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Abstract Weak field gravitational wave solutions are inves-
tigated in Brans–Dicke (BD) theory in the presence of a cos-
mological constant. In this setting the background geometry
is not flat but asymptotically de-Sitter. We investigate the
linearised field equations, and their gravitational wave solu-
tions in a certain gauge choice. We will show that this theory
leads to massless scalar waves as in original BD theory and
in contrast to massive BD theory. The effects of these waves
on free particles and their polarization properties are studied
extensively and effects of the cosmological constant is ana-
lyzed in these phenomena in detail. The energy flux of these
waves are also discussed in this background. By analyzing
this flux, we obtain a critical distance where the waves cannot
propagate further, which extends Cosmic no Hair Conjecture
(CNC) to BD theory with a cosmological constant.

1 Introduction

Einstein’s theory of General Relativity (GR) is a very suc-
cessful theory of gravitation which perfectly explains all
related phenomena and passes all of the tests in the weak
gravity regime [1]. Its predictions on strong field phenomena,
such as on cosmology and black holes, opened new windows
on understanding the structure of the universe. Despite these
achievements, the research on its alternative theories does not
seem to come to an end and they were getting a lot of atten-
tion in last years [2–5]. The motivations of these alternative
theories have several different reasons. First of all, in order
to understand the mathematical structure and physical pre-
dictions of general relativity, its alternative theories should
be studied. In this context, we can make modifications in
GR and can study mathematical and physical consequences
of these modifications. Then, we can compare the predic-
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tions of GR and its alternative theories and determine the
conditions whether these theories could be compatible with
the available observational data. Another motivation comes
from the attempts to quantize gravity, which requires higher
order modifications on the Einstein–Hilbert (EH) action and
indicate deviations from GR [6,7]. Some motivation comes
from dark components, namely the dark matter and the dark
energy, of the matter-energy composition of the Universe.
These components were included to make GR compatible
with observations on intergalactic and cosmological scales.
Although these dark components might possibly be effects
of yet to be discovered particles which might be observed
in the scheme of standard model or beyond, they certainly
imply that it may be worthwhile to investigate the possibil-
ity that these dark components are just the effects caused by
the modifications on large scales of GR. One last motivation
we can list is the unification of gravity with other forces,
which requires the modifications on EH action [8], as in the
Kaluza–Klein theory [9,10].

After the discovery of GR by Einstein, one interesting
prediction was made by Einstein himself in 1916 [11] that
the fabric of space-time could ripple. Namely, he predicted
the existence of gravitational waves, tiny propagating ripples
in the curvature of space-time. This topic becomes one of
the most important topics of GR, together with black holes
and cosmology. Although an indirect evidence is observed
decades ago [12], their interaction with a matter distribution
when passing through it is extremely tiny that their direct
observation is required a century to be passed after their pre-
diction by Einstein. In order to detect gravitational waves
directly, very sensitive devices were built such as laser inter-
ferometric gravitational wave antennas LIGO and Virgo. The
first direct observation of gravitational waves [13] was made
on 14 September 2015 by LIGO antennas. The source of these
waves is the catalystic event that the coalescence and merger
of two black holes of 65 M� and 22 M� [14]. After this
observation, many more gravitational waves were observed
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by LIGO and VIRGO collaborations corresponding to coa-
lescence of black hole binaries, neutron star binaries [15] in
the first, second [16] and third [17] observing runs. All these
observations are a living proof that the gravitational wave
observations are opened a new window to the universe. The
GW observations are compatible with GR predictions [18–
20] which may also help to rule out or limit corresponding
predictions of alternative gravity theories within the limits of
the detectors. Hence, it is important to understand the pre-
dictions of the alternative theories [2–5] about properties of
gravitational waves [21] in their framework to estimate their
viability as alternatives to GR.

One of the most simple and most studied alternative theory
of gravity is Brans–Dicke (BD) scalar tensor theory [22,23].
In this theory, the gravitational interaction is mediated by
both the curvature of the spacetime represented by a non flat
metric tensor and a also scalar field, which takes the role
of Newton’s gravitational constant. In the BD theory in its
original form, the extra scalar field is a long range one. This
property, together with observational results that sets the free
parameter of this theory, the so called BD parameter, ω, to
very high values, ω > 40,000 [24], which makes BD the-
ory indistinguishable from GR. In order to overcome this, a
potential term, which brings an effective mass to the scalar
and makes the scalar field a short range one, is added in some
works. This modification of the theory is called as BD the-
ory with a potential (let say BDV theory), or massive BD
theory. This arbitrary potential effectively plays the role of
a cosmological constant in BD theory. However, adding an
arbitrary potential to the action is not the only way of bring-
ing an effective cosmological “constant” to this theory. It is
possible to extend BD theory by adding a cosmological con-
stant term whose coupling with the scalar field is exactly the
same as its coupling to the Ricci curvature scalar in original
BD action. This theory is known as BD theory with a cosmo-
logical constant (BD� theory). The main difference between
these extensions of BD theory is that, in the latter case, the
scalar field is still long range one. Hence, BD� theory keeps
the spirit of original BD theory by having a long range scalar
field even in the presence of cosmological constant.

BD� theory has important consequences in different areas
which makes it worthwhile to study. In cosmology, the pres-
ence of cosmological constant gives much larger solution
space then GR and BD theories, allowing some solutions
such as inflationary perfect fluid [25,26] or vacuum [27,28]
solutions not possible in the original BD theory. Another
important class of such solutions are “the bounce solutions”
[26,29] where the time reversal of cosmological expansion
does not lead to a big bang singularity. In this case, the scale
factor becomes finite and never vanishes during its evolution
backwards in time, leading to a singularity free cosmology.
The extra degrees of freedom due to presence of cosmolog-
ical constant term also gives other interesting solutions and

results not present in BD theory, such as, interior static cosmic
string solutions [30] satisfying cosmic string equation of state
where original BD theory is not compatible with, existence
of Gödel type solutions in BD� theory [31] which are not
present in BD theory, a possible extension of Horava–Lifshitz
gravity to BD theory with the help of a negative cosmologi-
cal constant [32] in BD� theory. Some other applications of
BD� theory can be found in the works [33–40]. Recently,
local weak field effects of BD� theory were discussed com-
paratively with BDV theory in a recent paper [41] to see their
implications and differences of these theories in that regime.

In this paper we want to explore the effects of the presence
of a cosmological constant on the properties of gravitational
waves in BD� theory such as their interaction with matter
fields during their propagation in the spacetime, their polar-
ization states and their energy flux. In General Relativity, the
gravitational waves propagate at the speed of light and they
posses two independent polarization states: the plus and cross
modes, which were compatible with LIGO results. Note that
gravitational waves in massive BD theory is a well known
topic [21,42,43] hence we refer these works on gravitational
waves in massive BD theory. However in those works the
effects of the minimum of the potential is ignored to have an
asymptotically flat spacetime.

