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Abstract Einstein–Gauss–Bonnet theory is a string-gen-
erated gravity theory when approaching the low energy limit.
By introducing the higher order curvature terms, this the-
ory is supposed to help to solve the black hole singular-
ity problem. In this work, we investigate the evaporation of
the static spherically symmetric neutral AdS black holes in
Einstein–Gauss–Bonnet gravity in various spacetime dimen-
sions with both positive and negative coupling constant α.
By summarizing the asymptotic behavior of the evaporation
process, we find the lifetime of the black holes is dimen-
sional dependent. For α > 0, in D � 6 cases, the black
holes will be completely evaporated in a finite time, which
resembles the Schwarzschild-AdS case in Einstein gravity.
While in D = 4, 5 cases, the black hole lifetime is always
infinite, which means the black hole becomes a remnant in
the late time. Remarkably, the cases of α > 0, D = 4, 5
will solve the terminal temperature divergent problem of the
Schwarzschild-AdS case. For α < 0, in all dimensions, the
black hole will always spend a finite time to a minimal mass
corresponding to the smallest horizon radius rmin = √

2|α|
which coincide with an additional singularity. This implies
that there may exist constraint conditions to the choice of
coupling constant.

1 Introduction

In 1974, by applying quantum field theory in curved space-
time, Hawking showed that quantum mechanical effects
allow black holes to emit particles, now known as Hawking
radiation [1,2]. Hawking radiation connects quantum physics
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and gravity, and it is viewed as a window to help us to under-
stand the quantum gravity. Due to the radiation, the black hole
will keep losing mass and thermal entropy, which leaves us
the controversial information loss paradox [3,4].

The spectrum of the Hawking radiation allows us to cal-
culate the particles emission power and to estimate the life-
time of the black hole. For a static spherically symmetric
black hole in four-dimensional asymptotically flat spacetime
in Einstein gravity, its lifetime obeys the relationship t ∼ M3

0
associated with the initial black hole mass M0 [5], which
means the black hole lifetime will be divergent if we take an
infinite initial mass. A similar analysis can also be carried
out in rotating black holes and charged black holes. A rotat-
ing black hole will lose its angular momentum much faster
than its mass and eventually it becomes a Schwarzschild
black hole and keeps going on its evaporation [6] (unless
the case with a lot of scalar particle species [7,8]). A charged
black hole will keep losing its charge and mass, however, the
charge-over-mass ratio may increase and gets close to the
extreme black hole, so the lifetime of these black holes may
be extended by a huge factor, but finally, it also evolves to a
Schwarzschild state [9,10].

The spectrum of the Hawking radiation allows us to calcu-
late the particles emission power and to estimate the lifetime
of the black hole. For a static spherically symmetric black
hole in four-dimensional asymptotically flat Based on Hawk-
ing radiation, the study on the evaporation of the black hole
in asymptotically flat spacetime has been a fruitful area. The
evaporation in anti-de Sitter (AdS) spacetimes was, however,
largely overlooked. This is due to the specific asymptotical
behavior of the AdS spacetime. Although AdS has an infi-
nite volume, the gravitational potential acts effectively like a
finite confining box for the black hole, and the emitted mas-
sive particles reflect inward in a finite time thus preventing
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the energy loss. Thanks to the AdS/CFT correspondence [11–
14], a great mass of attention has been paid on black holes in
AdS spacetimes, especially AdS black hole thermodynam-
ics [15], and the evaporation problem of AdS black hole also
comes back to our view in recent years. By imposing an
absorbing AdS boundary condition [16–19] and considering
only massless emitted particle, Page calculated the lifetime
of static spherically symmetric AdS black hole in Einstein
gravity [20], and surprisingly, the lifetime did not become
divergent with any arbitrarily large initial mass and the total
time to evaporate from infinite mass to zero was finite, of
the order �3, where � is the AdS radius. This is because
although the black hole may have infinite initial mass, the
temperature, and also the particles’ emission power, are also
divergent, thus the infinite amount of mass can be evaporated
away in a finite time. The study on black holes evaporation in
asymptotically AdS spacetimes have been extended to many
different backgrounds, such as Lovelock gravity [21], Con-
formal (Weyl) Gravity [22], Hořava–Lifshitz gravity [23],
and dRGT massive gravity [24], etc.

