ννγ

In the limit mC ,mD � mP , the branching ratio Br(P →
νCνDγ ) is approximately independent of neutrino masses

Br(P → νCνDγ ) � Br(P → νCνDγ )

∣∣∣
mC=mD=0

. (43)

From here the identityBr(P → νCνDγ ) � |UCD|2 B̃r(P →
νCνDγ ), where B̃ does not depend on UCD , holds. Therefore
in the case ||DN || � mP the branching ratio of the P → ννγ

decay is given by

Br(P → ννγ ) =
∑

C,D

Br(P → νCνDγ )

�
∑

C,D

|UCD|2 B̃r(P → νCνDγ )

∣∣∣
mC=mD=0

� 3 B̃r(P → νCνDγ )

∣∣∣
mC=mD=0

, (44)

which coincides with the SM prediction Br(P → ννγ )SM

(with three massless neutrinos). In the last step the identity
in Eq. (32) was used. The B̃r(P → νCνDγ ) function takes
lower values if neutrino masses mνC and mνD increase as can
be seen from the left-hand side plot in Fig. 5 for the case of
the Bs → NkNk′γ decay where we plot the photon energy
spectrum of the decay (normalized to the Bs lifetime and the
relevant |U |2 matrix element) as a function of the neutrino
mass.

Using properties of the ||UU †|| norm described in
Appedix B one finds that in cases nν = 3 and nN ∈ {2, 3}
with max(Dν)/ min(DN ) � 1 and max(Dν) � mP , the
branching ratio of P → ννγ decay lies in the interval:

2

3
≤ Br(P → ννγ )

Br(P → ννγ )SM ≤ 1. (45)

The maximal value of the branching ratio takes place in the
SM. By taking ||Dν || = ||DN || → 0, form factors FA(q2)

and FV (q2) from the most recent estimate [28] and integrat-
ing Eq. (A11) over the whole phase-space, we find the SM
predictions for branching ratios Br(Bs,d → ννγ ) to be

Br(Bs → ννγ )SM = 6.2(1.9) × 10−9, (46a)

Br(Bd → ννγ )SM = 2.8(8) × 10−10, (46b)

where the O(30%) uncertainties are dominated by the rele-
vant hadronic form factor estimates, see also Appendix A. As
can be seen from Table 2, the most recent form factor inputs
lead to somewhat reduced predictions compared to previous
estimates.

In addition to the branching ratio, measuring the photon
energy spectrum in P → ννγ decays would in principle
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Fig. 4 The Bs → νν

branching ratio as a function of
θ3 and NM

k neutrino mass (m) in
scenario with degenerate NM

k
neutrino masses with R = R(θ3)

(upper plots), and in scenario
with mN1 = mN2 = 2 GeV,
m = mN3 and R = R(θ3) (lower
plots). In both scenarios
parameters θ1, θ2, φk for all k
are zero

Fig. 5 Spectrum of the
Bs → NM

k NM
k′ γ decay as a

function of the photon energy
Eγ and neutrino mass m (left).
The branching fraction of the
Bs → NM

k NM
k′ γ ∗ decay as a

function of m and photon
threshold energy E0 (right). In
both plots m = mNk = mNk′
and matrix element (V †V )kk′ is
assumed to be real. The red
curve marks the average value
of the photon energy 〈Eγ 〉 in the
decay as a function of m

Table 2 SM predictions of branching ratios of decays {Bs , Bd } → ννγ

decays from other works

Br (Bs → ννγ ) Br (Bd → ννγ ) Year References

6.2 × 10−9 2.8 × 10−10 2020 This work

3.68 × 10−8 1.96 × 10−9 2010 [27]

1.2 × 10−8 Not predicted 2002 [40]

1.8 × 10−8 2.4 × 10−9 1996 [41]

7.5 × 10−8 4.2 × 10−9 1996 [42]

allow to infer on the mass spectrum of the neutrinos appearing
in the final state. In particular, the average photon energy

〈Eγ 〉, defined as

〈Eγ 〉 = 1

�(P → ννγ )

∫
d�(P → ννγ )

dEγ

Eγ dEγ , (47)

is inversely correlated with final state neutrino masses, as can
be seen from the left-hand side plot in Fig. 5.