We will first discuss the known solution of weak field
equations of Brans–Dicke scalar tensor theory correspond-
ing to a massive point particle in different coordinates, which
can be obtained by appropriate coordinate transformations.
Then we will determine asymptotically de-Sitter background
geometry by solving the linearised vacuum solutions of these
specific theories. Finally, we will obtain the linearised grav-
itational wave solutions of these equations in the relevant
order of the background parameters. With the help of these
new solutions, we will analyse the propagation of gravita-
tional waves in an asymptotically de-Sitter space for these
scalar tensor theories and then we will find the polarization
states of gravitational waves and compare the results with
the results found in GR theory. Finally, we will calculate the
energy flux of these waves using the short wave approxima-
tion method.

The paper is organized as follows. In Sect. 2 we will dis-
cuss the linearised field equations in the Lorentz gauge for
BD� theory. Then we will briefly consider a static point mass
solution in static isotropic coordinates to show that scalar
field has long range. In Sect. 2 the linearised gravitational
wave solutions will be obtained for this theory. The detection
of gravitational waves by LIGO showed that the properties of
observed waves do not have any conflict with these waves in
general relativity. However these detectors cannot detect by
design the scalar breathing modes and the BD theory is not
ruled out. In order to construct detectors capable of detecting
gravitational waves of these theories, their physical prop-
erties such as their polarizations and speed of propagation
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must be determined. Hence in Sects. 3.1 and 3.2, we obtain
background and wave solutions. In Sect. 3.3 we study their
effects on free particles, study their polarizations and propa-
gation speeds of the polarization modes in the BD� theory.
Comparison of these properties with some other theories is
also made in Sect. 3.4. In the Sect. 4 the energy–momentum
tensor of gravitational waves for the BD� theory are cal-
culated by using the short wave approximation method. We
conclude the paper in Sect. 5 with brief comments. As far
as we know, gravitational waves in the BD� theory has not
been studied and our contribution in this work is novel.

2 Weak field equations

The Einstein–Hilbert (EH) action with a cosmological con-
stant is given by,

SGR� =
∫ √|g|d4x

[
1

2κ
(R − 2�) + Lm

]
(1)

where κ2 = 8πG
c4 is the gravitational coupling constant, R

is the Ricci scalar, |g| is the absolute value of the deter-
minant of the metric tensor gμν and � is the cosmological
constant term. We may call the theory implied by the action
(1), as General Relativity theory in the presence of a cosmo-
logical constant (GR�). Throughout this study we use the
units in which c = G = 1 and we use a metric signature
(−,+,+,+).

Scalar tensor theories are some of the most studied alter-
native theories of gravity and BD theory of gravity is the
simplest one of those theories providing a very suitable test
bed of the prediction of theories alternative to general Rela-
tivity. This theory includes both a scalar field φ and metric
tensor gμν to describe the gravitational interaction. Hence,
gravitational interactions are partly due to the curvature of
the space-time and are partly due to the effect of the scalar
field. In the original Brans–Dicke theory, cosmological con-
stant was not included, hence � is equal to zero in original
BD action. But, in this paper we will consider BD theory
with a cosmological constant. To derive such a theory from
GR� theory with EH action extended with a cosmological
constant, we can replace the gravitational coupling constant
κ , with a scalar field, namely we can set κ → 8πφ−1 in the
action (1) as done in the original BD theory. It is clear that the
BD scalar field is inversely proportional to the gravitational
coupling constant. A very straightforward extension of GR�

theory to BD scalar-tensor theory is just following the origi-
nal BD prescription by replacing Newton coupling constant
G with a scalar field φ and adding a dynamical term cou-
pled by an arbitrary parameter ω which is called as the BD
parameter. Hence the action of this theory can be described

by the following action [34] in Jordan frame, in which the
matter Lagrangian is not coupled to the scalar field, as:

SBD� =
∫ √|g|d4x

{
1

16π

[
φ(R − 2�)

−ω

φ
gμν∂μφ ∂νφ

]
+ Lm

[
ψm, gμν

]}
, (2)

where φ is BD scalar field and ω is the dimensionless BD
parameter. As we have said before, this action may be called
as the BD theory with a cosmological constant BD�. When
setting � = 0, this theory reduces to the original form of the
BD theory [22]. As φ becomes constant, this theory reduces
to GR� theory. But this action is not the only one which
reduces to GR� when φ becomes constant. If we replace
2�φ term with an arbitrary potential term V (φ) in (2) we
obtain an action which corresponds to a theory which may
be called as the BD theory with a potential (BDV theory),
where V (φ) acts as a variable cosmological term [41]. If φ is
set to a constant, this action also reduces to GR action with a
cosmological constant. We may call this latter theory as BDV
theory. Clearly, there is an arbitrariness in the generalization
of GR with a cosmological constant to BD theories. One may
ask why consider the theories as different theories since 2�φ

term in (2) can be included as a special case of V (φ). The
answer is yes, because BD� and BDV theories have several
important different properties in which some of them is given
below:

• BD� theory has a massless scalar field whereas in BDV
theory the scalar field attains an effective mass.

• In BD� theory scalar field has a long range similar to the
original BD theory, keeping that property of BD theory
while introducing a cosmological constant term. Whereas
in BDV theory the mass of the scalar field makes the
scalar field a short range one.

We believe that due to the differences summarized above,
these theories deserve a separate analysis in order to inves-
tigate possible different physical consequences of these the-
ories. However since gravitational waves of BDV theory or
massive BD theory, which also includes f (R) theory as a
special case, is already investigated in great detail in the
flat background case, we only consider gravitational wave
solutions of BD� theory and refer the works [21,42,43] for
corresponding solutions in BDV theory.

The field equations of the action (2) can be expressed as

Gμν + � gμν = 8π

φ
Tμν + ω

φ2

(
∇μφ∇νφ − 1

2
gμν∇αφ∇αφ

)

+ 1

φ

(∇μ∇νφ − gμν�gφ
)
, (3)

�gφ = 1

2ω + 3
(8π T − 2� φ) , (4)
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where T = Tμ
μ is the trace of the energy–momentum tensor

Tμν and �g is the D’Alembert operator with respect to the
metric gμν . In order to obtain the weak field expansion of the
above field equations, we can expand the space time metric
and the BD scalar field as

gμν = ημν + hμν, gμν = ημν − hμν,

φ = φ0 + ϕ, (5)

where ημν = diag(−1, 1, 1, 1) is the Minkowski metric, hμν

is the metric perturbation tensor representing small deviation
from flatness, φ0 is a constant value of the scalar field and ϕ

is a small perturbation to the scalar field i.e., |hμν | � 1 and
ϕ � 1. The linearised field equations can be expresses in a
very economical way using the above expansion, by defining
a new tensor [21]

θμν = hμν − 1

2
ημνh − ημν

ϕ

φ0
, (6)

and considering the gauge

θ
μν

;μ = 0. (7)

