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Abstract We revisit the theory of neutrino oscillations and
describe it through the formalism of weak measurements
with postselection. It is well understood that due to the large
momentum uncertainty in detection, there is no collapse of
the neutrino wavefunction in the momentum or energy basis,
and the mass eigenstates are detected coherently. Here we
show that postselection, which projects the system to a final
flavor state, deforms the system wavefunction in such a way
that the momentum detected is not the expectation value of
the neutrino mass eigenstates momenta, but the correspond-
ing weak value. We use the weak values to describe the inter-
mediate state in the oscillation process, avoiding problems
in defining probability currents for particle states with mass
superposition.

1 Introduction

Neutrino oscillation is the phenomenon by which neutrinos
undergo periodic flavor transformations as they propagate
[1–3]. Its simplest description is a model in which the flavor
states are not eigenstates of the propagation Hamiltonian,
and, as a consequence, the flavor content changes with time
and distance [4–6]. Most of the literature treats the eigen-
states of propagation as plane waves: states with definite
mass, energy, and momentum. Although extremely useful,
the plane wave description neglects an essential ingredient in
modelling the neutrino detection, which is the energy uncer-
tainty.Many authors have incorporated the energy uncertainty
using quantum mechanical (QM) wave-packets [7–18] and
quantum field theory [19–27]. For the measurement theory
in this paper, we shall use Gaussian wave-packets.

The uncertainties in energy and momentum of a massive
neutrino wave-packet come from the approximate conserva-
tion of mean energies and momenta of all particles in the

a e-mail: yporto@ifi.unicamp.br
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production and detection processes. When these uncertain-
ties are large enough so that one cannot, even in principle,
resolve the neutrino masses, the produced and detected neu-
trino states can be written as a coherent superposition of
mass eigenstates. When neutrinos are detected, their flavor
is revealed by the charged leptons produced in the inter-
action, and their energy and momentum can, in principle,
be reconstructed by measuring energies and momenta of all
other particles involved in the detection process. Even if all
this information is inaccessible to the experimentalist, it is
available to particles in the detection process, and this, by
itself, configures a measurement. However, from QM, two
incompatible observables (i.e. non-commuting observables)
are being measured at the same time in this detection pro-
cess: flavor and energy (and momentum).1 The most criti-
cal consequence of measuring, or inferring two incompatible
observables at the same time is that they randomly mess up
information about each other, being manifestly complemen-
tary. Therefore, the measurement of energy-momentum of
neutrinos should disturb previous information about flavor,
particularly the flavor transitions during the propagation. Dis-
turbance is prevented, however, due to the large uncertainties
in energy and momentum in the detection process. Indeed,
this type of measurement, with large uncertainties, is called
weak measurement [28–30], and its main feature is to disturb
very little the quantum state of the system, not degrading the
information about complementary observables.2

Based on weak measurements plus postselection [31–33],
i.e., the fact that usually only one flavor type is measured
in the end, we revisit the theory of neutrino detection and
notice that flavor neutrinos obey probability currents with
momentum and energy described by weak values.3 To find

1 In the following sections, we treat neutrino propagation in one dimen-
sion where there is one to one relation between energy and momentum.
2 The concept of weak measurements has nothing to do with the concept
of weak interactions in the Standard Model.
3 Weak values are the result of weak measurements with postse-
lection. They were previously explored inneutrino oscillations when
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such currents was regarded as a conceptual issue in previous
references once in quantum mechanics, Hilbert spaces and
probability currents are defined only for particles of definite
mass, that is not the case of neutrinos. References [34–37]
present possibilities to get around the issue, and here we show
that as soon as we interpret the process as a weak measure-
ment with postselection we do not meet such limitations. It is
indeed interesting to see how postselection theories “violate”
a number of principles of standard quantum mechanics [38].

