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Abstract Effects from nonstandard corrections to Newto-
nian gravity, at large scale, can be investigated using the cos-
mological structure formation. In particular, it is possible to
show if and how a logarithmic correction (as that induced
from nonlocal gravity) modifies the clustering properties of
galaxies and of clusters of galaxies. The thermodynamics of
such systems can be used to obtain important information
about the effects of such modification on clustering. We will
compare its effects with observational data and it will be
demonstrated that the observations seem to point to a char-
acteristic scale where such a logarithmic correction might
be in play at galactic scales. However, at larger scales such
statistical inferences are much weaker, so that a fully reli-
able statistical evidence for this kind of corrections cannot
be stated without further investigations and the use of more
varied and precise cosmological and astrophysical probes.

1 Introduction

The clustering of galaxies is the main mechanism to address
the large scale structure of the Universe. Such clustering
mechanism can be studied confronting numerical simulations
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[1,2] with observations [3,4], using the local matter distribu-
tions of galaxies organized in groups, filaments and clusters.
However, to analyze numerically the large scale structure for-
mation, it is possible to approximate galaxies as point-like
particles, and then study the clustering adopting the stan-
dard formalism of statistical mechanics. This approximation
is valid because the distance between galaxies is much larger
than their proper size. In fact, it has been demonstrated that
the clustering mechanism can be studied considering a quasi-
equilibrium description because the macroscopic quantities
change very slowly as compared with the local relaxation
time scales [5–8]. Pressure, average density and average
temperature of clusters are the macroscopic quantities to be
taken into account. Here the temperature is the effective one
obtained by the kinetic theory of gases, for a gas of galaxies
(each galaxy being approximated as a point particle). So, by
this quasi-equilibrium description, the clustering of galaxies
can be dealt as a thermodynamic system [9,10]. Specifically,
one has to adopt a gravitational partition function [10,11]
where point-like galaxies gravitationally interact. Such a par-
tition function can be also used to study phase transitions for
systems of interacting galaxies [12–14].

It has to be pointed out that such a gravitational partition
function diverges because the extended structure of galax-
ies has been neglected in this approximation. However, these
divergences can be removed by adding a softening param-
eter, which accounts for the extended structure of galaxies
as reported in [15]. In a recent study it has also been proved
that the nonlocal gravity is divergence free [16]. Thermody-
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namics for systems of galaxies is obtained from the partition
function (regularized with a softening parameter), and this
can in turn be used to study the clustering properties [17].
It has been observed that any modification of gravitational
partition function by a softening parameter, in turn, modi-
fies the thermodynamic quantities of a given system. Vice
versa, because these thermodynamic quantities are related
to the clustering parameter, it also changes the clustering
parameter itself. In fact, it can be demonstrated that the mod-
ification to the skewness and kurtosis of clustering systems
occur due to such a softening parameter [18]. This formal-
ism has also been used to demonstrated that galaxy clusters
are surrounded by halos, and this has been done adopting a
wide range of samples [8,19]. Furthermore the isothermal
compressibility gives also information on the clustering of
galaxies [20].

Specifically, the clustering of galaxies occurs due to the
gravitational force between them. However, it is now well-
known by a wide range of cosmological observations (e.g.
Type Ia Supernovae, Baryon Acoustic Oscillations and Cos-
mic Microwave Background) that the Universe is undergoing
an accelerating expansion [21–23]. This cosmic expansion
is pulling the galaxies away from each other. So, the cosmic
expansion seems to oppose the gravitational force, and thus it
is important to include its effect in the gravitational partition
function. It has been argued that the cosmological constant
related to the accelerated expansion can produce important
local effects on the scale of galaxy clusters [24–28]. These
effects can be investigated using model of interacting dark
matter and dark energy [24,25]. It is also possible to con-
strain the dark energy from the clustering of galaxies [29].
The cosmic expansion can also change the dynamics at the
scale of galaxy clusters [30]. Such a modification of cluster
dynamics has also been investigated using different groups
of galaxies [31]. Finally, one can state that the cosmological
constant has consequences for the formation of galaxy clus-
ters [32]. In summary, it is important to study the effects of
cosmic expansion at the scale of clusters. From a more tech-
nical point of view, it has to be noted that the Fisher matrix
formalism has been used to analyze the effects of cosmic
expansion on clusters [33].

Thus, it is possible to obtain information about the cosmo-
logical constant, and, in general, about dark energy dynamics,
from the local clustering of galaxies. So, it is important to
incorporate the effects of cosmic expansion in the statisti-
cal mechanical description of the clustering of galaxies. In
fact, an accurate measurement of the statistics of galaxies can
be used to constraint the value of the cosmological constant
[34], and the distribution function of galaxies can be used to
constraint the amount of the dark energy [35].

As such a statistical distribution function can be obtained
from the gravitational partition function [9,10], it is impor-
tant to incorporate the effects of cosmic expansion in the

partition function. So, the modification of the gravitational
partition function by the cosmological constant term has also
to be considered, and this modified gravitational partition
function can be used to study the clustering process in an
expanding Universe [36]. This can be technically done by
first analyzing the Helmholtz free energy and entropy for a
system of galaxies. Then the clustering parameter for this
system can be obtained, and it has been observed that this
clustering parameter depends on the value of the cosmolog-
ical constant. The modification of the gravitational partition
function with a time dependent cosmological constant can
be also used to study the effects of dynamical dark energy
on clustering of galaxies [37]. It has been observed that the
correlation function for this system are consistent with obser-
vations.

However, it is possible to obtain cosmic expansion with-
out considering dark energy related to some new fundamental
particle. In fact, large scale nonlocality related to some effec-
tive gravitational potential seems a realistic effect of gravita-
tional field at infrared scales as recently reported in several
papers, see for example [38–42]. It has been argued that such
nonlocalities can occur due to some quantum gravitational
effects [38,39,43]. They can be relevant also in gravitational
waves modes and polarizations [44,45]. It has been demon-
strated that string field theory produces nonlocal actions for
the component fields, and these nonlocal actions can also be
used to construct nonlocal cosmological models [46,47]. It
is also possible to construct models of nonlocal cosmology
from loop quantum gravity [48,49]. This can be done adopt-
ing a sort of condensation of states in loop quantum gravity.
In summary, it is possible to obtain nonlocal cosmologies
using quantum gravitational effects at ultraviolet scales that
propagate up to infrared scales.