Finally, the weak BD field equations can be expressed, up to
second order, as

�ηθμν = −16π

φ0

(
Tμν + τμν

)+ 2�ημν + 2�ϕ

φ0
ημν, (8)

�ηϕ = 16π S. (9)

Here τμν is the energy–momentum pseudo tensor involving
quadratic terms and �η = ημν∂μ∂ν is the D’Alembert oper-
ator of the Minkowski spacetime. The corresponding expres-
sions in the presence of an arbitrary potential can be found
in [21]. The term S is given by

S = 1

4ω + 6

[
T

(
1 − θ

2
− ϕ

φ0

)
− �

4π
(φ0 + ϕ)

]

+ 1

16π

(
θμνϕ,μν + ϕ,νϕ

,ν

φ0

)
. (10)

To obtain the expression of S, the relation between Minkowski
and curved D’Alembert operators is used [21]:

�g =
(

1 + θ

2
+ ϕ

φ0

)
�η − θμνϕ,μν

−ϕ,νϕ
,ν

φ0
+ O(higher order terms). (11)

In this study one of the our aim is to obtain the linearised
field equations of BD theory in the presence of a constant
background curvature coupled to the scalar field in a straight-
forward way. Now we will discuss these cases respectively.

2.1 Linearised field equations of Brans–Dicke theory with
a cosmological constant

We will consider the weak field expanded equations of the
action (2), given in Eqs. (8) and (9), in the linear order in
the parameters �,ϕ, hμν(or θμν) by ignoring �ϕ terms or
other second and higher order terms. Then the linearised field
equations become,

�ηθμν = −16π

φ0
Tμν + 2�ημν, (12)

�ηϕ = 8πT

(2ω+3)
− 2�φ0

(2ω+3)
. (13)

As seen from the above equations, tensor equation has simi-
lar structure to GR� theory [44] but there is also a scalar field
equation unlike GR� theory and the scalar field is massless
as in BD theory. Here the scalar field has a long range, the
cosmological constant plays the role of a background curva-
ture as in GR� theory and the existence of the cosmological
constant does not change this property.

2.2 Point mass solutions of linearised field equations

We have presented the linearised field equations under weak
field expansion and in the certain gauge for BD� the-
ory. Before delving into gravitational wave solutions, let us
review localized point mass solution of this theory. The point
mass solution, in the presence of cosmological constant or for
non vanishing minimum potential, was presented and their
physical properties were discussed comparatively in detail
in [41]. Hence in the following we just give the result in the
isotropic spherical coordinates for BD� theory.

For a point particle at the origin having the energy momen-
tum tensor as Tμν = m δ(r) diag(1, 0, 0, 0), the weak field
equations (12) and (13) can be solved in Cartesian coordi-
nates respecting the Loretz gauge and can be transformed
into isotropic spherical coordinates as explained in [41]. The
result is

g00 = −1 + 2m

φ0r ′
(

1 + 1

2ω + 3

)
+ �r ′2

3

(
1 − 1

2ω + 3

)
, (14)

gi j = δi j

[
1 + 2m

φ0r ′
(

1 − 1

2ω + 3

)
− �r ′2

6

(
1 − 2

2ω + 3

)]
, (15)

φ = φ0

(
1 + 2m

(2ω + 3)φ0r ′ − �r ′2
3(2ω + 3)

)
. (16)

The mass term in g00 must be identical to weak field GR or
Newton potential of a point mass. For this reason φ0 must be
equal to,

φ0 = 2ω + 4

2ω + 3
. (17)

Also in the absence of �, all of the metric and field com-
ponents reduce to the point mass solution of linearised BD
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theory [22,23]. Moreover these solutions also reduce to lin-
earised GR� solutions in the limit of (ω → ∞, φ0 → 1)
[44]. Thus, the solutions (14) and (15) have the correct lim-
its. This solution clearly shows that in the BD� theory the
scalar field has long range, unlike BDV theory where mass
term involves a Yukawa type term making the field a short
range one [21,42].

3 Gravitational waves in Brans–Dicke theory with a
cosmological constant

In the previous section, we have investigated BD theories
whose weak field equations are of the form (12) and (13).
Now we want to obtain the wave solutions of these theories,
respectively. Let us expand the space time metric as,

gμν = ημν + h�
μν + hWμν, (18)

h�,W
μν � 1, (19)

where h�
μν is the background perturbation due to cosmolog-

ical term and hWμν is the gravitational wave perturbation. In
the same approach the tensor θμν and the scalar field ϕ can
be expanded as,

θμν = θ�
μν + θW

μν, (20)

and

ϕ = ϕ� + ϕW . (21)

As it is clear from Eqs. (18), (20) and (21), both background
modification and gravitational wave perturbation affects the
field equations. Hence we must consider both of these con-
tributions. Firstly, we calculate the effects of the background
perturbation on the linearised field equations by ignoring pos-
sible ripples in the spacetime.

3.1 Background solutions

For background solutions, linearised field equations (12),
(13) and the gauge condition (7) take the following form,

�θ�
μν = 2�ημν, (22)

�ϕ� = − 2�φ0

2ω + 3
, (23)

θ�μ
ν,μ = 0. (24)

The solutions of the field equations, after imposing the
Lorentz gauge, become,

θ�
μν = −�

9
xμxν + 5�

18
ημνx

2, (25)

ϕ� = − �φ0

3(2ω + 3)
r2. (26)

We have chosen the background scalar solution ϕ� as pro-
portional to r2 in (26) rather than x2 = ημνxμxν as ϕ� =
− �φ0

4(2ω+3)
x2. This choice is made due to the fact that in the

linearised theory we want the background solution to be static
as in line with the Newtonian theory. The tensor part can be
a function of time, since one can remove that dependence by
a suitable coordinate transformation as in the GR case [44]
but we feel that for the scalar field we need to implement this
staticity condition by hand. Note that unlike GR there is no
Birkhoff theory for BD. Hence there is a possibility that weak
field time dependent solutions are also possible in spherical
Schwarzschild coordinates in dS backgrounds. But we will
not pursue this case in this paper.

By reverting the Eq. (6), we can obtain the metric pertur-
bation tensor as follows

h�
μν = −�

9
xμxν − 2�

9
ημνx

2 − ημν

ϕ�

φ0
. (27)

In the case of vanishing scalar field, this result reduces exactly
to the result of [44].

