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Abstract We generalize our previous studies on the Maxwell
quasinormal modes around Schwarzschild-anti-de-Sitter black
holes with Robin type vanishing energy flux boundary con-
ditions, by adding a global monopole on the background. We
first formulate the Maxwell equations both in the Regge–
Wheeler–Zerilli and in the Teukolsky formalisms and derive,
based on the vanishing energy flux principle, two bound-
ary conditions in each formalism. The Maxwell equations
are then solved analytically in pure anti-de Sitter spacetimes
with a global monopole, and two different normal modes are
obtained due to the existence of the monopole parameter.
In the small black hole and low frequency approximations,
the Maxwell quasinormal modes are solved perturbatively
on top of normal modes by using an asymptotic matching
method, while beyond the aforementioned approximation,
the Maxwell quasinormal modes are obtained numerically.
We analyze the Maxwell quasinormal spectrum by vary-
ing the angular momentum quantum number �, the over-
tone number N , and in particular, the monopole parameter
8πη2. We show explicitly, through calculating quasinormal
frequencies with both boundary conditions, that the global
monopole produces the repulsive force.

1 Introduction

Black hole quasinormal modes (QNMs), describing the char-
acteristic oscillations of black holes, have attracted a lot of
attention recently, see for example reviews [1–4] and ref-
erences therein. Due to the existence of an event horizon,
the black hole spacetimes are intrinsically dissipative so
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that quasinormal frequencies are complex in general and the
imaginary part is associated with the timescale of the per-
turbation. QNMs play vital roles on various aspects, ranging
from gravitational wave astronomy [5,6] to the application
in the context of the anti-de Sitter/conformal field theory
(AdS/CFT) correspondence [7–9].

The AdS/CFT correspondence states that QNMs of a (D+
1)-dimensional asymptotically AdS black hole or brane are
poles of the retarded Green’s function in the dual conformal
field theory in D dimensions at strong coupling. Horowitz
and Hubeny first studied scalar QNMs on Schwarzschild-
AdS black holes [10] (see also [11,12]), and numerous works
were then followed to explore QNMs of various spin fields
on asymptotically AdS black holes, see for example [13–37].

Mathematically QNMs are defined as eigenvalues of per-
turbation equations with physically relevant boundary con-
ditions. Considering a lot of studies already performed in
literatures, however, a generic boundary condition is still
lacking. Recently, we have proposed the vanishing energy
flux principle [38,39], which may be applied both to the
Regge-Wheeler-Zerilli and to the Teukolsky formalisms, and
leads to two sets of Robin type boundary conditions and
has been successfully employed to explore QNMs of the
Maxwell [38,40] and Dirac fields [41,42]. In this paper, we
follow the same rationale and generalize our previous studies
of the Maxwell QNMs on Schwarzschild-AdS black holes,
by adding a global monopole on the backgrounds.

The global monopoles, as a special class of topological
defects, may be formed in the early universe through the
spontaneous symmetry breaking of the global O(3) symme-
try to U(1) [43,44], according to the Grand Unified Theories.
The gravitational properties of monopoles have been exten-
sively studied, and an unusual property induced by global
monopoles is that it possesses a solid deficit angle. This prop-
erty makes black holes with a global monopole and without
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a global monopole topologically different, and thus leads to
interesting physical consequences [45–52].

The purpose of this study is twofold. On one hand, we
explore the impact of the global monopole on the Maxwell
quasinormal spectrum on Schwarzschild-AdS black holes,
by imposing vanishing energy flux boundary conditions. On
the other hand, it is well known that, on spherically sym-
metric backgrounds, the Maxwell equations may be writ-
ten either in the Regge–Wheeler–Zerilli or in the Teukolsky
formalisms. As we argued before [38], by imposing vanish-
ing energy flux boundary conditions, the Maxwell equations
in both formalisms lead to the same quasinormal spectrum.
Here we show explicitly, through calculating normal modes
in both formalisms with vanishing energy flux boundary con-
ditions, that it is indeed the case, even if a global monopole
is included.

The structure of this paper is organized as follows. In
Sect. 2 we introduce the Schwarzschild-AdS black holes with
a global monopole, and show the Maxwell equations both in
the Regge–Wheeler–Zerilli and in the Teukolsky formalisms.
In Sect. 3 we present the explicit boundary conditions, based
on the vanishing energy flux principle, for both the Regge-
Wheeler-Zerilli variable and the Teukolsky variable of the
Maxwell field. We then perform an analytic matching calcu-
lation for small AdS black holes in Sect. 4, and a numeric
calculation in Sect. 5. Final remarks and conclusions are pre-
sented in the last section.