Assuming neutrinos are completely unobserved, the P →
ννγ decay contributes also to the invisible P decay width
effectively due to the finite resolution of any electromagnetic
calorimeter, since photons with energies lower than some
threshold energy E0 of the detector are not registered. This
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Fig. 6 The branching fraction
of the Bs → ννγ ∗ decay with a
soft photon (Eγ < E0) as a
function of θ3 and (m) in
scenario with degenerate NM

k
neutrino masses with R = R(θ3)

(right plot), and in scenario with
mN1 = mN2 = 2 GeV,
m = mN3 and R = R(θ3) (left
plot). In both scenarios
parameters θ1, θ2, φk for all k
are zero

contribution is simply given by

Br(P → ννγ ∗) = τP

∫ E0

0

d�(P → ννγ )

dEγ

dEγ , (48)

where the other integrals are performed over the whole avail-
able phase space. On the right-hand side plot in Fig. 5
we show the threshold energy and neutrino mass depen-
dence of the P → ννγ ∗ decay branching fraction for the
case Bs → NM

k NM
k′ γ ∗. Specifically, in the SM and for

a threshold energy of E0 = 50 MeV we obtain the pre-
dictions Br(Bs → ννγ ∗)E0=50 MeV

SM = 4.7 × 10−13 and

Br(Bd → ννγ ∗)E0=50 MeV
SM = 2.5 × 10−14. We show in

Fig. 6 a typical dependence of the Bs → ννγ ∗ branch-
ing fraction on the neutrino mixing parameters in two sce-
narios for NM

k neutrino masses, E0 = 50 MeV and with
R = R(θ3), θ1 = θ2 = 0. In comparison to Fig. 4 we observe
that these contributions to Bs → Emiss are generically still
more than three orders of magnitude smaller than the current
upper limit on Bs → νν and thus completely subleading.
However, at the same time, P → ννγ ∗ are always much
bigger than P → νννν [29] and are thus expected to domi-
nate P → Emiss in the (pseudo)Dirac neutrino limit. In addi-
tion, P → ννγ might contribute effectively to P → Emiss

also due to other detector effects, such as non-perfect 4π

coverage. Such contributions are however difficult to model
without a detailed knowledge of the detector components
and geometry and we leave such a study to the experimental
collaborations.

4 Conclusions

In this work we have reconsidered Majorana neutrino
mass models and derived a model-independent general
parametrization of neutrino mass matrices with physi-
cally interpretable and irreducible set of parameters. The
parametrization is valid for any number of left-handed (as

in SM) and right-handed (gauge singlet Majorana) neutri-
nos and for all mass hierarchies. In particular, in the heavy
Majorana neutrino limit we recover the standard Casas–Ibara
parametrization [18], while the parametrization nicely inter-
polates also through the (pseudo)Dirac neutrino limit.

We have applied the new parametrization to the study of
P → νν and P → ννγ decays within the SM extended
by nN = 3 additional singlet neutrinos.7 Along the way we
have updated the SM predictions for the branching ratios of
Bs,d → ννγ decays and found almost an order of magnitude
smaller values compared to previous estimates, mainly due
to a recent reevaluation of the relevant hadronic form factors.

Finally, we have discussed the sensitivity of the Bs,d →
Emiss(γ ) decays to neutrino mass and mixing parameters.
In the case of Bs,d → Emiss, for typical EM calorimeter
threshold energies and assuming 4π coverage, the dominant
contribution could still come from Bs,d → νν decays where
one of the final state neutrinos is predominantly a SM gauge
singlet of mass of the order a few GeV. However, the maxi-
mum allowed branching ratios, given by the current experi-
mental bounds on the relevant neutrino mixing matrices, are
at least four orders of magnitude below the direct limits from
the B factories. It remains to be seen if Belle II can reach
the required sensitivity to constrain the parameter space of
neutrino mass models in this interesting region.