In other words, as nonlocal cosmology can explain the
cosmic expansion without dark energy [38–42], such non-
local corrections can also be used to incorporate the effects
of cosmic expansion in the gravitational partition function.
This one can then be used to analyze the effects of nonlo-
cality on clustering of galaxies. It may be noted that even
though general relativity is strongly constrained at the Solar
System scales by several experiments and observations [50–
52], nonlocal modification to general relativity can occur at
large scales starting from galactic one [53]. At the same time,
nonlocal gravity is safe from possible issues related to oscil-
lating features on small scales, falling in the regime where
such oscillations are subdominant [54]. It has also been pro-
posed that such nonlocality could be constrained from the
clustering of galaxies [55]. Thus, it is important to analyze
the effect of nonlocal modification of gravity on the gravita-
tional partition function and point out how it affects the clus-
tering process. Such a modification can be analyzed using
nonlocal corrections to the gravitational potential [53,56–
59]. In general, the nonlocal gravitational partition function

123



Eur. Phys. J. C (2021) 81 :352 Page 3 of 19 352

can be used to analyze the effects of nonlocality on clus-
tering of galaxies. Although our main motivation for such
a study is related to testing nonlocal gravity, we must note
here that the logarithmic correction induced by such a the-
ory is shared also by other alternative models of gravity, e.g.
MOND [60,61], Randall–Sundrum brane scenario [62], or
other string-theoretical motivations [63] which have been
also tested with internal dynamics of spiral galaxies [64]. It
may be noted that there is an intrinsic non-locality in string
theory [65,66]. Furthermore, even MOND has been related
to nonlocality [67–71]. This could be due to the fact that
nonlocality [38,39], and several of these modifications, are
motivated from quantum corrections to the original Einstein–
Hilbert action. Even MOND can be obtained as a quantum
correction in the Verlinde formalism [72]. Thus, we expect
some kind of universal form of correction to occur in most
of them. In this perspective, our results will be more general
and not strictly related to one particular scenario.

In Sect. 2, we discuss the clustering mechanism. After
defining the nonlocal gravitational partition function, we
consider the related thermodynamics and spatial correlation
function. Observational data analysis is described in detail in
Sect. 3. Specifically, we take into account data from galax-
ies and clusters and study the effects of nonlocality on the
clustering mechanism. Conclusions are drawn in Sect. 4.

2 Modeling clusters of galaxies

In general, a nonlocal modification of the Hilbert–Einstein
action can have the following form [38,39]

S = 1

2κ2

∫
d4x

√−g
[
R

(
1 + f (�−1R)

)]
, (1)

where R is the Ricci scalar and f (�−1R) is an arbitrary func-
tion, called distortion function, of the nonlocal term �−1R,
which is explicitly given by the retarder Green’s function

G[ f ](x) = (�−1 f )(x) =
∫

d4x ′√−g(x ′) f (x ′)G(x, x ′).

(2)

Setting f (�−1R) = 0, the above action is equivalent to the
Einstein–Hilbert one. The nonlocality is introduced by the
inverse of the d’Alembert operator. In order to “localize”
the action, an auxiliary scalar field can be introduced so that
�−1R = φ and then formally �φ = R. As a consequence,
characteristic lengths related to the nonlocal terms naturally
come out [53].

The weak-field limit of such a dynamics gives rise to cor-
rections to the Newtonian potential which are interesting at
large scales. These corrections can be polynomial or loga-
rithmic and, in general, introduce characteristic scales. For a
detailed discussion on this point see [53].

In the framework of this theory, let us now model the clus-
tering of galaxies using the gravitational partition function
which we are going to define. We will explicitly adopt the
nonlocal gravity, as discussed in [57–59], to obtain the cor-
rections to such a gravitational partition function. After ana-
lyzing the effects of nonlocality, the nonlocal gravitational
partition function will be used to analyze the clustering of
galaxies. This can be done by considering the thermodynam-
ics of this system, and then relating it to the clustering param-
eter. Then we will calculate the spatial correlation function.

2.1 Nonlocal gravitational partition function

Let us take into account a system with a large number
of galaxies. This system can be analyzed using a quasi-
equilibrium description, where the change in macroscopic
quantities is slower than the local relaxation time scales [5–
8]. It is possible analyze such a system adopting an ensem-
ble of cells, with same volume V , or radius R1 and average
densityρ. As the number of galaxies and their total energy
can vary between these cells, the system can be analyzed in
the framework of the grand canonical ensemble. Thus, it is
possible to define a gravitational partition function. In this
picture, a system of N galaxies of mass m interacting with a
nonlocal gravitational potential can be written as [10,11]

Z(T, V ) = 1

λ3N N !
∫

d3N pd3Nr

× exp

(
−

[
N∑
i=1

p2
i

2M
+ Φnl(r)

]
T−1

)
, (3)

where pi are the momenta of different galaxies and Φnl is the
nonlocal gravitational potential energy. Here T is the aver-
age temperature, which is obtained from the kinetic theory
of gases where each particle is represented by a galaxy. Now
integrating on the momentum space, we can write this grav-
itational partition function as

ZN (T, V ) = 1

N !
(

2πmT

Λ2

)3N/2

QN (T, V ), (4)

where QN (T, V ), the configuration integral, can be expressed
as

QN (T, V ) =
∫

. . .

∫ ∏
1≤i< j≤N

exp

[
−Φnl(ri j )

T

]
d3Nr. (5)

The nonlocal gravitational potential energy Φnl(r1, . . . , rN )

is a function of the relative position vector ri j = |ri − r j |,
as both the local and nonlocal terms represent central forces.
The total potential energy can be obtained by summing up
the potential energies. So, we can write the total nonlocal
potential energy Φnl(r1, r2, . . . , rN ) as
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Φnl(r1, . . . , rN ) =
∑

1≤i< j≤N

Φnl(ri j ) =
∑

1≤i< j≤N

Φnl(r).

(6)

We can write such a nonlocal gravitational potential energy
for galaxies as [57–59]

(Φi, j )nl = −Gm2

ri j
+ Gm2

λ
ln

(ri j
λ

)
. (7)

Since galaxies have an extended structure, we need to modify
the gravitational potential energy by a softening parameter ε

[15,20]. Thus, we can write

(Φi, j )nl = − Gm2

(r2
i j + ε2)1/2

+ Gm2

λ
ln

(
(r2
i j + ε2)1/2

λ

)
. (8)

Now we can use a nonlocal two-point interaction function
for galaxies fi j = e−(Φi j )nl/T − 1 to analyze this system. It
vanishes in absence of interactions, and it is non-zero only for
interacting galaxies. Thus, we can now express the nonlocal
configuration integral as

QN (T, V ) =
∫

. . .