2 Background geometry and the field equations

In this section, we first briefly review the background geom-
etry we shall study, i.e. Schwarzschild-AdS black holes with
a global monopole, and then present equations of motion
for the Maxwell fields on the aforementioned backgrounds
both in the Regge–Wheeler–Zerilli and in the Teukolsky for-
malisms.

2.1 The line element

We start by considering the following line element of a
Schwarzschild-AdS black hole with a global monopole

ds2 = �r

r2 dt2 − r2

�r
dr2 − r2

(
dθ2 + sin2 θdϕ2

)
, (1)

with the metric function

�r ≡ r2
(

η̃2 + r2

L2

)
− 2Mr, (2)

where L is the AdS radius, M is the mass parameter. Here
the dimensionless parameter η̃2 is defined by

η̃2 ≡ 1 − 8πη2, (3)

where η is the global monopole parameter, and the
Schwarzschild-AdS spacetimes may be recovered when
8πη2 = 0. The Hawking temperature may be calculated,
and one obtains

TH = κ

2π
= 3r2+ + η̃2L2

4πr+L2 ,

where r+ is the event horizon determined by the non-zero
real root of �r (r+) = 0, and where the mass parameter has
been expressed in terms of r+ as

M = r+
(
η̃2L2 + r2+

)

2L2 .

By introducing the following coordinates transformation

t̃ = η̃t, r̃ = r

η̃
, (4)

and a new mass parameter

M̃ = M

η̃3 , (5)

Equation (1) becomes

ds2 =
(

1 − 2M̃

r̃
+ r̃2

L2

)
dt̃ 2 −

(
1 − 2M̃

r̃
+ r̃2

L2

)−1

dr̃2

− η̃2r̃2
(
dθ2 + sin2 θdϕ2

)
. (6)

Now it becomes clear that the global monopole introduces
a solid deficit angle, so that the solid angle of the above
spacetime is 4πη̃2.

2.2 Equations of motion in the Regge–Wheeler–Zerilli
formalism

In a spherically symmetric background, one may obtain vari-
able separated and decoupled Maxwell equations by using the
Regge-Wheeler-Zerilli method [53,54]. For that purpose, we
start from the Maxwell equations

∇νF
μν = 0, (7)

where the field strength tensor is defined as Fμν = ∂μAν −
∂ν Aμ. We then expand the vector potential Aμ in terms of
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the scalar and vector spherical harmonics [55]

Aμ =
∑
�,m

⎛
⎝

⎡
⎣

0
0

a�m(t, r)S�m

⎤
⎦ +

⎡
⎣

j�m(t, r)Y�m

h�m(t, r)Y�m

k�m(t, r)Y �m

⎤
⎦

⎞
⎠ , (8)

with the definition of the vector spherical harmonics

S�m =
( 1

sin θ
∂ϕY�m

− sin θ∂θY�m

)
, Y �m =

(
∂θY�m

∂ϕY�m

)
,

where Y�m are the scalar spherical harmonics, m is the
azimuthal number, and � is the angular momentum quan-
tum number. Note that the first term in the right hand side of
Eq. (8) has parity (−1)�+1 while the second term has parity
(−1)�, and we shall call the former (latter) the axial (polar)
modes. By substituting Eq. (8) into Eq. (7) with the assump-
tion

a�m(t, r) = e−iωt a�m(r), j�m(t, r) = e−iωt j�m(r),

h�m(t, r) = e−iωt h�m(r), k�m(t, r) = e−iωt k�m(r),

one obtains the Schrodinger-like radial wave equation

(
d2

dr2∗
+ ω2 − �(� + 1)

�r

r4

)
�(r) = 0, (9)

where the tortoise coordinate is defined as

dr∗
dr

= r2

�r
, (10)

with �(r) = a�m(r) for axial modes, and

�(r) = r2

�(� + 1)

(
−iωh�m(r) − d j�m(r)

dr

)
,

for polar modes.