Using these solutions, the space-time metric becomes,

ds2 = −
[

1 + �

9
(3t2 − 2r2) − ϕ�

φ0

]
dt2

+
[

1 − �

9
(−2t2 + 2r2 + xi2) − ϕ�

φ0

]
dxi2

+2�

9
t xi dt dxi − 2�

9
xi x j dxi dx j , (28)

where i = 1, 2, 3 and i �= j . This line element, although it
respects the gauge condition we are considering, is neither
homogeneous nor isotropic. In order to compare this metric
with the observations, it might be useful to transform this
solution in a better known forms such as a homogeneous
and isotropic form, with the help of appropriate coordinate
transformations. Firstly we apply a similar coordinate trans-
formations to convert the solution into the static solution as
done in GR� case [45,46]:

x = x̃ + �
9

(
−t̃2 − x̃2

2 + (
ỹ2+z̃2

4 )
)
x̃

y = ỹ + �
9

(
−t̃2 − ỹ2

2 + ( x̃
2+z̃2

4 )
)
ỹ

z = z̃ + �
9

(
−t̃2 − z̃2

2 + (
x ′2+ỹ2

4 )
)
z̃

t = t̃ − �
18 (t̃2 + r̃2)t̃

(29)

where r̃2 = x̃2 + ỹ2 + z̃2. When we keep only first order
terms, the resulting metric becomes,
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ds2 = −
[

1 − �

3
r̃2 − ϕ̃�

φ0

]
dt̃2

+
[

1 − �

6
(r̃2 + 3x̃i

2) − ϕ̃�

φ0

]
dx̃i

2 (30)

ϕ̃� = − �φ0

3(2ω + 3)
r̃2. (31)

We can obtain a spherically symmetric solution, when we
apply the same change of coordinates presented in [44],

x̃ = x ′ + �
12 x

′3,

ỹ = y′ + �
12 y

′3,

z̃ = z′ + �
12 z

′3,
t̃ = t ′.

(32)

Under these transformations, the metric and the scalar field
takes the form,

ds2 = −
[

1 − �

3
r ′2 − ϕ′�

φ0

]
dt ′2

+
[

1 − �

6
r ′2 − ϕ′�

φ0

]
(dr ′2 + r ′2d�2), (33)

ϕ′� = − �φ0

3(2ω + 3)
r ′2. (34)

We have converted the solution into the homogeneous and
isotropic form. This background solution has the same result
with the point mass solution of BD� theory presented in [41]
given in Eqs. (14)–(16) if the mass is equal to zero.

Let us apply another coordinate transformation to make
this metric similar to the Schwarzschild-de Sitter (SdS) met-
ric,

r ′ = r
(

1 + �
12r

2 + ϕ�

φ0

)
(35)

This transformation brings the line element (33) to the
following expression:

ds2 = −
[

1 − �

3
r2 − ϕ�

φ0

]
dt2

+
[

1 + �

3
r2 + αr

φ0

]
dr2 + r2d�2, (36)

where we have made a new definition,

α = dϕ

dr
= − 2�φ0r

3(2ω + 3)
. (37)

The scalar field has the following form

ϕ� = − �φ0

3(2ω + 3)
r2. (38)

This Schwarzschild type form of the linearised background
solution may be useful for future applications.

3.2 Wave solutions of BD� theory

Now let us consider the second case where a gravitational
wave solution exists by taking into account the gravitational
wave perturbations that may occur under the presence of a
source which may cause fluctuations in the space-time geom-
etry and the scalar field. For this case the gauge condition can
be written as,

θWμν
,μ = 0. (39)

Then the total wave equation is given by,

�
(
θ�

μν + θW
μν

)
= 2�ημν. (40)

The homogeneous part of the field equation (40) is sufficient
to represent the gravitational waves. Hence we can write the
wave equation as,

�θW
μν = 0 (41)

Similarly for the scalar field,

�ϕ = �(ϕ� + ϕW ) = − 2�φ0

2ω + 3
(42)

the homogeneous part

�ϕW = 0, (43)

will give the wave solution.
The solution of the field Eq. (41) can be written as,

θW
μν = Aμν sin kx + Bμν cos kx (44)

where Aμν and Bμν are amplitude tensors and k = (k0, 	k) is
a wave four-vector, i.e., kx = kμxμ = k0t + 	k.	x . If we plug
the solution (44) into the Eqs. (39) and (41), we find,

kμA
μ

ν = kμB
μ

ν = 0, (45)

k2 = kμk
μ = 0, (46)

AWμ

μ = BWμ

μ = 0. (47)

Equation (45) shows that the amplitude tensors Aμν and Bμν

are orthogonal to the direction of the propagation of the wave
and Eq. (46) shows the fact that the gravitational waves prop-
agates at the speed of light. Hence, considering also (47) we
can conclude that the tensorial part of the gravitational waves
in BD� theory are transverse and traceless waves moving
with the speed of light.

The solution (44) describes a wave with the angular fre-
quency,

ν = k0 = (kx
2 + ky

2 + kz
2)1/2. (48)
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The solution of the scalar field equation (43) is given by,

ϕW = C sin kx + D cos kx, (49)

where C and D are integration constants. Using Eqs. (44) and
(6), the total metric perturbation induced by some source of
GW can be written as

hWμν = Aμν sin kx+Bμν cos kx− ημν

φ0
(C sin kx+D cos kx).

(50)

The total solution of linearised field equations of BD the-
ory involving a cosmological constant can be written for the
tensor θμν as

θμν = θ�
μν + θW

μν = −�

9
xμxν + 5�

18
ημνx

2

+Aμν sin kx + Bμν cos kx (51)

and finally the metric perturbation tensor becomes

hμν = h�
μν + hWμν = −�

9
xμxν −

(
2�x2

9
+ ϕ�

φ0

)
ημν

+Aμν sin kx + Bμν cos kx − ημν

φ0
(C sin kx + D cos kx)

(52)

where the scalar field ϕ� is given in (26).
The total scalar field solution in a constant curvature back-

ground is given by

ϕ = ϕ�+ϕW = − �φ0

3(2ω + 3)
r2+C sin kx+D cos kx . (53)

3.3 The effects of GW on free particles in BD� theory

Here, we want to understand the effect of the gravitational
waves in BD� theory on free particles or detectors. Since
the weak equivalence principle holds for BD theory a single
particle cannot feel the metric perturbations. The simplest
way to understand the physical effects of GW on matter is
to consider the relative motion of two nearby test particles
in free fall. Hence, let us consider two nearby freely falling
particles of equal mass and specify the spacetime coordinates
of these particles with (t, x, y, z) [43,47]. Then, we calculate
the geodesic deviations caused by the GW. The geodesic
deviation equation is defined as [48]

d2ζ α

dτ 2 = Rα
βνχU

βU νζ χ , (54)

where ζμ is the vector connecting the particles , Uμ is the
four velocity of the two particles and in the rest frame of the
observer [50],

Uμ = (1, 0, 0, 0) , (55)

and we assume a wave moving along the z direction, then the
wave vector becomes,

kμ = (ν, 0, 0, ν). (56)

Inserting Eq. (55) into the Eq. (54), we obtain,

d2ζ α

dτ 2 = −Rα
0i0ζ

i . (57)

This result shows that the Riemann tensor is locally measur-
able by calculating the separation between nearby geodesics.