From a modern perspective, Einstein gravity could just be
an effective field theory in the low energy limit of unknown
more fundamental theory. Although we have not known its
correct and precise form, there are some attempts by physi-
cists. Inspired by the quadratic term in heterotic string the-
ory and six-dimensional Calabi–Yau compactifications of M-
theory, the Gauss–Bonnet quadratic term was added into the
Einstein–Hilbert action to analyze the properties of the effec-
tive gravity theory [25–29]. This gravity can be derived by
string theories when approaching the low energy limit. Stud-
ies on the Gauss–Bonnet gravity and its generalizations have
attracted lots of attention [30–40], however, this theory just
exists in higher spacetime dimensions because the Gauss–
Bonnet term is a topological invariant in four dimensions
thus it cannot give any non-trivial gravitational dynamics
in D ≤ 4, where D is the dimensions of the spacetime.
In [41], Glavan and Lin try to extend this theory to four
dimensions by rescaling the coupling constant of the Gauss–
Bonnet term by a factor of 1/(D − 4) and taking the limit
D → 4. Remarkably, from their point of view, this theory
can bypass the Lovelock’s theorem and be free from Ostro-
gradsky instability. Interestingly, its black hole solution was
also found in other contexts, such as gravity with conformal
anomaly [42,43] and quantum corrections [44]. This pro-
cessing method in [41] has led to a great deal of discussion,
see e.g. [45–60].

In the present work, we investigate the Hawking evapora-
tion process of the static spherically symmetric neutral AdS
black hols in Einstein–Gauss–Bonnet gravity. The thermody-
namical properties of these black holes in D � 5 and D = 4
are provided in [30,46]. Unlike the Schwarzschild-AdS case,
which always has a divergent temperature in the late period
of the evaporation process [61], the Einstein–Gauss–Bonnet

theory reveals richer phenomena by choosing different cou-
pling constant. By testing the Hawking evaporation processes
of different Einstein–Gauss–Bonnet AdS black holes, we
give some clues to constrain the choice of coupling constant.
Especially, the extreme behavior of the cases with negative
coupling constant also resembles the Garfinkle-Horowitz-
Strominger dilation black hole [62].

This paper is organized as follows: in Sect. 2, we briefly
review the thermodynamics of D � 5-dimensional neutral
Einstein–Gauss–Bonnet AdS black holes. By investigating
the Hawking evaporation process of the D = 5 and D � 6
cases, we show that the positive coupling constant may help
to solve divergent temperature, while the negative one may
make this problem worse. In Sect. 3, our investigation is
extended to the D = 4 cases. Summary remarks are given in
Sect. 4. We adopt the natural unit system, setting the speed of
light in vacuum c, the gravitational constant GN , the Planck
constant h, and the Boltzmann constant kB equal to one.

2 Evaporation of Einstein–Gauss–Bonnet AdS Black
Holes in D � 5

In this section, first, we will give a brief review of Einstein–
Gauss–Bonnet AdS black holes for D � 5 dimensions, then
we investigate the black hole evaporation process.

2.1 Black hole thermodynamics in D � 5
Einstein–Gauss–Bonnet AdS spacetimes

For the D � 5 dimensional AdS spacetime, the Einstein–
Hilbert action with a Gauss–Bonnet term can be written as

S = 1

16π

∫
dDx

√−g

(
R + (D − 1)(D − 2)

�2 + αGBLGB

)
,

(1)

where αGB is the Gauss–Bonnet coupling coefficient with
dimension (length)2 and the Gauss–Bonnet term LGB =
Rμνγ δRμνγ δ − 4RμνRμν +R2. The Gauss–Bonnet coeffi-
cient αGB is supposed to be a positive value in string theory
[25], but for generality we consider both cases of αGB > 0
and αGB < 0 in the present work. The static spherically sym-
metric black hole metric in D dimensions can be written in
the form of

ds2 = − f (r)dt2 + f −1(r)dr2 + r2d�2
D−2, (2)

with the the metric function [30]

f (r) = 1 + r2

2α

(
1 −

√
1 + 64πMα

(D − 2)�D−2r D−1 − 4α

�2

)
,

(3)
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where α = (D − 3)(D − 4)αGB and the parameter M is the

gravitational mass of the solution. The �D−2 = (D−1)πD/2

	( D+1
2 )

is the area of an (D − 1)-dimensional sphere with unit
radius. When α → 0, black hole solution reduces to the
Schwarzschild AdS case in [63]. In the limit M → 0, one
can obtain the vacuum solution f (r) = 1 + r2/�2

e f f with

the effective AdS radius �2
e f f = �2

2

(
1 +

√
1 − 4α

�2

)
, which

implies the coupling constant α must obey α � �2/4, beyond
that this theory is undefined. The event horizon of the black
hole is determined by f (r+) = 0, and the mass of black hole
M can be obtained as [30]