2.3 Equations of motion in the Teukolsky formalism

Equations of motion of the Maxwell fields may be also
derived within the Teukolsky formalism [56]. This approach
is based on the Newmann–Penrose algorithm [57], and is par-
ticularly relevant to study linear perturbations of the massless
spin fields on rotating black hole backgrounds. In this subsec-
tion we outline the radial equations, which may be obtained
following the procedures presented in [58].

The radial equation is

�−s
r

d

dr

(
�s+1

r
d Rs(r)

dr

)
+ H(r)Rs(r) = 0, (11)

with

H(r) = K 2
r − isKr�

′
r

�r
+ 2isK ′

r + s + |s|
2

�′′
r − λ,

where Kr = ωr2, λ = �(� + 1) and the spin parameter is
s = ±1.

3 Boundary conditions

In order to solve the radial equations, given by Eqs. (9)
and (11), one has to impose physically relevant boundary
conditions, both at the horizon and at infinity. At the hori-
zon, we impose the commonly used ingoing wave bound-
ary conditions. At infinity, we impose the vanishing energy
flux principle, proposed in [38] (see also [39,59]), which
have already been employed to study the Maxwell [38,40]
and the Dirac [41,42] QNMs on asymptotically AdS space-
times. Based on this principle, in the following we derive
explicit boundary conditions for Eqs. (9) and (11), which are
obtained in the Regge–Wheeler–Zerilli and in the Teukolsky
formalisms respectively, and we will show both equations
with the corresponding boundary conditions lead to the same
spectrum in the next section.

3.1 Boundary conditions in the Regge–Wheeler–Zerilli
formalism

We start from the energy-momentum tensor of the Maxwell
field, which is given by

Tμν = Fμσ F
σ
ν + 1

4
gμνF

2. (12)

Then the spatial part of the radial energy flux may be calcu-
lated as

F |r ∝ �r

r2 �(r)� ′(r), (13)

where ′ denotes the derivative with respect to r . By expanding
Eq. (9) asymptotically as

� ∼ a0 + a1

r
+ O

(
1

r2

)
, (14)

Equation (13) becomes

F |r,∞ ∝ a0a1.

Then the vanishing energy flux principle, i.e. F |r,∞ = 0,
leads to

a0 = 0, (15)

a1 = 0. (16)
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3.2 Boundary conditions in the Teukolsky formalism

The explicit boundary conditions for the Teukolsky variables
of the Maxwell fields on a global monopole Schwarzschild-
AdS black hole can be derived directly, following the simi-
lar prescriptions described in [38,59]. Since the monopole
parameter does not alter the asymptotic structure of AdS
spacetimes, one may get exactly the same boundary con-
ditions as to the Schwarzschild-AdS case, and the results are
listed in the following.

To be specific, we focus on the boundary conditions for
R−1. From Eq. (11) one obtains the asymptotic behavior of
R−1 as

R−1 ∼ α−r + β− + O(r−1), (17)

and the vanishing energy flux principle leads to [38,59]

α−

β− = i

ωL2 , (18)

α−

β− = iω

−�(� + 1) + ω2L2 . (19)

4 Analytics

4.1 Normal modes

The normal modes of the Maxwell fields on an empty AdS
background with a global monopole are calculated analyti-
cally in this subsection, both in the Regge–Wheeler–Zerilli
and in the Teukolsky formalisms, by solving Eq. (9) with
boundary conditions (15) and (16), and Eq. (11) with bound-
ary conditions (18) and (19). These calculations provide a
concrete example to show explicitly that, vanishing energy
flux is a generic principle, which can be applied to both for-
malisms and leads to the same spectrum.

4.1.1 Normal modes in the Regge–Wheeler–Zerilli
formalism

In a pure AdS spacetime with a global monopole (M = 0),
the metric function becomes

�r = r2
(

η̃2 + r2

L2

)
,

then the radial equation (9) can be solved, and one obtains

�(r) = r �̃+1
(
r2 + L̃2

)− ω̃L̃
2

[
c1F

(
1 + �̃ − ω̃L̃

2
,

2 + �̃ − ω̃L̃

2
,

3

2
+ �̃;− r2

L̃2

)
− c2e

−2iπ�̃

(
L̃

r

)2�̃+1

× F

(
− �̃ + ω̃L̃

2
,

1 − �̃ − ω̃L̃

2
,

1

2
− �̃;− r2

L̃2

)]
.