∫ [
(1 + f12)(1 + f13)(1 + f23)

. . . (1 + fN−1,N )

]
d3r1d

3r2 . . . d3rN , (9)

where we can express the nonlocal two-point interaction
Mayer function as

fi j =
(

(r2
i j + ε2)1/2

λ

) Gm2
Tλ

exp

(
Gm2

T (r2
i j + ε2)1/2

)
− 1.

(10)

It is worth noticing that such an expression for clustering
integral has been discussed for local gravitational interac-
tions [18,20]. Here we have obtained the contributions to
such Mayer function from nonlocal gravitational interactions
[57–59]. We can expand this nonlocal two-point interaction
Mayer function as a power series. So, we can write fi j as

fi j = −1 +
(

(r2
i j + ε2)1/2

λ

) Gm2
Tλ

·
∞∑
n=0

1

n!
(
Gm2

T

)n
1

(r2
i j + ε2)n/2

(11)

Now using l = Gm2/(Tλ), we can write Q2(T, V ) as

Q2(T, V ) = V 2
∞∑
n=0

1

n!
(

3Gm2

2R1T

)n ( ε

λ

)l (2R1

3ε

)n

· · · 2F1

(
3

2
,
n + l

2
; 5

2
;−

(
R

ε

)2
)

= V 2

( ∞∑
n=0

αnl x
n

)
, (12)

where αnl is given by

αnl = 1

n!
(

ε

λ

)l(2R1

3ε

)n

F

(
3

2
,
n + l

2
; 5

2
;− R2

1

ε2

)
. (13)

It may be noted here that F(3/2, n + l/2; 5/2;−R2
1/ε2)

is the hypergeometric function. Now using R1 ∼ ρ−1/3,
we observe that 3Gm2/2R1T = 3Gm2/2ρ−1/3T =
3Gm2ρ1/3T−1/2. So, using the scale invariance, ρ → λ−3ρ,
T → λ−1T and r → λr , we can define x as

x = 3

2
(Gm2)3ρT−3 = βρT−3, (14)

where β = 3(Gm2)3/2. From this expression for x , we can
obtain any general configuration integral. Using the so called
dilute approximation, we can assume (Φi, j )nl/T very small
and take only the first term of the exponential expansion,

fi j = Gm2

T
√
r2
i j + ε2

− Gm2

Tλ
ln

√
r2
i j + ε2 + Gm2

Tλ
ln λ. (15)

Thus, calculating the general configuration integral, we
obtain

QN (T, V ) = V N (1 + αx)N−1 (16)

where

α = 2R

3λ

⎛
⎝ln

λ

R
+ 3λ

2R

√
ε2

R2 + 1 + ε3

R3 tan−1 R

ε

− 3λε2

2R3 ln

√
ε2

R2 + 1 + 1
ε
R

− 1

2
ln

(
ε2

R2 + 1

)
− ε2

R2 + 1

3

⎞
⎠

(17)

Now the gravitational partition function for this dilute grav-
itating system can be written as

ZN (T, V ) = 1

N !
(

2πmT

Λ2

)3N/2

V N (
1 + αx

)N−1
. (18)

This expression for the gravitational partition function can be
used to analyze the effects of nonlocality on the clustering of
galaxies.
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2.2 Thermodynamics

It has to be noted that the gravitational partition function
has already been used to study the thermodynamics of sys-
tems of galaxies, see [9,10]. We can thus adopt the nonlo-
cal gravitational partition function to analyze the thermody-
namics of this nonlocal system. The Helmholtz free energy
F = −T ln ZN (T, V ) is

F = −T ln

(
1

N !
(

2πmT

Λ2

)3N/2

V N (
1 + αx

)N−1

)
. (19)

In the plots of Fig. 1, we analyze the dependence of the
Helmholtz free energy on various parameters. The depen-
dence of Helmholtz free energy on x is represented in Fig. 1a.
We can observe that the Helmholtz free energy is a decreas-
ing function of x for large value of the nonlocality parameter
λ and an increasing function of x for smaller value of the
nonlocality parameter λ. So, the value of nonlocality param-
eter changes the dependence of the Helmholtz free energy on
x . In Fig. 1b, the Helmholtz free energy is plotted in terms
of λ. We can see how there is a minimum for the Helmholtz
free energy, and this minimum seems to occur at a specific
value of λ. This minimum does not seem to change with the
temperatures of the system. This observation can explain the
change in the behavior of the Helmholtz free energy with
the change in the value of λ, as was observed in Fig. 1a. In
Fig. 1c, we plot the dependence of the Helmholtz free energy
on the temperature of the system. Here the temperature cor-
responds to the temperature of a gas of galaxies, with each
galaxy acting as a particle analog. We observe that generally
the Helmholtz free energy increases with the temperature,
but the rate of this increase depends on the number of galax-
ies. As we have plotted the dependence on temperature by
considering the system as a gas of galaxies, we also analyze
the dependence of the Helmholtz free energy on the number
of galaxies in Fig. 1d. We observe that the Helmholtz free
energy first decreases for a relatively small number of galax-
ies, becoming negative, and then increases as the number of
galaxies becomes more than a certain value.

The entropy S can now be calculated from this Helmholtz
free energy, as

S = −
(

∂F

∂T

)
N ,V

= N ln(ρ−1T 3/2) + (N − 1) ln
(
1 + αx

)

− 3N
αx

1 + αx
+ 5

2
N + 3

2
N ln

(
2πm

Λ2

)
. (20)

Now, for large N , using N − 1 ≈ N , we obtain

S

N
= ln(ρ−1T 3/2) + ln

(
1 + αx

) − 3Bl + S0

N
, (21)

where S0 = 5
2 N + 3

2 N ln
( 2πm

Λ2

)
. where

Bl = αx

1 + αx
. (22)

This is the general clustering parameter for a system of galax-
ies interacting in presence of nonlocal gravity. The internal
energy U = F + T S of a system of galaxies can now be
written as

U = 3

2
NT

(
1 − 2Bl

)
. (23)

We have plotted the internal energy of a system of galaxies
in Fig. 2. Its behavior is analyzed by investigating its depen-
dence on various parameters. In Fig. 2a, we investigate how
the internal energy of the system varies with x . We observe
that it is an increasing function of x for smaller values of
λ, and a decreasing function of x for larger values of λ. In
Fig. 2b, we analyze the dependence of the internal energy
on the nonlocality parameter λ. We observe that there is a
minimum for internal energy, and again this minimum does
not seem to depend on the temperature of the system. We
also investigate the dependence of the internal energy on the
temperate of the system in Fig. 2c. It is observed that there
is a discontinuity in the dependence of internal energy on
temperature, which occurs independently of the number of
galaxies. In Fig. 2d, the dependence of internal energy on
the number of galaxies is plotted. It is observed that internal
energy increases with the increase in the number of galaxies.
However, the rate of increase is larger for larger values of x .