M = (D − 2)�D−2r
D−3+

16π

(
1 + α

r2+
+ r2+

l2

)
, (4)

and the Hawking temperature of the black hole can be written
as

T = f ′(r)
4π

∣∣∣∣
r=r+

= (D − 1)r4+ + (D − 3)�2r2+ + (D − 5)α�2

4π�2r+(r2+ + 2α)
. (5)

In α > 0, it is worth noting that there is a mass gap
Mc ≡ M(r+ → 0) = 3πα/8 in D = 5 that all black
holes must satisfy M � Mc, while in D � 6, there exists
no mass gap. We can also find the last term in (5) vanishes
when D = 5. Consequently, the temperature T vanishes
as r+ → 0 when D = 5, while it becomes divergent as
r+ → 0 in higher dimensions. Among various choices for
the spacetime dimension D, the particular case D = 5 is
qualitatively different from other choices. This is perhaps a
consequence of D = 5 is the lowest dimension in which the
Gauss–Bonnet term can affect the local geometry. In α < 0,
there is a extreme horizon radius rmin = √

2|α| correspond-
ing to a divergent temperature, below that the theory is unde-
fined. The black hole entropy can also be calculated by using
the first law of black hole thermodynamics, as well as other
thermodynamical quantities. We omit them here.

2.2 Black hole evaporation in D � 5
Einstein–Gauss–Bonnet AdS spacetimes

Since we have obtained all the necessary thermodynamical
quantities, we are ready to investigate the evaporation of
Einstein–Gauss–Bonnet AdS black holes. By imposing an
absorbing boundary condition, the black hole mass M should
be monotonically-decreasing functions of the time t because
of the Hawking radiation. Applying geometric optics approx-
imation, we assume all the emitted massless particles move
along null geodesics. If we orient the extra (D − 3) angular
coordinates in d�2

D−2 and normalize the affine parameter λ,
the geodesic equation of the massless particles reads

(
dr

dλ

)2

= E2 − J 2 f (r)

r2 , (6)

where E = f (r) dt
dλ

is the energy and J = r2 dθ
dλ

is angu-
lar momentum of the emitted particle. Consider an emitted
particle coming from just outside the black hole horizon, this
particle cannot be detected by the observer on the AdS bound-
ary if there is a turning point satisfying

( dr
dλ

)2 = 0. Defining
an impact parameter b ≡ J/E , the massless particle can
reach infinity only if

1

b2 >
f (r)

r2 , (7)

for all r > r+. The impact factor bc is defined by the maximal
value of f (r)/r2, which depends on the exact form of metric
function f (r).

If we obtain the impact factor bc, we can get the Hawk-
ing emission rate in D-dimensional spacetime according to
Stefan–Boltzmann law, yields [10,21,23,64,65]

dM

dt
= −CbD−2

c T D, (8)

with the constant C = (D − 2)π
D
2 −1�D−2

kD

hD−1cD−1
	(D)

	( D
2 )

ζ(D). Without loss of generality, we set the constant C = 1.
The Stefan–Boltzmann law implies that in D-dimensional
spacetime the emission power is proportional to the (D−2)-
dimensional cross section bD−2

c and the (D−1)-dimensional
space (spatial dimension only) photon energyT D . Notice that
the photon energy term T D has the higher order, so the behav-
ior of temperature T , especially the asymptotical behavior,
will play a leading role in black hole evaporation process.
Next, we are ready to study the black hole evaporation for
various features of T and bc.