(20)

Here c1, c2 are two integration constants with dimension of
inverse length, F(a, b, c, z) is the hypergeometric function,
and

�̃ = 1

2

(
−1 +

√
4�2 + 4� + η̃2

η̃

)
, L̃ = η̃L , ω̃ = ω

η̃2 ,

(21)

where � = 1, 2, 3, . . .. By expanding Eq. (20) at large r , we
get relations between c1 and c2, i.e.

c2

c1
= e2iπ�̃

�
(

3
2 + �̃

)
�

(
1−�̃−ω̃L̃

2

)
�

(
1−�̃+ω̃L̃

2

)

�
(

1
2 − �̃

)
�

(
2+�̃−ω̃L̃

2

)
�

(
2+�̃+ω̃L̃

2

) , (22)

which corresponds to the first boundary condition given by
Eq. (15), and

c2

c1
= e2iπ�̃

�
(

3
2 + �̃

)
�

(−�̃−ω̃L̃
2

)
�

(−�̃+ω̃L̃
2

)

�
(

1
2 − �̃

)
�

(
1+�̃−ω̃L̃

2

)
�

(
1+�̃+ω̃L̃

2

) , (23)

which corresponds to the second boundary condition given
by Eq. (16). Then by expanding Eq. (20) at small r

�(r) ∼ c1r
1+�̃ L̃−ω̃L̃ − c2e

−2iπ�̃r−�̃ L̃1+2�̃−ω̃L̃ , (24)

we shall set c2 = 0 to get a regular solution at the origin.
This condition leads to two sets of normal modes

�

(
2 + �̃ − ω̃L̃

2

)
= −N ⇒ ω̃1,N L̃ = 2N + �̃ + 2, (25)

from Eq. (22), and

�

(
1 + �̃ − ω̃L̃

2

)
= −N ⇒ ω̃2,N L̃ = 2N + �̃ + 1, (26)

from Eq. (23), where N = 0, 1, 2, . . .. The above two nor-
mal modes, by noticing that �̃ is not an integer anymore,
are different. This is an interesting observation, since for the
case without a global monopole, the two sets of the Maxwell
normal modes are isospectral up to one mode [38].
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4.1.2 Normal modes in the Teukolsky formalism

In this case the radial Teukolsky Eq. (11) becomes

�r R
′′−1(r) +

(
K 2
r + i Kr�

′
r

�r
− 2i K ′

r − �(� + 1)

)
R−1(r)

= 0, (27)

with

�r = r2
(

η̃2 + r2

L2

)
, Kr = ωr2.

The general solution for Eq. (27) is

R−1 = r �̃+1(r − i L̃)
ω̃L̃
2 (r + i L̃)−�̃− ω̃L̃

2

[
c3F

(
�̃, �̃ + 1

+ω̃L̃, 2�̃ + 2; 2r

r + i L̃

)
+ c4(−2)−2�̃−1

(
1 + i L̃

r

)2�̃+1

× F

(
−�̃ − 1, −�̃ + ω̃L̃, −2�̃; 2r

r + i L̃

)]
, (28)

where F(a, b, c; z) is again the hypergeometric function,
c3 and c4 are two integration constants with dimension of
inverse length. These two constants are related to each other
by the boundary conditions through expanding Eq. (28) at
large r :

• By imposing the first boundary condition given in
Eq. (18), one gets a first relation between c3 and c4

c4

c3
= (−2)1+2�̃ �̃

1 + �̃

F
(

1 + �̃, 1 + �̃ + ω̃L̃, 2 + 2�̃; 2
)

F
(
−�̃,−�̃ + ω̃L̃,−2�̃; 2

) .

(29)

• By imposing the second boundary condition given in
Eq. (19), on the other hand, one gets a second relation
between c3 and c4

c4

c3
= (−2)1+2�̃ �̃

�̃ + 1

A1

A2
, (30)

where

A1 = (1 + �̃)F(�̃, 1 + �̃ + ω̃L̃, 2 + 2�̃; 2)

+ ω̃L̃ F(1 + �̃, 1 + �̃ + ω̃L̃, 2 + 2�̃; 2),

A2 = �̃F
(

1 − �̃,−�̃ + ω̃L̃,−2�̃; 2
)

− ω̃L̃ F
(
−�̃,−�̃ + ω̃L̃,−2�̃; 2

)
. (31)

Then from the small r behavior of Eq. (28)