Similarly, we can write the pressure P and chemical poten-
tial μ for galaxies interacting through a nonlocal gravitational
potential as

P = −
(

∂F

∂V

)
N ,T

= NT

V

(
1 − Bl

)
,

μ =
(

∂F

∂N

)
V,T

= T ln(ρT−3/2)

− T ln
(
1 + αx

) − T
3

2
ln

(
2πm

Λ2

)
− T Bl . (24)

The probability of finding N galaxies can be written as

F(N ) =
∑

i e
Nμ
T e

−Un
T

ZG(T, V, z)
= e

Nμ
T ZN (V, T )

ZG(T, V, z)
, (25)

where ZG is the grand-partition function defined by

ZG(T, V, z) =
∞∑
N=0

zN ZN (V, T ), (26)
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(a) (b)

(c) (d)

Fig. 1 Helmholtz free energy dependence on: a x with: T = 1,
N = 50, λ = 2/3 (solid green), λ = 1 (dashed red), λ = ∞ (dot-
ted blue); b λ with: x = 1, N = 50, T = 0.6 (solid green), T = 0.4
(dashed red), T = 0.2 (dotted blue); c T with: x = 1, N = 60 (solid

green), N = 40 (dashed red), N = 20 (dotted blue); d N with: T = 1,
λ = 0.5; x = 1 (solid green), x = 0.5 (dashed red), x = 0 (dotted
blue). We have assumed unit values for all the other parameters

and z is the activity. Thus, for a system of gravitationally
interacting galaxies in nonlocal gravity , we can write

exp

[
Nμ

T

]
=

(
N̄

V
T−3/2

)N(
1 + Bl

(1 − Bl)

)−N

· exp [−N Bl ]

(
2πm

Λ2

)−3N/2

. (27)

Now the grand-partition function can be written as

ln ZG = PV

T
= N̄ (1 − Bl), (28)

and the distribution function can be expressed as

F(N ) = N̄ (1 − Bl)

N !
(
N Bl + N̄ (1 − Bl)

)N−1

· exp
[−N Bl − N̄ (1 − Bl)

]
. (29)

In Fig. 3, we analyze the behavior of the distribution func-
tion for galaxies, and its dependence on different parameters

used here. In general, the distribution function has the univer-
sal feature of having a maximum, while its functional shape
changes, and depends on the considered parameters.

2.3 Spatial correlation function

It is well know that the interaction between different galaxies
will cause correlation in their positions. The integral of the
correlation function over a certain volume can be expressed
in terms of the mean square fluctuation of the total number
of galaxies in a given volume. Thus we can write

∫
ξdV = 〈(ΔN )〉2

N̄
− 1. (30)

This can be further represented in terms of thermodynamic
quantities as

∫
ξdV = −NT

V 2

(
∂V

∂P

)
T

− 1. (31)
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(a) (b)

(c) (d)

Fig. 2 Internal energy dependence on: a x with: T = 1, N = 50,
λ = 2/3 (solid green), λ = 1 (dashed red), λ = 0 (dotted blue); b λ

with: x = 1, N = 50, T = 0.6 (solid green), T = 0.4 (dashed red),
T = 0.2 (dotted blue); c T with: x = 1, N = 60 (solid green), N = 40

(dashed red), N = 20 (dotted blue); d N with: T = 1, λ = 0.5; x = 1
(solid green), x = 0.5 (dashed red), x = 0 (dotted blue). We have
assumed unit values for all the other parameters

Taking the volume derivative and using the equation of state
for pressure P , we get

ξ = −NT

V 2

∂

∂V

(
∂V

∂P

)
T

+ 2
NT

V 3

(
∂V

∂P

)
T

. (32)

The pressure can be written in terms of the clustering param-
eter as

P = NT

V

(
1 − Bl

)
. (33)

We can write the change of volume with pressure at constant
temperature

(
∂V

∂P

)
T

= − V 2

NT (1 − Bl)2 . (34)

The expression for ξ is

ξ = −2
Bl

V (1 − Bl)2 (35)

where ∂Bl/∂V = −(x/V )(dBl/dx) = Bl(1 − Bl)/V and
x = βρT−3 = βNT−3/V . Now we can write

∫
ξdV = Bl(2 − Bl)

(1 − Bl)2 . (36)

The volume integral of correlation function is the quantity
which can be compared with observational data in order to
detect possible effects of nonlocal gravity.

3 Observational data analysis

We will test the nonlocal gravitational clustering with the
cluster catalog in [73], containing 132,684 clusters of galax-
ies in the redshift range 0.05 ≤ z < 0.8 from the Sloan
Digital Sky Survey III (SDSS-III). We will take advantage
of this catalog because it has all the needed ingredients to
analyze clustering properties of both galaxies and clusters
(although an alternative more recent version is in [74]), using
two different approaches.
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(a) (b)

(c) (d)

Fig. 3 The distribution function dependence on: a x with: N = 50,
N̄ = 10, λ = 10 (solid green), λ = 1 (dashed red), λ = 0.75 (dotted
blue); b x with: N̄ = 10, λ = 1, N = 20 (solid green), N = 10 (dashed
red), N = 5 (dotted blue); c N with: x = 1, N̄ = 10, λ = 10 (solid

green), λ = 1 (dashed red), λ = 0.75 (dotted blue); d N with: N̄ = 10,
λ = 1; x = 10 (solid green), x = 5 (dashed red), x = 1 (dotted blue).
We have assumed unit values for all the other parameters

3.1 Galaxies

The analysis of the clustering of galaxies will be conducted
with a sort of “smart” version of the standard counts-in-
cell procedure. In general, one would first need to define
cells/volumes with a given size, and then to count the gravi-
tational structures of interest within them. Here, our “smart”
volumes will be the clusters identified in the SDSS-III sur-
vey, and we will count the galaxies which are within each
of them. From this procedure, we will be able to calculate
the observed distribution function F(N ) and to compare it
with the theoretical expectation in nonlocal gravity as given
by Eq. (29). The “smartness” in this procedure is that the
cells/volumes we are going to analyze are physically real-
ized systems, structures which exist and have been identi-
fied, contrarily to the standard way of proceeding, where the
existence of clusters and interacting systems of galaxies is
not assured neither verified. On the other hand, performing
the count in this way, we are going to inevitably miss voids,
which instead indirectly retain some information about the
clustering properties.