For the calculational simplicity, here we consider a
gravitational wave moving along z direction. We trans-
form the trigonometric functions such that Aμν sin(kx) +
Bμν cos kx = Ãμν cos(kx − δ) where δ is phase of the wave
and we also set δ = 0 for simplicity. We also use that for
waves moving on z direction kx = ν(t − z). Then the gen-
eral solution can be simply written as

hμν = h�
μν + hWμν = −�

9
xμxν − 2�

9
ημνx

2

−ημν

ϕ�

φ0
+
(
Ãμν − ημν D̃

)
cos ν(t − z) (58)

ϕ = ϕ� + ϕW = − �φ0

3(2ω + 3)
r2 + D cos ν(t − z). (59)

where Ãμν is the amplitude tensor adapted to the problem
by taking real part of the full solution with an appropriately
chosen phase and D̃ = D/φ0 is the real part of the scalar
amplitude constructed similarly.

Since Riemann tensor is gauge invariant, we can use the
linear form of Riemann tensor in TT gauge [49] to calculate
the nonvanishing components of this tensor given by

2Rabcd = had,bc − hbd,ac + hbc,ad − hac,bd

Using this linearised form of Riemann tensor and the solu-
tion (58), the necessary components are found as

Rx
0x0 = 1

2

[(
Ãxx − D̃

)
ν2 − 2�

3

(
1 − 1

2ω + 3

)]
, (60)

Ry
0x0 = Rx

0y0 = 1

2
ν2 Ãxy, (61)

Ry
0y0 = 1

2

[(
− Ãxx − D̃

)
ν2 − 2�

3

(
1 − 1

2ω + 3

)]
, (62)

Rz
0z0 = 1

2

(
−2�

3

(
1 − 1

2ω + 3

))
(63)

Rz
0x0 = Rz

0y0 = 0. (64)

Now, suppose that the first particle is at the origin and
second one is at the point ζ i = (ζ, 0, 0), so that the separation
between the particles is ζ and these particles are initially
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at rest. We will analyze how this seperation changes in the
presence of an incident gravitational wave propagating in
the z direction. In this case, the relative acceleration of freely
falling test particles become,

d2ζ x

dτ2 = −ζ Rx
0x0 = ζ

2

[
−
(
Ãxx + D̃

)
ν2 + 2�

3

(
1 − 1

2ω + 3

)]
,

(65)
d2ζ y

dτ2 = −ζ Ry
0x0 = − ζ

2
ν2 Ãxy , (66)

d2ζ z

dτ2 = −ζ Rz
0x0 = 0. (67)

Similarly, the relative acceleration of two nearby freely
falling particles seperated by ζ in the y direction become,

ζ̈ x = −ζ

2
ν2 Ãxy (68)

ζ̈ y = ζ

2

[
( Ãxx − D̃)ν2 + 2�

3

(
1 − 1

2ω + 3

)]
(69)

ζ̈ z = d2ζ z

dτ 2 = 0. (70)

For the third case, lets consider two nearby particles initially
seperated by ζ in the z direction. The relative acceleration
obey,

ζ̈ x = 0, (71)

ζ̈ y = 0, (72)

ζ̈ z = ζ

2

[
2�

3

(
1 − 1

2ω + 3

)]
. (73)

The terms proportional to � mimick usual homogeneous
expansion of the universe due to the cosmological term. The
terms proportional to Ãxx and Ãxy denotes the effects of
the usual plus and cross polarizations of the gravitational
wave and the terms proportional to D̃ corresponds to the
scalar breathing mode of the Brans–Dicke theory. So a grav-
itational wave detector feels extra stretching between arms
due to the cosmological constant which is practically zero
for a detector in the surface of earth due to the smallness of
the cosmological constant. The effect of the BD field is to
reduce the amount of this stretching compared to GR and for
the critical value ωc� = −1 the effect of the cosmological
constant is balanced by the attractive effect of the BD scalar.
If ω < −1 the combined effect becomes negative imply-
ing an attractive effect despite we have an asymptotically
dS spacetime. In summary, we have a negligible pressure
between arms of the detector due to the combined effect of
cosmological constant and BD field which is equal to the
same pressure in GR due to positive cosmological constant
as ω → ∞. This effect gets smaller by decreasing ω which
vanishes for ω = ωc� and becomes a tension with values
of the BD parameter smaller that ωc�.Considering all these,

we see that, if the wave is propagating along the z direction,
the metric perturbation can be expressed as a sum of three
polarization states,

h�
μν(t−z) = A+(t−z)e+

μν+A×(t−z)e×
μν+�(t−z)ημν (74)

where e+
μν and e×

μν denote the usual plus and cross polariza-
tion tensors, respectively of gravitational waves, and A+, A×
are amplitudes of these tensors [50]:

e+
μν =

⎛
⎜⎜⎝

0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

⎞
⎟⎟⎠ , e×

μν =

⎛
⎜⎜⎝

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

ημν =

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ . (75)

In other words, in BD� theory, there are two massless spin
2 modes and one massless scalar mode [21,42,43,51]. In
the geodesic deviation equations, Ãxx term denotes the plus
mode and Ãxy term denotes the cross mode. The terms
involving the cosmological constant � give the contribu-
tion of the cosmological constant on the polarization states.
Also, the terms proportional to D̃ denote the breathing mode
resulting from the massless scalar field. Therefore, we can
conclude that the BD� theory has three polarization states,
two of which denote plus and cross polarization states and
the other one denotes breathing mode caused by the massless
scalar field. This is what we were expecting. This result is in
agreement with that obtained in original BD theory without a
cosmological constant or a potential and as we have seen from
the analysis of BD� theory in [41], the cosmological term
does not attain a mass to the scalar field in local gravitational
sectors. As we have shown explicitly, this property persists
for gravitational waves as well. Besides, the effect of the exis-
tence of the cosmological constant on the geodesic deviation
equations is the same amount of cosmological acceleration
in all directions, mimicking the homogeneous cosmological
expansion due to cosmological constant.

In order to see these results in an other perspective, we
transform the wave solutions into FRW coordinates. Hence
we may also apply the following change of coordinates [45,
46],

xi = eT
√

�/3Xi ,

t = 1
2

√
�
3 R2 + T ,

(76)

where X,Y,Z are comoving coordinates and R =√
X2 + Y 2 + Z2 . As a result of the calculations, the trans-

formed wave-like solution to order
√

� becomes,
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hWμν =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D̃ 0 0 0

0 ( Ãxx − D̃)

(
1 + 2

√
�
3 T

)
Ãxy

(
1 + 2

√
�
3 T

)
0

0 Ãxy

(
1 + 2

√
�
3 T

)
(− Ãxx − D̃)

(
1 + 2

√
�
3 T

)
0

0 0 0 −D̃

(
1 + 2

√
�
3 T

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× cos

(
ν(T − Z) + ν

√
�

3

(
Z2

2
− T Z

)
+ O(�)

)
. (77)

These results clearly shows the effects of the GR wave
on the spacetime. The three polarization degrees of freedom
will have same dispersion relation

ν(T − Z) + ν

√
�

3

(
Z2

2
− T Z

)
= n π, (78)

which yields approximately

Zmax (n, T ) � T − nπ

ν
−
√

�

3

(
T 2

2
− n2 π2

2 ν2

)
. (79)

In these expressions the Brans–Dicke parameter does not
enter in the equations. Hence, these expressions showed that
the behaviour of tensor part of gravitational waves behave
exactly the same as in GR� theory [44] regarding the fre-
quency of the waves. The scalar waves, which does not exists
in GR, also shows the same behaviour with the tensor ones.