Using scaling analysis we know M ∼ l D−3, T ∼ l−1,
bc ∼ l, � ∼ l andα ∼ l2, where l has the dimension (length).
In order to get dimensionless parts of M , T and bc, by defin-
ing dimensionless variables x ≡ r+/� and y ≡ α/�2, we can
express M and T as

M = (D − 2)�D−2

16π

(
1 + y + x2

)
xD−3�D−3, (9)

T = (D − 1)x4 + (D − 3)x2 + (D − 5)y

4πx(x2 + 2y)
�−1. (10)

The bc depends on the exact form of metric function f (r), so
we cannot get the universal solution for various dimensions.

Firstly we start from the case of D = 5, which is qualita-
tively different from the cases of D � 6. When D = 5, the
temperature (5) can be written as

T = 2r3+ + �2r+
2π�2(r2+ + 2α)

. (11)

In Fig. 1 we present the temperature of black holes in 5 dimen-
sions with α > 0 and α < 0 as the function of r+ respectively.
For α > 0, the temperature starts from zero at r+ = 0 and
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Fig. 1 The temperature of black holes in 5 dimensions with α > 0 and α < 0 respectively. The left figure we set α = 0.15, � = 1, while in the
right figure α = −0.15, � = 1

Fig. 2 The numerical results of the black hole mass M as function of
the lifetime t with setting y > 0 and y < 0 (corresponding to α > 0
and α < 0, respectively). In the left figure, we set y = 0.1 with � = 1,
� = 1.5 and � = 2 from left to right respectively. Note that there is

a mass gap Mc = 3πα
8 for y > 0 (α > 0). In the right figure, we set

y = −0.1 with � = 1, � = 1.5 and � = 2 from left to right, corre-
sponding to minimum mass Mmin1 = 0.164934, Mmin2 = 0.371101
and Mmin3 = 0.659734, respectively

goes to infinity when r+ → ∞. The behavior of temperature
in α < 0 is quite different from the case of α > 0. There is
an extreme horizon radius rmin = √

2|α|, which coincides
with an additional singularity. As shown in the figure, the
temperature is divergent at rmin when α < 0, and as a result,
the thermodynamical properties of case α < 0 resembles the
case of α → 0 that without Gauss–Bonnet term.

In order to get the impact factor bc, solving the equation
∂
∂r

f (r)
r2 = 0, we can find the root

rp = 2√
3π

(
6π�2Mα − 16�2M2

4α − �2

)1/4

. (12)

This radius corresponds to the unstable photon orbit, and the
impact factor is given by bc = rp/

√
f (rp). Similarly, taking

x ≡ r+/� and y ≡ α/�2, one can obtain the bc as

bc =
( √

4y − 1

2
√−(x2 + x4)(x2 + x4 + y)

−
−1 +

√
− (x2+x4+y)(4y−1)

x2+x4

2y

⎞
⎠

− 1
2

� (13)

For D = 5, inserting the black hole mass M (9), temperature
T (10) and impact factor bc (13) into Stefan–Boltzmann law,
we can obtain

dt = �4F1(x, y)dx, (14)

where F1(x, y) is a complicated function which is not worth
explicitly written. Setting y to be a constant and integrating
the equation from ∞ to xmin , where xmin = 0 for α > 0
and xmin = rmin/� = √

2|y| for α < 0, one can obtain the
black hole lifetime is divergent in α > 0 and of the order �4

in α < 0.
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In Fig. 2, we plot some numerical results of the black
hole mass M as function of the lifetime t by setting y > 0
and y < 0 (corresponding to α > 0 and α < 0 respec-
tively). In the case of α > 0, we set y = 0.1, and the
initial mass is taken to infinity. The black holes lose their
mass in a “short” time, but the evaporation gets harder when
the black hole mass and temperature become smaller near
the T = 0 state, thus the black hole will have an infinite
lifetime, satisfying the third law of black hole thermody-
namics. This means that the black hole becomes a rem-
nant, which may help us to ameliorate the information para-
dox [66]. In the case α < 0, there is an extreme horizon
radius at rmin = √

2|α|, where the temperature of black
hole is divergent coinciding with an additional singularity
[30]. This rmin corresponds to a mass Mmin = M(rmin), and
the black hole will take a finite time to decrease the mass to
Mmin . Interestingly, this phenomenon resembles the extreme
case of Garfinkle-Horowitz-Strominger dilation black hole
[62].