All the needed data are provided by the catalogue in [73]:
the volume of the cells or, equivalently, the radius of the
clusters, r200 in Mpc, is defined as the radius within which
the mean density of a cluster is 200 times the critical density
of the Universe at the same redshift and N200 is the number
of member galaxy candidates within r200 of each cluster.
The only caveat to take in mind is that the radii of the cells
we are considering, i.e. the r200, are much smaller than the
scales where the quasi-equilibrium clustering should be more
effective [75,76]; we will discuss this point when presenting
our results.

We have divided the full catalogue in groups by red-
shift, with bin widths of Δz = 0.05, and by radius, with
bin widths of Δr200 = 0.1 Mpc, and we have eventually
selected only the groups with a sufficiently large number of
clusters to enable a strong and reliable statistical analysis.
The final groups with which we will work will have radii
in the three ranges, 0.8 < r200 < 0.9, 0.9 < r200 < 1.0
and 1.0 < r200 < 1.1 Mpc, and redshifts in the interval
0.05 ≤ z ≤ 0.65. We need to remind here that the catalogue
is complete only up to a redshift z ∼ 0.42, for clusters with
an estimated mass M200 > 1 × 1014 M�; at higher redshift,
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a bias toward larger clusters (larger masses) and possibly to
higher counts-in-cell is possible [73].

In Table 1, we show the results derived from using Eq. (29)
with the chosen data. The parameters involved in the analysis
of Eq. (29) have been rewritten as:

– R = r200, the radius of the cell (cluster), which enters
Eq. (29) through Eq. (17). We have assumed it to be con-
stant within the three bins we have identified; in the fol-
lowing, it will act as a scaling factor for some parameters;

– N = N200, the number of galaxies within each cell (clus-
ter);

– the clustering parameter b, defined as

b = x

1 + x
, (37)

and which enters Eq. (29) through:

Bl = b α

1 + b(α − 1)
, (38)

with α given by Eq. (17);
– the dimensionless softening parameter, ε̃ = ε/R;
– the dimensionless nonlocal characteristic length, λ̃ =

λ/R.

The only parameter which fully characterizes the nonlocal
gravity model we are focusing on is thus λ̃. All other param-
eters are standard in the sense that they would appear also
whether standard GR would be considered. In Table 1 we
also report the number of clusters in each redshift bin, Ncl ,
although this is not a fitting parameter.

When it comes to fit the data, we have defined and com-
pared results from two different statistical tools. We have
performed a least-square minimization using the χ2 defined
as

χ2
ls =

∑
i

[
Ftheo(Ni ) − Fobs(Ni )

]2
, (39)

where Fobs(Ni ) is the real counts-in-cell distribution extracted
from the data, and Ftheo(Ni ) is the theoretical counts-in-cell
calculated from the nonlocal gravity model by using Eq. (29).
The index i derives from the fact that in each radius bin,
the clusters have a variable amount of galaxies within them,
ranging from some minimal number Nmin to a maximal one
Nmax . Thus, the index i selects the finite natural values of
this range, where we evaluate the distribution function. We
have also defined a second χ2 as

χ2
jk =

∑
i

[
Ftheo(Ni ) − Fobs(Ni )

]2

σ 2
i

, (40)

where the σi are the errors on Fobs(Ni ) which we have
derived from a jackknife-like procedure as exposed below.

For each redshift and radius bin:

1. we cut a variable fraction F (randomly selected in the
range [10, 90]%) from the total bin population;

2. for each cut sample we derive the counts-in-cell distribu-
tion function ∼ 50 times;

3. we thus obtain a distribution of Fobs(Ni ) from the ∼ 50
sets of Ni ;

4. from each distribution, which looks very close to a stan-
dard Gaussian, we derive the standard deviation and
assume such value as the error σi .

The data points and the errors on the distribution function
Fobs(Ni ) which we finally obtain are shown respectively
as black dots and bars in Figs. 5, 6 and 7. The best fitting
F(N ) distributions obtained from the minimization of χ2

ls
are shown in red; those ones derived from χ2

jk are in green.

The minimization of the defined χ2 is performed by using
a Monte Carlo Markov Chain (MCMC) approach, running
chains with 106 points and using the uninformative and very
general priors: N̄ ≥ 0; 0 ≤ b ≤ 1; 0 ≤ ε̃ ≤ 1; λ̃ > 0.

3.2 Clusters

Concerning the count-in-cells where the counted objects
within volumes are the clusters of galaxies, we follow a pro-
cedure which is very similar to what is described in [75].
In order to be as much as clear as possible, we are going to
enumerate all the steps in the following list.

The initial set up consists in the coming steps:

(1a) we choose the size of the spherical cells/volumes we are
going to analyze. We have selected four different physical
lengths, R = 10, 20, 30, and 40 Mpc;

(2a) we divide the clusters in three groups by redshift, 0.05 ≤
z < 0.281, 0.281 ≤ z < 0.361 and 0.361 ≤ z <

0.42. These values have been chosen in order to span
approximately the same comoving volume in each group:
assuming a baseline Planck cosmology [23], with H0 =
67.51 km s−1 Mpc−1 and Ωm = 0.3121, the volume
is ≈ 6.5 × 109 Mpc3. The number of clusters from the
SDSS catalog falling into each group are, respectively,
37,686, 24,208 and 20,634 (the total sums up to 82,528,
because we are taking only clusters with z ≤ 0.42, for
which the catalogue is complete);

(3a) all clusters in the catalog are provided with redshift z and
celestial coordinates, the J2000.0 right ascension β and
declination δ. These quantities are converted into physi-
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Fig. 4 SDSS survey area. (Top panel) Full clusters catalog in Celestial
coordinates, right ascension α and declination δ. (Bottom panel) Full
clusters catalog in physical distances from three different viewpoints.