In the case of Bs,d → Emissγ decays, additional light neu-
trinos in the final state could affect both the branching ratios
as well as the photon energy spectra and thus in principle
allow to extract information on the neutrino mass parame-
ters. Unfortunately, however, possible deviations from SM
predictions (i.e. the limit of massless neutrinos) are theoret-
ically constrained and at most comparable to current uncer-

7 The parametrization can trivially be applied to other neutral current
mediated processes involving pairs of neutrinos. In the case of charged
current mediated processes commonly used to constrain the PMNS
matrix (see e.g. Ref. [43]), or in searches for massive Majorana neutri-
nos with lepton number violating signatures [33,44], one instead needs
to consider additional dependence on the unitary OL matrix.
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tainties due to the limited knowledge of the relevant form fac-
tors. Any relevant experimental sensitivity to neutrino mass
parameters is thus conditional upon an improved understand-
ing of the relevant hadronic parameters, which could possibly
come from future Lattice QCD studies (see Refs. [45,46] for
current prospects).
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Appendix A: Calculation of P → νν and P → ννγ decay
widths

Below we summarize our calculation of the Bs,d → νν(γ )

decay widths as discussed in the main text. We consider the
physically relevant scenario with nν = 3 neutrinos νM

j and

nN neutrinos NM
k . The Majorana fields are defined in a way

such that the Dirac limit can be approached analytically with
both Dν and DN matrices being positive semi-definite. For
other choices of the relecant phase factors one should prop-
erly redefine the mixing matrix U . Note that our calculation
can be applied also to the corresponding K , D meson decays,
with suitable quark flavor replacements.

We calculate the decay widths Bs,d → νν(γ ) using the
relevant effective weak Lagrangian [47,48]

Leff = 4GFαem

2
√

2π sin2 θW

∑

q=s,d

V ∗
tq VtbX (xt )

[
bγμPLq

] 3+n∑

C,D=1

Jμ
CD,

(A1)

where the leptonic current Jμ
CD is given by

Jμ
CD = 〈νC (pC ), νD(pD)|

3∑

a=1

νaLγ μνaL |0〉 e−i(pC+pD)x ,

(A2a)

= − UCD [uCγ μPLvD] + U∗
CD [uDγ μPLvC ]. (A2b)

The relevant loop function X (xt ) can be written as

X (xt , xμ) = X0(xt ) + αs(μ)

4π
X1(xt , xμ), (A3)

where X0(xt ) is the Inami-Lim function [47]

X0(xt ) = xt
8

[
xt + 2

xt − 1
+ 3(xt − 2)

(xt − 1)2 ln xt

]
, (A4)

and the leading QCD corrections are parametrized by X1

whose explicit expression can be found in Refs. [48,49].
Here xμ = μ2/M2

W , xt = m2
t /M

2
W and the MS QCD renor-

malization scheme is assumed throughout. In the following
we compress the common constant prefactors entering the
Lagrangian into

C ≡ GFαem

2
√

2π sin2 θW
V ∗
tqVtbX (xt ). (A5)

Above and in the following we have suppressed the light fla-
vor (q = s, d) indices where the identification of the relevant
B(q) meson flavor is unambiguous.

For the P → νν decay we parametrize the relevant
hadronic matrix elements in the standard way

〈0|b̄γ μq|P(p)〉 = 0, (A6a)

〈0|b̄γ μγ 5q|P(p)〉 = i fP pμ, (A6b)

where fP is the relevant P = Bs,d meson decay constant.
In particular, we use fBs = 224 MeV and fBd = 186 MeV
from Ref. [50].

In the case of the radiative decay, only the emission of
photons from the hadronic part is relevant and is parametrized
by the relevant radiative form factors

〈γ (k)|b̄γμq|P(k + q)〉 = eεμνρσ ε∗νqρkσ FV (q2)

mP
, (A7a)

〈γ (k)|b̄γμγ5q|P(k + q)〉 = −ie
[
ε∗
μ(kq) − (ε∗q)kμ

] FA(q2)

mP
.