In order to obtain the linearised solutions in FRW type
coordinates which can represent the universe we live in, we
have first solved the linearised equations in the coordinates
and the gauge where the linearised equations are valid. The
transformed solutions do not satisfy the linearised BD� field
equations. The important point is the first order correction in
FRW type coordinates in the cosmological constant is in the
order of

√
� rather than � as in the coordinates respect-

ing linearised equations. Hence, for the observational point
of view the effects of � is much more relevant despite the
smallness of the observed value of cosmological constant.

3.4 Comparison with observations and other theories

In this part we will comment on some properties of grav-
itational waves of BD� theory in comparison with other
modified gravity theories, especially with BDV theory and
f (R) theories, since these properties may be important to
distinguish this theory with other alternative gravity theo-
ries. However due to the enormous number of modified grav-
ity theories exist in the literature, we are not attempting to
list or compare these theories one by one with BD� the-
ory, but we prefer to refer some of the renowned reviews
[2–5,21,52] for a list and properties and possible tests of
these theories. Here we consider the two important aspects of
gravitational waves, polarization properties and propagation
speeds of these modes, that may differ for different gravita-

tion theories [21], the properties which are independent from
the source of the waves.

In a generic gravity theory, a gravitational wave can have
six independent polarization modes in which two of them are
tensorial, two of them are scalar and the remaining two are
vectorial. Among these modes, two tensorial modes, namely
the + and × modes and also the scalar breathing mode are
transverse, and remaining longitudinal scalar mode and the
two vectorial modes oscillate in the direction on propagation.
See [21] for a detailed description of these modes with fig-
ures. Although the gravitational waves in general relativity
have only the well known + and × tensorial modes, a partic-
ular alternative theory may have, in addition to usual tenso-
rial modes, some of the other four extra modes as well. For
example, in scalar-tensor theories including BD theory, one
or two scalar modes can be present, depending on whether
the scalar is massless or massive [21]. Moreover, vector-
tensor theories can have additional vector modes [21] and
scalar-vector-tensor theories can have all types of polariza-
tion states, for example there exists five polarization modes in
Einstein-Aether theories [53] whereas six polarization modes
in TeVeS [54]. If we can observe polarization modes of waves
from a given source, we can determine the viability of a given
modified gravity theory. Unfortunately, due to their orienta-
tion, the two LIGO detectors are not capable to detect extra
modes, and the addition of Virgo detector did not improve this
fact much yet. Therefore, the polarization properties of waves
is not yet a viability criteria for modified gravity theories. The
situation is hoped to improve in the future, among other ways,
when new earth based detectors will start to make obser-
vations producing an effective network of detectors, which
is believed to be sensitive to detect these extra polarization
modes [55].

Another important property of gravitational waves are the
propagation speeds of their independent modes. In GR, both
modes move with the speed of light, however in some of
the alternative theories some or all modes may have speeds
different than speed of light. Hence the speed of waves is
another property distinguishing different gravitation theories
regarding observational data if we can observe the speed of
propagation of waves from a given source. For the speed of
waves we are more lucky because in addition to the gravi-
tational waves, we can also detect possible electromagnetic
signals from the sources if they emit. In this regard, the dis-
covery of merger of two neutron stars [15] turn out to be
very important. The reason for this is that, unlike black hole
merger events, electromagnetic waves are also detected [56]
in this event. Detecting signals from various channels of these
kind of sources opens a new and great way to test general rel-
ativity and its alternatives. One can determine the speed of
gravitational waves by comparing the arrival times of grav-
itational and electromagnetic waves from these sources to
our detectors. Actually, in this observation, both gravitational
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[15] and electromagnetic [56] waves coming from the merger
of two neutron stars producing a BH as an end point was
observed nearly simultaneously. This observation opened a
new era called multi-messenger astronomy, which has impor-
tant consequences on testing modified theories using gravi-
tational and electromagnetic wave observations. The obser-
vations [15,56] showed that the gravitational waves (or at
least + and × modes) move with the speed of light since, as
a result of these observations, the difference between speed
of gravitational waves, cgw, and speed of light, c, is limited
by the inequality 3 × 10−15 < |(cgw − c)/c| < 7 × 10−16.
This also implies that some of the alternative theories propos-
ing smaller speeds for tensorial modes of these waves are no
longer viable [57–60] such as Covariant Galileons, Fab Four,
Gauss–Bonnet and some subcases of beyond Horndeski the-
ory if they also claim to explain the dynamics of the universe.
Note that some other theories, including the BD theory and
its extensions discussed in this paper and f (R) theories are
among the surviving theories [61] since they pass the obser-
vational constraints imposed by this observation. We refer to
the latest reviews [62,63] about the status of modified theo-
ries on this observation.

Let us discuss in more detail the polarization modes of
BD� theory. Similar to the BD theory and unlike massive BD
(or BDV) theory, we have found in this paper that the scalar
gravitational waves in BD� theory are transverse, massless
and move with the speed of light. The tensorial modes are
the same with those of GR, so we focus on the third polar-
ization mode, the scalar breathing mode, present in BD�

theory, which is the main difference between GR and BD
theories regarding the gravitational waves. What we found
in Sect. 3.3 is that, similar to BD theory, there is no longitu-
dinal scalar mode in BD� theory. In comparison, the scalar
part of the gravitational waves in the BDV theory, however, is
massive, moving slower than speed of light and has in addi-
tion a longitudinal mode where the motion takes place in
the direction of propagation of the wave [21,42,43]. These
are the differences between gravitational waves in BD(�)
and BDV theories. Now let us compare the results we have
obtained with the gravitational waves in f (R) theories [64–
70], since these theories also have scalar modes. It is known
that BDV theory is equivalent to f (R) theories for partic-
ular values of BD parameter ω such as for ω = 0 met-
ric and ω = −3/2 Palatini f (R) theories [2,4,5]. Hence
the distinction for BD� and BDV theories also persist for
f (R) theories, despite the character of the extra modes stem
from the scalar field in BDV theory and the curvature scalar
in f (R) theories. Namely, unlike BD� theory, the scalar
mode in f (R) theory is massive, moves slower than speed of
light, and have both breathing and longitudinal modes. Note
that these differences cannot be detected in current detec-
tors, since the detectors under operation can only feel the +
and × modes, rendering BD, BD�, BDV and f (R) theories

compatible with recent observations regarding both polar-
ization properties and speed of scalar waves. However, when
the number of new detectors making observations increase in
the near future, with the possibility of detecting scalar modes
and their propagation speeds, we may hope to investigate the
viability of these scalar tensor theories. Especially, restric-
tions on the parameter spaces of these kind of theories might
emerge in the future by using the observational data of a pos-
sible network of multiple detectors, by the addition of new
detectors to LIGO and Virgo, since such a network may be
capable [55] of detecting scalar and other modes.