The different colors represent the three redshift bins we have described
in the text, with: 0.05 ≤ z < 0.281 as dark grey; 0.281 ≤ z < 0.361 as
middle grey; and 0.361 ≤ z < 0.42 as light grey

cal Cartesian coordinates using the standard formulae,

x = DC (z) cos δ cos β,

y = DC (z) cos δ sin β,

z = DC (z) sin δ cos β,

(41)

where DC is the comoving distance calculated assuming
the same fiducial cosmology as in the previous step. In
Fig. 4 we show both the angular projection of the SDSS
survey area (top panel), and the “physical length” dis-
tribution of the catalogue, with the three bins shown in
different colors (bottom panel);

(4a) we define a Cartesian grid covering the SDSS survey area.
Each point in this grid will be the center of a cell which
will be used for the count-in-cell procedure. In order to
guarantee a full coverage of the area, considering that
the volumes are spheres, the distance between each point
(i.e. each center of each cell) is

√
2R;

(5a) the SDSS survey does not cover the sky in a uniform
way; thus, we are not going to include in our analysis
all the points from the previously defined Cartesian grid.

Actually, converting the Cartesian coordinates of each
point back to celestial coordinates, we only select those
ones which fall in the range defined by the initial cluster
catalog. This step will acquire more significance as fur-
ther steps in our procedure will be highlighted in the next
points.

Having defined this initial set up, we have performed the
following operations on/with it:

(1b) we randomize the grid defined in the previous point (3a),
by shifting its origin by a random number in the interval
[0,

√
2R]. Actually, we apply this shift independently to

each Cartesian axis of the grid;
(2b) after each shift, we only retain cells which satisfy the con-

dition described in the previous point (5a). This assures
us that any cell which should fall out of the SDSS survey
will not be considered in the following analysis;

(3b) additionally, we apply a jackknife cut of 10% of cells
selected randomly;
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Table 1 Galaxies: results from fitting Eq. (29) with data from the clus-
ter catalog from [73]. Data and fits are divided in redshift bins (first
column) and cell radius bin (as indicated by R intervals). Ncl is not a

fitting parameter, but the number of clusters in each redshift and radius
bin. All the fitting parameters are described in the text