Now we extend our study to D � 6. The temperature
behavior in D � 6 is quite different from the case D = 5
when α > 0. For D � 6, the temperature is divergent at
r+ = 0 and goes to infinity again when r+ → ∞ [30],
which resembles the case of Schwarzschild AdS. On the
other hand, the temperature behavior of case α < 0 in
D � 6 spacetimes is similarly with the case α < 0 in 5
dimensions, where there is also the smallest horizon radius
at rmin = √

2|α|. Although ∂
∂r

f (r)
r2 = 0 is a equation of

higher order in D � 6 dimensions and we cannot get the
explicit form of bc, we can still conclude bc ∼ � by scal-
ing analysis. As we have emphasized earlier in the present
work, the photon energy term T D plays the leading role
in the black hole evaporation process. Similarly, inserting
the black hole mass M ∼ �D−3, temperature T ∼ �−1

and impact factor bc ∼ � into Stefan–Boltzmann law, we
can also obtain the D-dimensional Stefan–Boltzmann law
as

dt = �D−1F2(x, y)dx, (15)

where F2(x, y) is still a complicated function. We can con-
clude this evaporation process qualitatively by analyzing the
temperature asymptotic behavior of the black hole. When
α > 0, the temperature T is divergent in both r+ → ∞
and r+ → 0, which means that

∫ 0
∞ F2(x, y)dx is conver-

gent and just depends on the value of y. Hence, the lifetime
of the black hole will be a finite value of the order �D−1

with any arbitrarily large initial mass, which resembles the
Schwarzschild AdS black hole in Einstein gravity [20]. For
α < 0, the temperature of black hole is still divergent at
rmin = √

2|α|, thus the qualitative features of the evapora-
tion process in D � 6 dimensions are consistent with the
case of α < 0 in 5 dimensions.

3 Evaporation of novel 4D Einstein–Gauss–Bonnet AdS
black holes

Since Gauss–Bonnet term is a topological invariant in four
dimensions, previously the investigation of Gauss–Bonnet
gravity is limited to D ≥ 5 dimensions. This situation is
changed when Glavan & Lin declare that rescaling the cou-
pling coefficient αGB of the Gauss–Bonnet term by a factor
of 1/(D − 4) can lead to non-trivial dynamics when taking
the limit D → 4, thus extend the classic Einstein–Gauss–
Bonnet theory to 4 dimensions [41]. Remarkably, in their
point of view, this theory can bypass Lovelock’s theorem and
be free from Ostrogradsky instability. The black hole solution
in AdS space has been provided in [46]. It is worth noting
that this black hole solution has been found in other back-
grounds, such as gravity with conformal anomaly [42,43]
and with quantum corrections [44]. In this section, we will
take the metric in [46] and investigate the qualitative evap-
oration process. We hope our result may help inspiring the
researches on 4D Einstein–Gauss–Bonnet gravity.

3.1 Black hole thermodynamics in 4D
Einstein–Gauss–Bonnet AdS spacetimes

In this section we give a brief review on thermodynamics
of 4D Einstein–Gauss–Bonnet AdS black holes. The static
spherically symmetric black hole solution takes the form

ds2 = − f (r)dt2 + f −1(r)dr2 + r2d�2
2 (16)

with the the metric function [46]

f (r) = 1 + r2

2α

(
1 −

√
1 + 4α

(
2M

r3 − 1

�2

))
, (17)

where α is coupling constant and the parameter M is the mass
of black hole. Similarly, in the vanishing limit of mass M →
0, one can obtain the vacuum solution f (r) = 1 + r2/�2

e f f

with the effective AdS radius �2
e f f = �2

2

(
1 +

√
1 − 4α

�2

)
,

thus the coupling constant α must obey α � �2/4. The solu-
tion still keeps asymptotically AdS when α < 0. Notably,
the black hole solution will recover the solution in Einstein
gravity when α → 0. Solving f (r+) = 0 at the event horizon
r+, we can obtain the mass of black hole

M = r+
2

(
1 + r2+

�2 + α

r2+

)
. (18)

The Hawking temperature of the black hole can be obtain as

T = f ′(r)
4π

∣∣∣∣
r=r+

= 3r4+ + �2(r2+ − α)

4π�2r+(r2+ + 2α)
, (19)
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For α > 0, solving T = 0, there is a critical horizon radius

rc =
√(

−�2 + √
�2(�2 + 12α)

)
/6 corresponding to a van-

ishing temperature. Similarly there will also be a critical mass

Mc = −�2 + 12α + √
�4 + 12�2α

3
√

6
√

−�2 + √
�4 + 12�2α

, (20)

which depends on the AdS radius � and the coupling constant
α. For M < Mc, there is no black hole. The black hole
entropy can also be calculated by the first law of black hole
thermodynamics, see [46].