4 Energy–momentum tensor of gravitational waves

In this section we calculate the gravitational energy carried by
the gravitational waves in BD� theory as well as the energy
of the background geometry. To calculate the background
energy due to cosmological constant in BD theory we first
expand metric tensor as gμν = g(b)

μν + hμν where g(b)
μν is a

background metric. The scalar field is also expanded as φ =
φ0 +ϕ as given in (5). Using these, then we express relevant
scalars and tensors in terms of them as in the expansion of the
Ricci tensor is Rμν = R(b)

μν + R(1)
μν + R(2)

μν +· · · . Using these
we can express the field equations in the orders of O(h, ϕ).
We use the following expansion of the Ricci tensor in the
first and second order [1], where the bar denotes covariant
differentiation, in our calculations:

R(1)
μν = 1

2

(
−h|μν − hα

μν|α + hα
αμ|ν + +hα

αν|μ
)

, (80)

R(2)
μν = 1

2

[
1

2
hαβ|μhαβ

|ν + hαβ
(
hαβ|μν

+hμν|αβ − hαμ|νβ − hαν|μβ

)
(81)

+hα|β
ν

(
hαμ|β − hβμ|α

)

−
(
hαβ

|β − 1

2
h|α
) (

hαμ|ν + hαν|μ − hμν|α
)]

. (82)

We also consider the fact that the linearized equations are
satisfied for first order terms in the field equations and the sec-
ond order terms contribute to the energy of the background
geometry. Therefore the energy momentum tensor due to
cosmological constant in BD theory can be calculated by
subtracting first order terms from total expressions keeping
only the second order terms. We choose background geome-
try as the flat Minkowski spacetime. The energy momentum
tensor of �, hence becomes:

tμν = φ0

8π

(
R(2)

μν − 1

2
ημνR

(2)

+1

2
ημνh

αβ R(1)
αβ − �hμν + Tμν[ϕ2]

)
(83)
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with the contribution of the BD scalar to the energy–
momentum tensor of the waves is identified as

Tμν(φ) = ω

φ2

(
φ,μφ,ν − 1

2
gμν φ,αφ,α

)

+ 1

φ

(
φ,μν − gμν�φ

)
(84)

where Tμν[ϕ2] in (83) represents the second order contribu-
tions due to the scalar and metric perturbations ϕ and hμν to
Tμν(φ) given in (84).

After a long calculation of all relevant tensorial compo-
nents of the background solution (26) and (27) we have found
the Poynting vector due to cosmological constant as

t�0z = φ0

8π

[
22

81
− 4

9(2ω + 3)

]
�2 t z (85)

where the effect of the scalar field is negative for ω > −2/3
and positive for ω < −2/3.

The energy–momentum carried by the waves in BD theory
is well known [21,42]. Here we derive them using the method
known as the short wave approximation method [1,71–73].
This method considers a general gravitational wave in a
curved vacuum background geometry. There are two rele-
vant length scales in this method: The first one, L , represents
the typical curvature radius and the second one, λ, repre-
sents a typical wavelength of the waves with the assumption
that λ � L . Essence of this method considers again the
splitting of the metric of the spacetime into a background
metric which is a slowly changing function of spacetime and
also the metric perturbation hμν representing high frequency
waves with α being the amplitude of waves. Now the per-
turbation metric satisfies hμν � g(B)

μν × α. In this approx-
imation the derivatives of the metric components vary as
g(B)
μν,α � gμν

L , and hμν,α � hμν

λ
. Using steady coordinates,

we find the typical order of magnitudes of Ricci tensors as
R(B)

μν ∼ α
λ2 , R(1)

μν ∼ α
λ2 , R(2)

μν ∼ α2

λ2 . For our calculations we
choose background as Minkowski spacetime, and also split
hμν = h�

μν + hWμν , signifying the cosmological and wave
contributions to the metric perturbation tensor. We can also
split the scalar field as φ = φ(b) + ϕ, where ϕ may contain
wave part as well as other perturbative corrections to the cho-
sen background scalar φ(b). In this paper we choose φb = φ0

and ϕ = ϕ� + ϕW where former denote the cosmological
background and latter denote the wave contribution to the
scalar field.

The short wave approximation requires solving the vac-
uum BD� equations under the circumstances summarized in
the previous paragraph. This implies that the field equations
already satisfy the linearized equations. Hence the contri-
bution of the waves to the energy–momentum tensor shows
themselves in the second order. Second order field equations
contain parts due to cosmological background as well as due

to the fluctuations of the spacetime and the scalar field. For
example, the Ricci tensor can be written as parts contain-
ing background free of ripples as well as parts containing
the wave part as follows: The smooth part has the terms:
Rμν = R(b)

μν + 〈R(2)
μν 〉 + error and the fluctuating part con-

tains: R(1)(h2) + R(2)
μν (h) − 〈R(2)

μν (h)〉 + error. Note that in
GR, both expressions equal to zero due to the vacuum equa-
tions require Rμν = 0, separately. However, in BD there are
also scalar contributions to the field equations that we will
considered in the following. The operation 〈. . .〉 symbolizes
averaging of quantity, which is required since the linearized
tensors that we are considering such as Ricci tensor and also
the energy–momentum tensor are not gauge invariant in these
linearized forms. By averaging over several wavelengths,
we may hope to include enough curvature in a small region
to make these quantities gauge invariant [1,71–73]. We can
identify, as done in [1,71–73] in GR, the background Einstein
tensor in vacuum proportional to the energy–momentum ten-
sor of the waves, meaning that the energy–momentum of the
waves generates the background curvature. Hence, we obtain
that

G(b)
μν ≡ R(b)

μν − 1

2
g(b)
μν R

(b) = 8π T (W )
μν (86)

where the energy momentum tensor of the gravitational
waves is given by

TW
μν = φ0

8π

{
−〈R(2)

μν (h)〉 + 1

2
g(b)
μν 〈R(2)(h)〉

+1

2
hμνR

(1) − �〈hμν〉 + 〈T (2)
μν (ϕ2)〉

}
(87)

where again Tμν(ϕ
2) represents the second order contribu-

tions of the BD scalar due to wave parts of the perturbations
into energy–momentum tensor of gravitational waves iden-
tified in (84) and evaluated at the second order in hμν and
ϕ.