z 0.8 < R < 0.9 Mpc 0.9 < R < 1.0 Mpc 1.0 < R < 1.1 Mpc

Ncl N̄ b λ̃ Ncl N̄ b λ̃ Ncl N̄ b λ̃

χ2
ls

[0.05, 0.1] 291 9.34+0.09
−0.09 0.35+0.22

−0.17 0.39+0.12
−0.10 390 11.16+0.13

−0.13 0.29+0.24
−0.16 0.42+0.12

−0.10 298 14.04+0.11
−0.11 < 0.30 0.46+0.26

−0.34

[0.1, 0.15] 1052 10.00+0.11
−0.11 0.32+0.22

−0.16 0.40+0.12
−0.10 1526 11.96+0.16

−0.16 < 0.36 0.44+0.11
−0.10 949 15.59+0.04

−0.04 < 0.26 0.48+0.12
−0.10

[0.15, 0.2] 2343 10.54+0.11
−0.11 0.32+0.22

−0.17 0.40+0.12
−0.10 2919 12.93+0.17

−0.16 < 0.37 0.44+0.12
−0.10 1826 16.75+0.03

−0.03 < 0.23 0.49+0.12
−0.10

[0.2, 0.25] 3069 10.58+0.10
−0.10 0.34+0.24

−0.18 0.40+0.12
−0.10 3688 12.90+0.16

−0.16 < 0.35 0.44+0.12
−0.10 2398 16.92+0.07

−0.07 < 0.30 0.47+0.12
−0.10

[0.25, 0.3] 3318 10.12+0.09
−0.10 0.34+0.22

−0.17 0.40+0.12
−0.10 3982 12.56+0.15

−0.15 < 0.39 0.42+0.12
−0.10 2443 16.17+0.11

−0.12 < 0.33 0.45+0.12
−0.10

[0.3, 0.35] 4024 10.28+0.05
−0.05 0.33+0.23

−0.16 0.39+0.12
−0.09 5055 12.47+0.14

−0.14 < 0.39 0.42+0.12
−0.10 2958 16.35+0.11

−0.11 < 0.34 0.45+0.12
−0.10

[0.35, 0.4] 4379 10.35+0.10
−0.10 0.34+0.23

−0.17 0.40+0.12
−0.10 5402 12.70+0.15

−0.15 < 0.39 0.43+0.12
−0.10 3208 16.37+0.11

−0.12 < 0.35 0.44+0.12
−0.10

[0.4, 0.45] 4925 10.09+0.09
−0.09 0.35+0.22

−0.17 0.39+0.12
−0.10 5819 12.35+0.13

−0.13 < 0.41 0.41+0.12
−0.10 3289 16.09+0.09

−0.09 < 0.37 0.43+0.11
−0.10

[0.45, 0.5] 3982 9.43+0.06
−0.06 0.36+0.23

−0.17 0.37+0.11
−0.10 4813 11.38+0.12

−0.12 < 0.44 0.41+0.13
−0.10 2660 14.64+0.18

−0.18 < 0.37 0.44+0.11
−0.10

[0.5, 0.55] 2838 8.88+0.05
−0.05 0.36+0.23

−0.17 0.35+0.14
−0.10 3631 10.15+0.10

−0.10 0.33+0.22
−0.17 0.39+0.11

−0.10 2009 12.98+0.15
−0.15 < 0.38 0.42+0.11

−0.10

[0.55, 0.6] 1971 8.64+0.04
−0.04 0.40+0.22

−0.19 0.37+0.12
−0.11 2614 9.57+0.07

−0.07 0.38+0.22
−0.18 0.39+0.12

−0.10 1538 12.27+0.15
−0.15 < 0.40 0.43+0.12

−0.10

[0.6, 0.65] 1046 8.47+0.03
−0.03 0.41+0.21

−0.29 0.36+0.12
−0.10 1586 9.23+0.07

−0.07 0.38+0.22
−0.18 0.38+0.12

−0.10 977 11.17+0.13
−0.13 < 0.43 0.42+0.11

−0.10

χ2
jk

[0.05, 0.1] 291 9.39+0.08
−0.08 0.34+0.22

−0.17 0.40+0.12
−0.10 390 11.26+0.07

−0.07 < 0.38 0.42+0.12
−0.10 298 14.28+0.08

−0.08 < 0.02 < 60471

[0.1, 0.15] 1052 10.15+0.05
−0.05 0.32+0.22

−0.16 0.41+0.11
−0.09 1526 12.00+0.04

−0.04 < 0.34 0.44+0.11
−0.10 949 15.55+0.04

−0.04 < 0.23 0.50+0.12
−0.10

[0.15, 0.2] 2343 10.69+0.03
−0.04 0.30+0.23

−0.16 0.42+0.12
−0.10 2919 12.99+0.03

−0.03 < 0.40 0.44+0.11
−0.08 1826 16.82+0.04

−0.04 < 0.15 0.54+0.13
−0.12

[0.2, 0.25] 3069 10.56+0.07
−0.08 < 0.37 0.42+0.12

−0.10 3688 12.97+0.03
−0.03 < 0.35 0.44+0.12

−0.10 2398 16.94+0.03
−0.03 < 0.26 0.47+0.12

−0.10

[0.25, 0.3] 3318 10.26+0.03
−0.03 0.34+0.24

−0.17 0.41+0.12
−0.09 3982 12.59+0.03

−0.03 < 0.37 0.42+0.12
−0.10 2443 16.19+0.03

−0.03 < 0.33 0.45+0.11
−0.10

[0.3, 0.35] 4024 10.44+0.03
−0.03 0.30+0.21

−0.15 0.40+0.11
−0.10 5055 12.55+0.03

−0.03 < 0.37 0.43+0.12
−0.10 2958 16.38+0.03

−0.03 < 0.32 0.45+0.11
−0.09

[0.35, 0.4] 4379 10.52+0.03
−0.03 0.35+0.25

−0.16 0.42+0.11
−0.09 5402 12.75+0.02

−0.02 < 0.35 0.43+0.11
−0.10 3208 16.45+0.03

−0.03 < 0.34 0.42+0.12
−0.09

[0.4, 0.45] 4925 10.31+0.03
−0.03 0.33+0.21

−0.17 0.41+0.11
−0.11 5819 12.45+0.03

−0.03 < 0.42 0.43+0.11
−0.11 3289 16.09+0.03

−0.03 < 0.37 0.44+0.11
−0.10

[0.45, 0.5] 3982 9.77+0.03
−0.03 0.35+0.21

−0.16 0.38+0.12
−0.09 4813 11.50+0.03

−0.03 < 0.43 0.41+0.11
−0.10 2660 14.69+0.03

−0.03 < 0.35 0.43+0.12
−0.10

[0.5, 0.55] 2838 9.25+0.03
−0.03 0.36+0.25

−0.18 0.37+0.13
−0.11 3631 10.33+0.03

−0.03 0.36+0.22
−0.16 0.42+0.11

−0.09 2009 13.02+0.03
−0.03 < 0.39 0.44+0.11

−0.10

[0.55, 0.6] 1971 9.06+0.04
−0.04 0.42+0.24

−0.23 0.39+0.11
−0.11 2614 10.36+0.05

−0.05 0.40+0.21
−0.18 0.41+0.14

−0.10 1538 12.38+0.04
−0.04 < 0.35 0.45+0.11

−0.10

[0.6, 0.65] 1046 8.85+0.05
−0.04 0.38+0.22

−0.18 0.37+0.12
−0.10 1586 9.50+0.05

−0.04 0.35+0.22
−0.17 0.38+0.12

−0.09 977 11.32+0.05
−0.05 < 0.38 0.42+0.12

−0.10

(4b) the previous steps, (1b)–(2b)–(3b), are realized 100
times, each time having a different shift in the origin of
the grid system (point (1b)), a possibly different number
of cells falling out of the SDSS survey are (point (2b)),
and a different set of cells cut from point (3b).

After all these steps are performed, we eventually have at our
disposal the grid of centers of cells/volumes, for each cell size
R provided at point (1a), and divided in the three subgroups
following the redshift criterion described at point (2a), which
will serve to perform the count-in-cell with the cluster cata-
log data. Basically, for each point in the grid, we will retain
only the clusters whose distance from a given grid point (i.e.
cell center) will be lower than the size R taken into account.
Because of point (4b) above, we basically have 100 differ-

ent grid sets to compare with the original catalogue, namely,
we will have 100 F(N ) spanning the ranges [Nmin, Nmax ]
where, as before, Nmin and Nmax are the minimum and max-
imum numbers of objects (clusters) within each cell/volume.

The median of such ensemble of 100 values for F(N ) will
serve as observational estimation for this quantity in the χls

analysis, as defined in Eq. (39). Instead, the median and the
standard deviation, assumed as error σi , will be used when
performing the χ jk analysis, as defined in Eq. (40).

3.3 Results

The complete outcomes of our statistical analysis are pre-
sented in Table 1 for galaxies and Table 2 for clusters of
galaxies. As a first comment, valid for both cases, let us
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Fig. 5 Comparison between data and theoretical expectation Eq. (29) for cell size bin 0.8 < R < 0.9 Mpc. Black points: data; black bars:
jackknife-like observational errors. Solid red line: best fit from minimization of χ2

ls ; solid green line: best fit from minimization of χ2
jk

notice that the softening parameter ε̃ is not present in the
tables because it is basically unconstrained, exhibiting a uni-
form distribution all over the given prior range [0, 1]. Thus,
we can infer that its role in the fit is marginal.

3.3.1 Galaxies

For what concerns galaxies, from Table 1 we can see how
the parameter N̄ is very well constrained, and there is no
difference between using χ2

ls or χ2
jk . This statement is valid

whatever radius R and redshift bin is considered. Actually,
we must remember that the catalog is complete only up to z =
0.42, after which we do have a bias toward smaller clusters,
namely, clusters with a lower N̄ . And this is effectively seen

in the tables, where N̄ rises slightly with redshift, becomes
practically constant, and then starts to decrease for z > 0.45.

The same consideration is basically true also for the clus-
tering parameter b, even if in this case we can see how there is
a trend with varying R, while no peculiar change with redshift
z can be detected. In general, this parameter lies in the range
[0.3, 0.4] for all cases; however, while for the smaller R we
can see how it is very well constrained, for growing R, we
are able to put only upper limits on it, which means that also
small values of b are compatible with data. As described in
[76], we know that smaller values of b correspond to clusters
which have not yet fully virialized. It is worth noticing that
such trend is on the opposite side with respect to [8,19,76]
where smaller cells volumes correspond to smaller values of
b; although we must also stress that in [8,19,76], the consid-
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Fig. 6 Comparison between data and theoretical expectation Eq. (29) for cell size bin 0.9 < R < 1.0 Mpc. Black points: data; black bars:
jackknife-like observational errors. Solid red line: best fit from minimization of χ2

ls ; solid green line: best fit from minimization of χ2
jk

ered physical volumes are much larger than those we have
defined here as well as the redshift bins, and the number of
objects in each bin is much lower. In our case the bins are
much finer, both in radius and in redshift.