3.2 Black hole evaporation in 4D Einstein–Gauss–Bonnet
AdS spacetimes

After the review of the thermodynamics of 4D Einstein–
Gauss–Bonnet AdS black holes, we are ready to explore
the black holes evaporation. Imposing the same assumptions
that we take in the case D � 5, we can obtain the Stefan–
Boltzmann law in 4D, reads

dM

dt
= −b2

c T
4. (21)

Note that the behavior of temperature T still plays a leading
role in black hole evaporation process since it occupies the
highest order. In order to analyze the qualitative behavior
of the black hole temperature T , we provide the examples
with α > 0 and α < 0 in Fig. 3. It is clear that T = 0 at

a critical horizon radius rc =
√

(−�2 + √
�2(�2 + 12α))/6,

which means that exists a critical mass Mc. When α < 0,
this situation resembles the case α < 0 in D � 5 which also
have divergent temperature at rmin = √

2|α|.
Solving the equation ∂

∂r
f (r)
r2 = 0, we can obtain the root

corresponding to the photon orbit as

rp =
(

− 4Mα

1 − 4α
�2

−
√

− 27M6

(1 − 4α
�2 )3

+ 16M2α2

(1 − 4α
�2 )2

) 1
3

+
(

− 4Mα

1 − 4α
�2

+
√

− 27M6

(1 − 4α
�2 )3

+ 16M2α2

(1 − 4α
�2 )2

) 1
3

. (22)

Similarly, using the dimensionless variables x ≡ r+/� and
y ≡ α/�2, we can re-express the black hole mass (18) and
the temperature (19) as

M = x2 + x4 + y

2x
�, (23)

T = x2 + 3x4 − y

4πx3 + 8πxy
�−1. (24)

The impact factor bc = rp/
√

f (rp) can also be expressed in
the form of

bc =

⎛
⎜⎜⎝ 4(

2(A − B)1/3 + 2(A + B)1/3
)2

−
−1 +

√
1 − 4y + 32y(x2+x4+y)

x(2(A−B)1/3+2(A+B)1/3)
3

2y

⎞
⎟⎟⎠

− 1
2

�

A = 2y(x2 + x4 + y)

x(−1 + 4y)
,

B = 1

8

√
(x2 + x4 + y)2(256x4(1 − 4y)y2 − 27(x2 + x4 + y)4)

x6(1 − 4y)3 . (25)

Inserting the above M , T and bc into the Stefan–
Boltzmann law in 4D spacetimes, we can obtain the lifetime
relationship of black hole evaporation, reads

dt = �3F3(x, y)dx, (26)

where F3(x, y) is a complex function related to the M , T and
bc. Similarly, integrating this equation from∞ to xmin (where
the temperature T has divergence or T = 0), one can find
that the lifetime is of the order ∼ �3 with α < 0 or divergent
with α > 0, which resembles the case in D � 5 dimensions.
We plot some numerical results of the 4D Einstein–Gauss–
Bonnet AdS black hole in Fig. 4. As shown in the figure, the
case ofα > 0 is very similar to the case of 5D withα > 0, just
has the difference in the value of critical mass which in case
5D is 3πα/8, while in case 4D equals to Mc. While in α < 0,
the qualitative features of the evaporation process are parallel
to the case α < 0 in 5D, which also possess a minimal
horizon radius at rmin = √

2|α|. The qualitative features
of the evaporation process identify what implied from the
asymptotical behavior of the black hole temperature T .