(A7b)

Here q = pC + pD = p−k and q2 = m2
P −2mP Eγ . For the

axial (A) and vectorial (V) form factors FA(q2) and FV (q2)
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we take the most recent estimate [28] parametrized by

FX (q2) = F(0)

(1 − q2/M2
R)
[
1 − σ1 (q2/M2

R) + σ2 (q2/M2
R)2
] ,

(A8)

where F(0), σ1, σ2 and MR parameters for P = Bs,d are
given in Ref. [28]. After a quick calcuation one finds the
expression for the P → νCνD decay width

�(P → νCνD) = 16|C |2 f 2
P

{
1

2
|UCD|2

[
m2

P (m2
C + m2

D)

−(m2
C − m2

D)2
]

+mCmDm
2
P Re
(U2

CD

)} Q

2mP
, (A9)

where

Q = 1

(4π)mP

√√√√
(
m2

P + m2
C − m2

D

2mP

)2

− m2
C

×
{

1 : Dirac,
1
2 : Majorana.

(A10)

In the Dirac limit the process P → νM
j NM

j is forbidden.
Similarly, the triply differential P → νCνDγ decay width
(for Majorana neutrinos) is given by

d3�(P → νCνDγ )

dEγ dECd�

= |C |2αem

4π3mP

[
FA

2 + FV
2
] {

− mCmDE
2
γ Re
(U2

CD

)

+ |UCD|2
[
(k · pC )2

− Eγ (2EC + Eγ )(k · pC ) + E2
γ ECmP

]}

× θ(mP − EC − Eγ ) θ(EC − ECmin) θ(ECmax − EC ).

(A11)

Note that due to Majorana nature of neutrinos the full integral
over the solid angle d� gives 2π instead of the usual 4π .
From kinematic constraints one furthermore obtains

EC
max
min = mP − Eγ

2
� ± 1

2
Eγ

√

�2 − 4m2
C

m2
P − 2mP Eγ

,

(A12)

where is � equal to

� = 1 + m2
C − m2

D

m2
P − 2mP Eγ

, (A13)

while k · pC is given by

k · pC = 1

2

(
−m2

P − m2
C + m2

D + 2mP Eγ + 2mP Ec

)
.

(A14)

Finally, in our numerical results we use μ = mZ =
91.2 GeV, αem = 1/137, mBs = 5.37 GeV, mBd =
5.28GeV, mW = 80.4 GeV, |VtbV ∗

ts | = 0.0403, |VtbV ∗
td | =

0.00875, sin2 (θW ) = 0.22, τBs = 1.51 ps, τBd = 1.52 ps,
αs(mZ ) = 0.118 and mt (mZ ) = 172GeV [51].

Appendix B: Lower bounds on ||UU†||

In this section we formally prove Eq. (45) and discuss addi-
tional properties of the ||UU †|| norm. We assume a model
with nν light neutrinos (mν j /mP � 1) and nN heavy neu-
trinos (mν j /mNk � 1). From properties of P → ννγ decay
follows that inequality:

||UU †||2 B̃r(P → ν jν jγ )

∣∣∣∣
mν j =0

≤ Br(P → ννγ ), (B1)

holds. Moreover from upper limit of the branching ratio
Br(P → ννγ ) we find:

B̃r(P → ν jν jγ )

∣∣∣∣
mν j =0

= 1

nν

Br(P → ννγ )SM. (B2)

This is a direct consequence of Eq. (32). From here, within
assumed model we have:

||UU †||2
nν

≤ Br(P → ννγ )

Br(P → ννγ )SM ≤ 1. (B3)

Value of the norm is due to derived parametrization of
neutrino matrices directly related to the eigenvalues μ j of
the QQ† matrix through relation:

||U †U ||2 =
nν∑

j=1

1

(1 + μ j )2 . (B4)

This equation is obtained by diagonalizing QQ† matrix
inside Frobenius norm. For UV † and VV † matrices similar
formulas can be found:

||U †V ||2 = ||V †U ||2 =
nν∑

j=1

μ j

(1 + μ j )2 , (B5)

||V †V ||2 =
nν∑

j=1

μ2
j

(1 + μ j )2 . (B6)
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We use Eq. (B4) as a starting point to determine theoretical
lower bounds on the ||UU †|| norm for different choices of
nν and nN .

4.1 Case nν ≥ nN

In scenario with nν ≥ nN we use following theorems.

Notation 1 Let X bean×n hermitianmatrix, thenwedenote
its eigenvalues as λ j (X), where λ1(X) < · · · < λn(X).

Definition 1 (Loewner order) Let A and B be hermitian
matrices, then A ≤ B if and only if A−B is positive semidef-
inite matrix.