For what concerns the only fully characterizing parame-
ter of the nonlocal gravitational potential, i.e. λ̃, we can see
how it is remarkably very well constrained in a specific and
well defined range. Statistically speaking, we can see how it
approximately lies in the range [0.4, 0.5], which, in physi-
cal units, corresponds roughly to [0.32, 0.55] Mpc. We can
detect a slight decrease for varying redshift, with smaller
values at larger z; while it seems to be more pronounced a
trend with varying R, with larger λ̃ for larger clusters. It is
quite striking to have such values for this parameter, which

are actually totally consistent with the size of gravitational
structures/volumes under scrutiny. At the same time, they are
also very different from a stable GR limit, which would be
achieved when λ → ∞. Actually, from Eq. 7, one can see
how it would be possible to recover an unstableGR-like limit
even for λ → ri j .

Finally, from Figs. 5, 6 and 7, we can also visually check
the quality of the fits: the larger is the cell volume, the better
is the fit.

We must stress here an important point: these results just
show that a logarithmic correction to the Newtonian gravity
might be consistent with the clustering of galaxies. But we
cannot state at all that this correction is consistent with the
full clustering process at these same scales, because, from the
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Fig. 7 Comparison between data and theoretical expectation Eq. (29) for cell size bin 1.0 < R < 1.1 Mpc. Black points: data; black bars:
jackknife-like observational errors. Solid red line: best fit from minimization of χ2

ls ; solid green line: best fit from minimization of χ2
jk

catalogue we have used, we have no information on voids,
which should be taken into account. This is a further check
which should be performed in the future.

3.3.2 Clusters

What we can check is how the full clustering process on larger
scales behaves. As we have stated in the previous sections, if
we move to consider the clustering of clusters of galaxies, the
catalogue in hand does allow us to properly take into account
voids. Although, in this case, results are a bit more fuzzy.

First of all, we focus on N̄ . We can see here a trend both
in redshift and in volume size R: N̄ decreases with redshift
and increases with R. The latter correspondence is of course
expected, as large cells can contain more clusters; the former

one is also somehow expected, because we might predict an
intrinsic lack of clusters at higher redshifts, as they are caught
in an epoch of formation, while a larger number of them is
observable at smaller redshifts. Notice that our bins all have
the same comoving volumes, so that any geometry-related
issue should not be effective in this case.

The behavior of the clustering parameter b is now fully
consistent with literature [8,19,76], with smaller values for
smaller volumes, as well as for higher redshifts.

The nonlocal characteristic length λ̃, instead, in this case
is quite unconstrained. We are unable to put strong bound-
aries on it and in Table 2 we can only assess upper limits on
it. Although we must warn that such results are statistically
weak, with the posteriors being quite irregular in most of the
cases. This result can only be interpreted as a substantial neg-
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Fig. 8 Comparison between data and theoretical expectation Eq. (29) for cell size bin 1.0 < R1 < 1.1 Mpc. Black points: data; black bars:
jackknife-like observational errors. Solid red line: best fit from minimization of χ2

ls ; solid green line: best fit from minimization of χ2
jk

ligible role of the parameter λ in the fitting procedure. Thus,
we should conclude that on such large scales there is no evi-
dence for a detectable logarithmic correction to the standard
Newtonian potential (Fig. 8).

4 Discussion and conclusions

Nonlocality effects can occur at large distances as the conse-
quence of modified gravitational potential. Specifically, non-
local gravity, besides the effects at cosmological scale as a
possible engine for accelerated expansion [38,41], is relevant
also for large scale formation. In particular, it is capable of
triggering the clustering of galaxies and clusters of galaxies.

In view of this statement, we have analyzed the effects
of nonlocal gravitational potential on the structure formation
comparing the model with observational data. This has been
done by treating both galaxies and clusters of galaxies (in two
distinct analysis) as points in a statistical mechanical system,
and then analyzing their clustering using a gravitational par-
tition function. This function has been modified according
to the nonlocal gravitational potential and its influence on
the properties of the gravitational clustering has been scruti-
nized. Finally, the model has also been compared with obser-
vational data, and we have demonstrated that a logarithmic
correction to standard gravity seems to be consistent with
the observations, at least with those concerning the galac-
tic scale, i.e. within volumes corresponding to clusters of
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galaxies. Thus, it is possible to conclude that the nonlocal
gravitational effects might be revealed at such scales. On the
other hand, we must stress that the clustering of larger vol-
umes of space, in which the points are the clusters of galaxies,
does not show any evidence in favor of a such modification
to gravity so that any inference should be suspended until
further (maybe more precise) probes are checked.

For a more general discussion, it has be noted that other
modifications of gravitational potential, explaining dark mat-
ter or dark energy effects, have been studied considering
modifications of the gravitational partition function. For
example, it is well-known that f (R) gravity modifies the
large distance behavior of gravitational potential [77–80].
Thus, the clustering of galaxies, interacting through effective
potentials derived from f (R) gravity, has also been stud-
ied using a modified gravitational partition function, and
it has been observed that also these models are consistent
with observations for large samples of galaxies and clusters
[81,82], although the corresponding statistical inference is
a bit weaker that the nonlocal scenario we have considered
here. It is worth noticing that the clustering of galaxies in
f (R) gravity is also consistent with the constraints coming
from the Planck data [83].

The MOND gravitational partition function has also been
used to study the thermodynamics and the clustering proper-
ties of systems of galaxies [13,84].

Furthermore, the gravitational phase transition can also be
analyzed using the gravitational partition function for sys-
tems of galaxies [14]. In fact, a first order phase transition
occurs due to the clustering of galaxies from a homogeneous
phase. In this framework, it is possible to take into account the
Yang–Lee theory for systems of galaxies, and use the com-
plex fugacity to analyze the phase transition [85]. A forth-
coming step will be to extend the Yang-Lee theory for non-
local gravitational potential, and analyze the phase transition
for the related gravitational partition function.

In particular, it has to be noted that the clustering of
galaxies has also been investigated using the cosmic energy
equation [86]. As the cosmic energy equation is derived by
approximating galaxies as points in a statistical mechanical
system, a softening parameter can modify the cosmic energy
equation [87]. It has been demonstrated that a large scale
modification of the gravitational potential also modifies the
cosmic energy equation [88].
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