R−1 ∼ c3e
iπ�̃21+2�̃ L̃−2�̃r �̃+1 + c4

−i L̃

r �̃
, (32)

we have to set c4 = 0 in order to get a regular solution of
R−1 at the origin. This regularity condition picks the normal
modes, from Eqs. (29) and (30):

F(1 + �̃, 1 + �̃ + ω̃L̃, 2 + 2�̃; 2) = 0,

⇒ ω̃1,N L̃ = 2N + �̃ + 2, (33)

A1 = 0,

⇒ ω̃2,N L̃ = 2N + �̃ + 1, (34)

where again N = 0, 1, 2, . . ., and two sets of normal modes
are different. One may observe that normal modes obtained
in the Teukolsky formalism, given in Eqs. (33) and (34), are
exactly the same with the counterpart obtained in the Regge–
Wheeler–Zerilli formalism, given in Eqs. (25) and (26),
which indicates the equivalence of the two formalisms and
the universality of the vanishing energy flux boundary con-
ditions.

4.2 Quasinormal modes for small black holes

In this subsection, we perform an analytic calculation of
quasinormal frequencies for the Maxwell fields on a small
Schwarzschild-AdS black hole with a global monopole, by
using an asymptotic matching method. Note that for this case
the analytic calculation is only applicable to the Teukolsky
formalism.

4.2.1 Near region

In the near region, and with small black hole approximation
r+ 
 L̃ , Eq. (11) becomes

(
�r

d2

dr2 + η̃4r2+ω̄

�r
− �(� + 1)

)
R−1(r) = 0, (35)

with

ω̄ =
(

ω̃r+ + i

2

)2

+ 1

4
, �r = η̃2r (r − r+) , (36)

where ω̃ is defined in Eq. (21). By defining a new dimension-
less variable

z ≡ 1 − r+
r

,
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it is convenient to transform Eq. (35) into

z(1 − z)
d2R−1

dz2 − 2z
dR−1

dz
+

(
ω̄(1 − z)

z
− �̃(�̃ + 1)

(1 − z)

)
R−1

= 0, (37)

where R−1 ≡ R−1(z), and �̃ is defined in Eq. (21). The
above equation can be solved in terms of the hypergeometric
function

R−1 ∼ z1−iω̃r+(1−z)�̃F
(
�̃ + 1, �̃ + 2 − 2iω̃r+, 2 − 2iω̃r+; z

)
,

(38)

where an ingoing boundary condition has been imposed. In
order to match the far region solution, here we shall further
expand the near region solution, given in Eq. (38), at large r .
To do so, we take the z → 1 limit and use the property of the
hypergeometric function [60], then obtain

R−1 ∼ � (2 − 2iω̃r+)

[
Rnear−1,1/r

r �̃
+ Rnear−1,r r

�̃+1

]
, (39)

where

Rnear−1,1/r =
�

(
−2�̃ − 1

)
r �̃+

�
(

1 − �̃ − 2iω̃r+
)

�(−�̃)
,

Rnear−1,r =
�

(
2�̃ + 1

)
r−�̃−1+

�(�̃ + 1)�
(
�̃ + 2 − 2iω̃r+

) . (40)

4.2.2 Far region

In the far region, the black hole effects may be neglected, and
the solution is given by Eq. (28). In order to match this solu-
tion with the near region solution, we shall expand Eq. (28)
at small r , then obtain

R−1 ∼ Rfar−1,1/r

r �̃
+ Rfar−1,r r

�̃+1, (41)

with

Rfar−1,1/r ≡ −i L̃c4, Rfar−1,r ≡ 21+2�̃eiπ�̃ L̃−2�̃c3, (42)

where the constants c3 and c4 are related with each other
by Eqs. (29) and (30), corresponding to the first and second
boundary conditions.