Theorem 1 (Loewner order is compatible with congruence)
If A and B are hermitian matrices and A ≤ B, then for any
matrix X: X AX† ≤ XBX†.

Theorem 2 (Wely’s monotonicity theorem, [[52], Corollary
4.3.3]) If A and B are n×n hermitian matrices with A ≤ B,
then λk(A) ≤ λk(B) for each k = 1, .., n.

Theorem 3 ([[52], Theorem 1.3.20])Let A be am×n matrix
and B be a n × m matrix with m ≤ n. Then BA matrix has
the same eigenvalues as BA, together with additional n−m
eigenvalues equal to 0.

We denote by a the largest eigenvalue of Dν and by b the
smallest eigenvalue of DN , therefore D−1

N ≤ 1/bI . Using
Theorem 1 we get:

QQ† = (D1/2
ν PR)D−1

N (D1/2
ν PR)† ≤ 1

b
D1/2

ν PRR†P†D1/2
ν .

(B7)

By Theorem 3 we find λ j (QQ†) = 0 for j = 1, . . . , nν −
nN . Next for j > nν − nN , we apply Theorems 2, 3 and 1 in
this order to obtain:

λ j (QQ†) ≤ 1

b
λ j ((D

1/2
ν PR)(R†P†D1/2

ν ))

≤ 1

b
λ j (R

†P†Dν PR) ≤ a

b
λ j (R

†R). (B8)

From here, we finally get:

||U †U ||2 ≥ nν − nN +
nN∑

k=1

1

[1 + a
bλk(RR†)]2 . (B9)

From the property (R†R)−1 = (R†R)∗ follows directly,
that if λ(RR†) is an eigenvalue of the R†R matrix, then
1/λ(R†R) is also eigenvalue of R†R matrix. A consequence
of this property is that for any (2n+1)×(2n+1) orthogonal
matrix R, the RR† matrix has at least one eigenvalue equal
to 1. Therefore, if R is a general n × n complex orthogonal

matrix, then R†R matrix have maximally �n/2� (integer part
of n/2) eigenvalues which are greater than 1. This implies:

||U †U ||2 ≥ nν − �nN/2�. (B10)

Using property:

1

(1 + a
bλ)2 + 1

(1 + a
b

1
λ
)2

≥ 1

(1 + a
b )2 , (B11)

a better lower bound can be obtained:

||U †U ||2 ≥ nν − nN + � nN+1
2 �

(1 + a
b )2 . (B12)

Eigenvalues of RR† matrix depend only on θk parameters
if R matrix is parametrized in the following way:

R(φ, θ) =
n∏

k=1

Rk(φk)

n∏

k=1

Rn+k(θk), (B13)

where R1, . . . , Rn are real orthogonal matrices and therefore
unitary. We can absorb them in the process of diagonalizing
RR† matrix:

det

(
n∏

k=1

Rk(φk)

n∏

k=1

Rn+k(θk)R
†
n+k(θk)

n∏

k=1

R†
k (φk) − λI

)

= det

(
n∏

k=1

Rn+k(θk)R
†
n+k(θk) − λI

)
. (B14)

From here, eigenvalues of RR† matrix must depend only
on θk parameters.

4.2 Case nν < nN

In scenario with nν < nN is more difficult to obtain eigen-
values of QQ† matrix, since S matrix is present in it. In
case nN ≥ 2nν the lowest bound on ||UU †|| norm is 0.
This can be proven using R = Inν×nν , Dν = aInν×nν ,
S = [Inν×nν , ix Inν×nν , 0(nN−2nν )×(nN−2nν )], where x ∈ R
and:

DN =
⎛

⎝
bInν×nν 0 0

0 cInν×nν 0
0 0 C(nN−2nν )×(nN−2nν )

⎞

⎠ . (B15)

where C is a positive semi-definite diagonal matrix. From
here one gets:

QQ† = a
1 + x2

|b − cx2| Inν×nν . (B16)
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For x �= ±√
b/c matrix SDN ST is invertible. When x

approaches to
√
b/c eigenvalues of QQ† matrix become very

large and therefore the lowest value for the ||UU †|| norm is
0.
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