4 Summary

By introducing the higher order curvature term, Einstein–
Gauss–Bonnet theory is supposed to solve a class of singular-
ity problem of black holes. Because of the modification, the
thermodynamic properties of Einstein–Gauss–Bonnet AdS
black holes are quite different from the Schwarzschild-AdS
case. In the present work, we investigate the evaporation
process of Einstein–Gauss–Bonnet AdS black holes in D-
dimensional cases with both positive and negative coupling
constant. Firstly, for the case of D = 5 and α > 0, the tem-
perature T is not divergent at a small distance and admits
the state of T = 0 at r+ = 0, which is different from
the Schwarzschild-AdS case. Applying the geometric optics
approximation and absorbing AdS boundary condition, we
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Fig. 3 The temperature of black holes in 4-dimensions with α > 0 and α < 0 respectively. The left figure we set α = 0.15, � = 1, while in the
right α = −0.15, � = 1

Fig. 4 The numerical results of the 4D Einstein–Gauss–Bonnet AdS
black hole mass M as function of the lifetime t with setting y > 0 and
y < 0 (corresponding to α > 0 and α < 0, respectively). In the left
figure, we set y = 0.1 with � = 1, � = 1.5 and � = 2 from left to right,
corresponding to critical mass Mc1 = 0.329509, Mc2 = 0.494264 and

Mc3 = 0.659019, respectively. In the right figure, we set y = −0.1 with
� = 1, � = 1.5 and � = 2 from left to right, corresponding to minimum
mass Mmin1 = 0.156525, Mmin2 = 0.234787 and Mmin3 = 0.313050,
respectively

investigate the evaporation of black holes by using the D-
dimensional Stefan–Boltzmann law. The black holes will
lose an infinite amount of mass in a “short” time, then the
evaporation will become slower and slower near the T = 0
state, which means that the black holes with α > 0 have
a divergent lifetime in 5-dimensional spacetime. This phe-
nomenon also obeys the third law of black hole thermo-
dynamics. When α < 0, the temperature is divergent at
rmin = √

2|α|, and the black holes will always spend finite
time t ∼ �4 to reach the extreme mass M(rmin). For the
cases of D � 6, although it is difficult to get the exact form
of impact factor bc, we can still dope out the evaporation
process by analyzing the asymptotic behavior of the temper-
ature. Since its temperature is always positive and divergent
in r+ → 0 and r+ → ∞, the black hole lifetime is always of
the order t ∼ �D−1, which resembles the Schwarzschild-AdS
case. Applying the “novel” metric, we extend our investiga-

tion to 4D. Just with a difference in the value of critical mass
between case 4D and case 5D when α > 0, the evaporation
behaviors of both α > 0 and α < 0 are parallel to the ones
in 5D.

In the present work, we consider both α > 0 and α < 0 in
different dimensions and find that some choices of α are not
applicable. The case of α > 0 may help us solving the prob-
lem of the divergent temperature in the terminal of the evap-
oration process of the Schwarzschild-AdS case, while the
α < 0 could make it worse. Also, in the cases D = 4, 5 there
always have remnants, while in the cases D � 6 that all the
black holes will evaporate in a finite time. This phenomenon
is quite similar to the Hořava–Lifshitz case [23], which also
has the dimensional dependent evaporation behavior.

Finally, we suggest some topics that can be further inves-
tigated. In consideration of the lifetime of the black holes
in Einstein–Gauss–Bonnet and Hořava–Lifshitz gravity are
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dimensional dependent, there may be some relationship
between the dimensions D and asymptotic behavior of evap-
oration, finding this relationship may become an interesting
work [67,68]. Besides, this work can be extended to charged
black holes in Einstein–Gauss–Bonnet gravity [46,69]. By
considering the Schwinger effect and the Stefan–Boltzmann
law, we could calculate the charged particles emission and
the mass loss [10]. How to describe the evolution of charged
black holes in Einstein–Gauss–Bonnet gravity will be chal-
lenging and meaningful work. Furthermore, modification to
the AdS/CFT correspondence can be considered from the
perspective of Einstein–Gauss–Bonnet AdS black hole evap-
oration. In the present work, our derivation relies on the geo-
metric optics approximation and absorbing boundary con-
dition. Nowadays there have been many papers on evapo-
rating black hole in AdS in connection with the formation
of islands [70–72]. It would be interesting to study the con-
nection among absorbing boundary conditions, black hole
evaporation in AdS spacetime, and the islands. We hope to
consider these questions in our future work.

Acknowledgements We would like to thank Yen Chin Ong, Rui-
Hong Yue and De-Cheng Zou for useful discussion. This work is
supported by National Natural Science Foundation of China (NSFC)
under Grant nos. 11575083, 11565017, and the Natural Science Foun-
dation of the Jiangsu Higher Education Institutions of China (Grant no.
20KJD140001).