4.2.3 Overlap region

In the overlap region the solutions, obtained in the near region
given by Eq. (39) and in the far region given by Eq. (41), are
the same up to a constant. Then one may impose the matching
condition, Rnear−1,r R

far−1,1/r = Rfar−1,r R
near−1,1/r , which gives

�(−2�̃ − 1)

�(−�̃)

�(�̃ + 1)

�(2�̃ + 1)

�
(
�̃ + 2 − 2iω̃r+

)

�
(
−�̃ + 1 − 2iω̃r+

)
(
r+
L̃

)2�̃+1

=
(−i

2

)1+2�̃ c4

c3
. (43)

By imposing the first boundary condition and using the cor-
responding relation between c3 and c4 given by Eq. (29), one
obtains

�(−2�̃ − 1)

�(−�̃)

�(�̃ + 1)

�(2�̃ + 1)

�(�̃ + 2 − 2iω̃r+)

�(−�̃ + 1 − 2iω̃r+)

(
r+
L̃

)2�̃+1

= i1+2�̃ �̃

1 + �̃

F
(

1 + �̃, 1 + �̃ + ω̃L̃, 2 + 2�̃; 2
)

F
(
−�̃,−�̃ + ω̃L̃,−2�̃; 2

) , (44)

while by imposing the second boundary condition and using
the corresponding relation between c3 and c4 given by
Eq. (30), one obtains

�(−2�̃ − 1)

�(−�̃)

�(�̃ + 1)

�(2�̃ + 1)

�
(
�̃ + 2 − 2iω̃r+

)

�
(
−�̃ + 1 − 2iω̃r+

)
(
r+
L̃

)2�̃+1

= i1+2�̃ �̃

1 + �̃

A1

A2
, (45)

where A1 and A2 are given by Eq. (31).
For a small black hole (r+ 
 L̃), at the leading order of

r+/L̃ , the left terms in Eqs. (44) and (45) vanish, and then
we shall require the right terms in both equations to vanish
as well. These conditions lead to two sets of normal modes,
given by Eqs. (33) and (34). Then QNMs of small black holes
may be obtained perturbatively by solving Eqs. (44) and (45),
on top of normal modes. To achieve this goal, we expand the
frequency

ω̃ j L̃ = ω̃ j,N L̃ + iδ j , (46)

where j = 1, 2, and ω̃ j,N refer to normal modes. Here δ j is
complex in general, and its real part, i.e. �(δ j ), reflects damp-
ing rate of a black hole. The general expression of δ j , which
is usually messy and lengthy but can be derived straightfor-
wardly by substituting Eq. (46) into Eqs. (44) and (45).
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Fig. 1 Comparison of the imaginary part of quasinormal frequencies
for the two sets of fundamental modes with � = 1 and 8πη2 = 0.05,
between the analytic matching approximation (dashed lines) and the
numerical data (solid lines). Note that we use double logarithmic coor-
dinates in this figure

5 Numeric results

Beyond the regime where the asymptotic matching method is
valid, one has to look for black hole quasinormal spectrum by
resorting to numerics. In this part, we utilize a numeric pseu-
dospectral method, adapted from our previous works [42,61],
to solve the Maxwell equations given in the Regge-Wheeler-
Zerilli formalism (9) with the corresponding boundary con-
ditions given by Eqs. (15) and (16).1

Before we introduce the pseudospectral method, here goes
a few comments on the dimensionless form of Eq. (9) which is
essential for numeric calculations. For the case we considered
in this paper, one may either take the unit of L or take the unit
of L̃ (with the definition given in Eq. (21)). For the former
choice, Eq. (9) may be written as

[
�r

r2

d

dr

(
�r

r2

d

dr

)
+ ω2L2 − �(� + 1)

�r

r4

]
�(r) = 0,

(47)

where r is an abbreviation of r
L so that it is dimensionless,

and

�r

r2 = r − r+
r

(
η̃2 + r2 + r+r + r2+

)
, (48)

where r+ is a dimensionless event horizon.

1 Note that, as we have checked, the same spectrum may be also
obtained by solving the Teukolsky equation (11) with the corresponding
boundary conditions given by Eqs. (18) and (19).

Table 1 Quasinormal frequencies of the Maxwell fields on global
monopole-Schwarzchild-AdS black holes with 8πη2 = 0.1, N = 0,
and for different black hole sizes r+ with two different boundary con-
ditions

r+ ω̃1(� = 1) ω̃2(� = 2)

0 3.0723 3.1300

0.2 2.5872–4.4684 ×10−2 i 2.9154–5.8491 ×10−5 i

0.4 2.2876–0.3951 i 2.8200–2.1218 ×10−2 i

0.6 2.1772–0.7998 i 2.7286–0.1226 i

0.8 2.1392–1.1934 i 2.6826–0.2483 i

1 2.1292–1.5823 i 2.6573–0.3742 i

Fig. 2 The impact of the angular momentum quantum number � on
the real and imaginary parts of quasinormal modes for the first (red)
and second (blue) boundary conditions