Using the tensor θμν defined in (6) along with gauge (7)
simplifies the energy–momentum tensor given in (87). More-
over, we use an important advantage of using averaging pro-
cess that the averages of first derivatives vanish as 〈∂μX〉 = 0,
which also implies that 〈A ∂μB〉 = −〈(∂μA) B〉. After a long
calculation using all these, we found the result

tWμν = φ0

32π

{〈
θαβ|μ θαβ |ν

〉

+ (4ωBD + 6)

φ0
2

〈
ϕ|μ ϕ|ν

〉− 4
〈
�hμν

〉}
, (88)

which agrees with previous results [21,42,51] derived using
other methods. Evaluating this formula for the solution that
we have derived in (58) corresponding to gravitational waves
moving in z direction, and calculating the averages gives the
following result for the Poynting vector
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tW03 = φ0

32π

[
−ν2

{
|A+|2 + |A×|2 + (2ω + 3)

φ0
2 |D|2

}]

(89)

where we have only used wave parts of the solutions to avoid
double counting since the pointing vector for cosmological
constant is already calculated in (85).

The total Poynting vector combining contributions of cos-
mological constant and GR waves becomes

t03 = φ0

32π

{(
88

81
− 16

9(2ω + 3)

)
�2 t z

−ν2
[
|A+|2 + |A×|2 + (2ω + 3)

φ0
2 |D|2

]}
(90)

where ν is the frequency of the wave and A+ and A× are
plus and cross polarization tensors, respectively. The first two
terms depend on the cosmological constant and shows the
contribution of the cosmological constant to the energy flux.
The third and fourth terms are the energy flux of GR theory
[1,74] and the last term is the contribution of the massless
BD scalar field to the energy flux [21,42,51].

Now we can define a critical distance as in [75,76] as the
distance where t03 vanishes, given by t�03 = tW03 . Since both
scalar and gravitational waves move with speed of light in
BD� theory, we can identify the time with a distance in (85).
In terms of observable frequency f = ν/2π , and curvature
radius of dS spacetime L = √

3/�, the critical distance
become

Lc = 2π f A√
a�

, (91)

where

a = 88

81
− 16

9(2ω + 3)
,

A =
√

|A+|2 + |A×|2 + (2ω + 3)

φ0
2 |D|2. (92)

The expression we have derived is similar to what obtained
in [75,76] with some differences in numerical factors. The
critical distance result is valid in the region ω < −3/2 or
ω > −15/22 due to

√
a term. The effect of the cosmological

constant is to hinder the propagation of gravitational waves
distances beyond this length. The waves cannot propagate
beyond Lc, since space asymptotically goes to dS spacetime
where the inhomogeneities such as gravitational waves van-
ish. As discussed in [76], this is due to cosmic no-hair con-
jecture (CNC) [77], which requires that the inhomogeneities
to be dissipated at large distances and large times. Since
r� = √

3/� and f = 1/λ ≈ r� [1], we see that the critical
distance is proportional to dS radius and hence the back-
ground scale of the spacetime , Lc ∼ r�. This proves that
the CNC is also valid for gravitational waves in BD theory in

the presence of a positive cosmological constant where inho-
mogeneities cannot be propagated further from dS radius of
the spacetime. We have, in this paper, extended this result to
the BD theory in the presence of the cosmological constant
�. A confirmation of this result can be done as a future work
by studying the global structure of the Robinson–Trautman
type radiative spacetime solutions in BD theory [78,79], as
done in [80].

5 Conclusion

In this study weak field gravitational wave solutions of
Brans–Dicke theory with a cosmological constant (BD�) is
obtained in the presence of a positive cosmological constant.
It is known that the scalar field is massless for this theory and
hence the range of the scalar field is still a long range one,
a behaviour contrary to massive BD theory where the exis-
tence of an arbitrary potential introduces an effective mass
and makes the scalar field short range one. Hence, in this the-
ory, the effect of the cosmological constant is to behave like
a constant background curvature. Therefore, in this paper,
what we have found are the weak field wave solutions on
the spacetime having a constant curvature background in BD
theory.

After obtaining these solutions we have discussed their
physical properties. We have seen that these waves behave
similarly to gravitational waves in the original BD theory,
rather than massive BD or f (R) theories. The weak field
gravitational effects of wave like perturbations on constant
positive background curvature of BD theory consist of three
parts. We have two tensorial waves having usual plus and
cross polarizations. These waves are traceless and transverse
waves moving with speed of light. The third component, the
scalar wave, is massless and moves also with speed of light.

We have studied the effects of these waves on test parti-
cles and detectors by calculating the geodesic deviation by
the gravitational wave of two test particles initially at rest.
We see that, we have usual plus and cross polarizations as in
GR and in addition there is a scalar breathing mode as in the
BD theory. We see that the combined effect of the cosmolog-
ical constant and the background scalar field is to exert an
homogeneous expanding force on these particles to extend
the length between them similar to Hubble expansion of two
galaxies due to the dark energy. Note that the force due to
scalar background is attractive and acts in the opposite direc-
tion which increases with decreasing BD parameter, ω, such
that at ω = −1 these two effects cancel each other with no
net force between two particles due to �. When ω < −1,
although we have a positive cosmological constant, the force
between these test particles become attractive.

We have also calculated the energy–momentum tensor of
gravitational waves for the BD� theory calculated by using
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the shortwave approximation method. The obtained results
give the energy–momentum tensor due to the background
curvature and background scalar field as well as those of grav-
itational waves of this theory. Although the energy momen-
tum tensor of gravitational waves in the original and mas-
sive BD theories is well known, we have obtained those in
the BD� theory using the shortwave approximation method
which is a different method than the method used to calculate
the previous results in original and massive BD theories in
for example [21]. The energy of the background fields is new
in this theory. Analyzing the energy flux for waves propagat-
ing in a particular direction, we see that gravitational waves
can not be propagated distances further than the background
scale, namely that Lc ≈ r�, given in (91). This results extend
the Cosmic No hair Theorem (CNC) to BD theory in the pres-
ence of a cosmological constant for the region ω < −3/2 or
ω > −15/22.

The solutions and analysis obtained within the scope of
this study can be used to test the predictions of BD� theory
with the observational data accumulated by the LIGO and
Virgo observatories. Current wave observations are consis-
tent with the predictions of the general relativity which claim
that gravitational waves propagate at the speed of light and
posses two polarization states. Note that the interferometers
used in these observatories are just sensitive to plus and cross
gravitational waves and hence cannot test the scalar breath-
ing modes. Hence, BD and BD� theories are not limited or
ruled out by the current data. To test scalar modes, we need
either a spherical detector or a network of interferometers dis-
tributed on the surface of earth. If the scalar mode would be
massive, then the differences of arrival times of waves from
the same event between scalar and tensorial waves to LIGO
and VIRGO or other detectors on the different points of earth
could be used to test that theory and limit its parameters such
as mass of the scalar field. However, this is not the case for
BD� theory since the scalar waves are massless and move
with the speed of light. Extending the results of the observa-
tions of LIGO and Virgo and future possible observations of
other experiments currently in different stages of operation to
test the massless or massive breathing or longitudinal waves
of these type of theories might be a possible next direction
of the research of gravitational waves in alternative theories
of GR.
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