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: The data used to
support the findings of this study are available from the corresponding
author upon request.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. S.W. Hawking, Black hole explosions. Nature 248, 30 (1974)
2. S.W. Hawking, Particle creation by black holes. Commun. Math.

Phys. 43, 199 (1975). (Erratum: Commun. Math. Phys. 46, 206
(1976))

3. A. Almheiri, D. Marolf, J. Polchinski, J. Sully, Black holes: comple-
mentarity or firewalls? JHEP 1302, 062 (2013). arXiv:1207.3123
[hep-th]

4. S.W. Hawking, M.J. Perry, A. Strominger, Superrotation charge
and supertranslation hair on black holes. JHEP 1705, 161 (2017).
arXiv:1611.09175 [hep-th]

5. D.N. Page, Particle emission rates from a black hole: massless
particles from an uncharged, nonrotating hole. Phys. Rev. D 13,
198 (1976)

6. D.N. Page, Particle emission rates from a black hole. 2. Massless
particles from a rotating hole. Phys. Rev. D 14, 3260 (1976)

7. C.M. Chambers, W.A. Hiscock, B.E. Taylor, The ‘Ups’ and
‘Downs’ of a spinning black hole. arXiv:gr-qc/9710013

8. B.E. Taylor, C.M. Chambers, W.A. Hiscock, Evaporation of a Kerr
black hole by emission of scalar and higher spin particles. Phys.
Rev. D 58, 044012 (1998). arXiv:gr-qc/9801044

9. W.A. Hiscock, L.D. Weems, Evolution of charged evaporating
black holes. Phys. Rev. D 41, 1142 (1990)

10. H. Xu, Y.C. Ong, M.H. Yung, Cosmic censorship and the evolution
of d-dimensional charged evaporating black holes. Phys. Rev. D
101, 064015 (2020). arXiv:1911.11990 [gr-qc]

11. J.M. Maldacena, The large N limit of superconformal field theo-
ries and supergravity. Int. J. Theor. Phys. 38, 1113–1133 (1999).
arXiv:hep-th/9711200

12. E. Witten, Anti-de Sitter space, thermal phase transition, and con-
finement in gauge theories. Adv. Theor. Math. Phys. 2, 505–532
(1998). arXiv:hep-th/9803131

13. E. Witten, Anti-de Sitter space and holography. Adv. Theor. Math.
Phys. 2, 253–291 (1998). arXiv:hep-th/9802150

14. S.S. Gubser, I.R. Klebanov, A.M. Polyakov, Gauge theory corre-
lators from noncritical string theory. Phys. Lett. B 428, 105–114
(1998). arXiv:hep-th/9802109

15. D. Kubiznak, R.B. Mann, Black hole chemistry. Can. J. Phys. 93(9),
999–1002 (2015). arXiv:1404.2126 [gr-qc]

16. S.J. Avis, C.J. Isham, D. Storey, Quantum field theory in anti-de
Sitter spacetime. Phys. Rev. D 18, 3565 (1978)

17. V.J. Rocha, Evaporation of large black holes in AdS: coupling to
the Evaporon. JHEP 08, 075 (2008). arXiv:0804.0055 [hep-th]

18. A. Almheiri, D. Marolf, J. Polchinski, D. Stanford, J. Sully, An
apologia for firewalls. JHEP 09, 018 (2013). arXiv:1304.6483 [hep-
th]

19. M. Van Raamsdonk, Evaporating firewalls. JHEP 11, 038 (2014).
arXiv:1307.1796 [hep-th]

20. D.N. Page, Finite upper bound for the hawking decay time of an
arbitrarily large black hole in anti-de Sitter spacetime. Phys. Rev.
D 97, 024004 (2018). arXiv:1507.02682 [hep-th]

21. H. Xu, M.H. Yung, Black hole evaporation in lovelock grav-
ity with diverse dimensions. Phys. Lett. B 794, 77 (2019).
arXiv:1904.06503 [gr-qc]

22. H. Xu, M.H. Yung, Black hole evaporation in conformal (Weyl)
gravity. Phys. Lett. B 793, 97 (2019). arXiv:1811.07309 [gr-qc]

23. H. Xu, Y.C. Ong, Black hole evaporation in Hořava–Lifshitz grav-
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