By taking the unit of L̃ , Eq. (9) becomes

[
g(r)

d

dr

(
g(r)

d

dr

)
+ ω̃2 L̃2 − �̃(�̃ + 1)

g(r)

r2

]
�(r) = 0,

(49)

with

g(r) = r − r+
r

(
1 + r2 + r+r + r2+

)
, (50)

where r is an abbreviation of dimensionless radial coordinate
r
L̃

, ω̃, L̃ and �̃ are given in Eq. (21).
By noticing that g(r) has the same form with the metric

of Schwarzschild-AdS, so Eq. (49) is exactly the same with
the Maxwell equation on Schwarzschild-AdS, by replacing �

with �̃. This is also the Maxwell equation one may obtain by
starting from the metric given by Eq. (6). Therefore, in our
numeric calculations, we take the unit of L̃ and set L̃ = 1, and
calculate the frequencies ω̃. As we have checked, in the unit
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Fig. 3 The monopole effects on the real (top) and imaginary (bottom) part of quasinormal spectrum with the first (left) and second (right) boundary
conditions, by taking r+ = 0.5, � = 1 and N = 0 as an illustrative example. The similar behaviors are also observed for other values of r+, � and N

of L̃ , the quasinormal frequencies have the uniform behaviors
for various values of r+, � and N , and which is consistent
with the physical picture that the global monopole produces
the repulsive force.

In order to employ a pseudospectral method conveniently,
we first transform Eq. (9), which is a quadratic eigenvalue
problem, into a linear eigenvalue problem, by

� = e−iωr∗φ, (51)

where the tortoise coordinate r∗ is still defined in Eq. (10).
Then changing the coordinate from r to z through

z = 1 − 2r+
r

, (52)

which brings the integration domain from r ∈ [r+,∞] to
z ∈ [−1,+1], and discretizing the z coordinate according to

the Chebyshev points

z j = cos

(
jπ

n

)
, j = 0, 1, . . . , n, (53)

where n denotes the number of grid points, Eq. (9) turns into
an algebraic equation

(M0 + ω̃M1) φ(z) = 0. (54)

Here M0 and M1 are matrices, which may be constructed
straightforwardly by discretizing Eq. (9) in terms of the
Chebyshev points and Chebyshev differential matrices [62].

Boundary conditions associated to φ(z), may be derived
from the transformation given by Eq. (51). At the horizon,
since an ingoing wave boundary condition is satisfied auto-
matically, we simply impose a regular boundary condition
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Fig. 4 Variation of �̃ with respect to the monopole parameter 8πη2,
by taking � = 1 as an example. It shows clearly that �̃ increases as the
monopole parameter 8πη2 increases

for φ(z). At infinity, from Eqs. (14) and (51), one obtains

φ(z) = 0, (55)

corresponding to the condition given in Eq. (15), and

φ′(z)
φ(z)

= iω̃

2r+
, (56)

corresponding to the condition given in Eq. (16).
One should note that we use ω̃1 (ω̃2) to represent the quasi-

normal frequency corresponding to the first (second) bound-
ary conditions. A few selected data are presented below to
demonstrate, in particular, the impact of global monopole on
the spectrum. Also note that in our numeric calculations we
focus on black holes with size r+ ≤ 1 since in this regime
the monopole effects are more relevant.2

In Fig. 1, we compare the analytic calculations with
numeric data, by taking the angular momentum quantum
number � = 1, the overtone number N = 0 and the monopole
parameter 8πη2 = 0.05, and find a good agreement for small
black holes.

A few numeric data are tabulated in Table 1. As one may
observe, by taking 8πη2 = 0.1 and N = 0, the real part of
the Maxwell QNMs decreases while the magnitude of the
imaginary part increases as the black hole size r+ increases,
similarly to the Schwarzschild-AdS case. In particular, the
isospectrality of the modes for � = 1 with the first boundary
condition and � = 2 with the second boundary condition is
broken, due to the presence of the global monopole.

2 Moreover, for large AdS black holes, the Maxwell spectrum may
bifurcate, which has been explored in detail in our previous paper [61].

The effect of the angular momentum quantum number
� on the Maxwell quasinormal spectrum is presented in
Fig. 2, for a black hole with size r+ = 1, the global
monopole 8πη2 = 0.1 and with the overtone number N = 0.
We observe, similarly to the Schwarzschild-AdS case (i.e.
8πη2 = 0) reported in [38], that for both boundary condi-
tions the real part of the Maxwell quasinormal frequencies
increases while the magnitude of imaginary part decreases,
as � increases.

As the main goal of this paper, we explore the impact
of the global monopole on the Maxwell spectrum in Fig. 3.
As an illustrative example, here we take r+ = 0.5, � = 1,
N = 0, and we observe that, for both boundary conditions,
the real (the magnitude of imaginary) part of the Maxwell
QNMs increases (decreases) as the global monopole 8πη2

increases. As we have checked for various values of r+, �

and N , the above mentioned behaviors are held. This may be
understood as follows. From Eq. (49), it shows clearly that the
monopole parameter only appears in �̃ and �̃ plays the same
role as �. From Fig. 4, we observe �̃, by fixing �, increases
as the monopole parameter 8πη2 increases, indicating the
global monopole produces the repulsive force. This implies
that, for larger monopole parameter, the perturbation fields
(the Maxwell fields here) live longer around black holes, i.e.
decay slower, exactly as shown in Fig. 3.

We have also studied the dependence of the Maxwell
quasinormal frequencies on the overtone number N in Fig. 5.
For this case, we take r+ = 0.5 and � = 1. It is shown, from
the left and middle panels, that for two boundary conditions,
both the real part and the magnitude of imaginary part of
the Maxwell frequencies increase as N increases, and the
excited modes for both branches are approximately evenly
spaced in N. In the right panel, we display the imaginary
part in terms of the real part of the Maxwell QNMs. It shows
interestingly that two branches of QNMs (for excited states)
lie on the same line for different N. This phenomenon has
also been observed for the Dirac case [42], and indicates that,
although two branches of QNMs are different, they are simi-
lar in the sense that the excited modes of one branch may be
interpolated from the other branch.

6 Discussion and final remarks

In this paper we have studied the Maxwell quasinormal spec-
trum on a global monopole Schwarzschild-AdS black hole,
by imposing a generic Robin type boundary condition. To
this end, we first presented the Maxwell equations both in
the Regge–Wheeler–Zerilli and in the Teukolsky formalisms
and derived the explicit boundary conditions for the Regge–
Wheeler–Zerilli and the Teukolsky variables, based on the
vanishing energy flux principle. Then the Maxwell equations
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Fig. 5 The impact of the overtone number N on the real (left) and imag-
inary (middle) parts of quasinormal modes for the first (red) and second
(blue) boundary conditions, with fixed r+ = 0.5, 8πη2 = 0.1 and � =

1. We also present the imaginary part in terms of the real part of QNMs
in the right panel

were solved in each formalism, both analytically and numer-
ically.

In a pure AdS space with a global monopole, we have
solved the Maxwell equations analytically in the aforemen-
tioned two formalisms. We found that two boundary condi-
tions in each formalism lead to two different normal modes,
due to the presence of the global monopole. This is very
different with the Schwarzschild-AdS case where normal
modes obtained from two boundary conditions are the same,
up to one mode. In the small black hole and low frequency
approximations, we also solved the Maxwell equations in the
Teukolsky formalism by using an analytic matching method
and we verified that the analytic calculations coincide with
the numeric data well.

We then varied the black hole size r+, the angular momen-
tum quantum number �, and the overtone number N , in the
presence of a global monopole; and analyzed their effects
on the two sets of the Maxwell quasinormal spectrum in
the numeric calculations. We observed that, the impact
of r+, � and N on the Maxwell QNMs are very similar
to the Schwarzschild-AdS case. In particular, we explored
the monopole effects on the Maxwell spectrum, and we
found that for both boundary conditions, the real part of
the Maxwell spectrum increases while the magnitude of
imaginary part decreases as the monopole parameter 8πη2

increases. These trends are direct consequences of the fact
that the global monopole produces the repulsive force.

Finally, we would like to stress that the above mentioned
QNMs behaviors were obtained in the unit of L̃ . One may
alternatively use the unit of L , and as we have checked for
this case the monopole effects on the Maxwell spectrum are
more involved. In the former choice, the Maxwell equations
on Schwarzschild-AdS black holes with a global monopole
may be reformulated to the Maxwell equations without a
global monopole but with the modified angular momentum

quantum number �̃, so that the repulsive nature of the global
monopole becomes more clear.
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