This paper develops as follows. Firstly, we review the stan-
dard procedures for describing neutrino wave-packets emis-
sion and detection and the resulting observed neutrino oscil-
lations; then, we review the von Neumann measurements and
the weak measurement regime. With the fundamentals estab-
lished, we develop the interpretation of neutrino oscillations
under the weak measurement regime, demonstrating how the
neutrino probability current is described; and to finish, we
present our conclusions and perspectives.

2 Neutrino wave-packets

In this section, we review the standard wave-packet formal-
ism of neutrino oscillations in one dimension.4 We use nat-
ural units (h̄ = c = 1) throughout the paper.

Consider a process at (average) coordinates (t = 0, x =
0) that produces a neutrino of flavor α which propagates
and is detected at (T, L) with flavor β. Using a normalized
Gaussian envelope, we can write the one-particle state of the
neutrino produced at the origin:

|νP
α 〉 =

∑

a

U∗
αa |νP

a 〉

=
∑

a

U∗
αa

∫
dp√

4πEa(p)
φP (p − pa)|νa(p)〉, (1)

with Ea(p) = √
p2 + m2

a and

φP (p − pa) = 1

(2πσ 2
pP )

1
4

e
− (p−pa )2

4σ2
pP , (2)

such that
∫
dp|φP (p − pa)|2 = 1. Here the flavor eigen-

state |νP
α 〉 is a superposition of mass eigenstate wave-packets,

|νP
a 〉, with mass ma , weightened by the complex-conjugated

PMNS matrix elements, U∗
αa . The mass eigenstates them-

selves are a superposition of energy and momentum eigen-

footnote 3 continued
superluminal velocity was reported [49] and references therein. Here
we develop it from a foundational point of view, highlighting concepts
of quantum measurement theory.
4 This is a good approximation for cases in which the distance between
neutrino source and detector is large compared to their size [26].

states |νa(p)〉. In the x-space, νa wave function, at time t , is
given by [39]:

〈x |νP
a (t)〉 =

∫
dp√

4πEa(p)
φP (p − pa)e

−i Ea(p)t eipx . (3)

The average momenta and momentum uncertainties of dif-
ferent mass eigenstates, pa and σpP , respectively, are deter-
mined by the kinematics and the properties of the particles
involved in the production (P) process. We assume that all
mass eigenstates are extremely relativistic, pa >> ma , so
that we can approximate their average energies by [39],

εa ≈ E + ξ
m2

a

2E
, (4)

in which E is the energy determined by the kinematics of the
production process if neutrino masses are neglected and

ξ

2E
= ∂εa

∂m2
a

∣∣∣∣
ma=0

(5)

is the coefficient of the first-order term if one expands εa =√
p2
a + m2

a around ma = 0. The corresponding momenta are

pa ≈ E − (1 − ξ)
m2

a

2E
. (6)

For a given process, ξ can be calculated from energy-

momentum conservation up to order m2
a

E2 .
The effective momentum-space uncertainty of the pro-

duced neutrino wave-packets σpP is

σpP ∼ min{δpP , δeP } (7)

where δpP and δeP are, respectively, the momentum and
energy uncertainties in the production process. In configu-
ration space, σx P = 1

2σpP
.

The detection process, in the standard formalism, is con-
sidered by propagating the ket in (1) from the origin to (T, L)

and then projecting it on the state

|νD
β 〉 =

∑

a

U∗
βa

∫
dp√

2π
√

2Ea(p)
φD(p − pa)|νa(p)〉,

(8)

with

φD(p − pa) = 1
(

2πσ 2
pD

) 1
4

e
− (p−pa )2

4σ2
pD , (9)
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which takes into account the effective momentum-space
uncertainty σpD of the detection (D) wave-packet, related
to δpD and δeD in a similar way to (7),

σpD ∼ min{δpD, δeD}, (10)

and σxD = 1
2σpD

. Notice that
∫
dp|φD(p − pa)|2 = 1. The

average momentum pa seen in the detection process is deter-
mined by the kinematics of the production process.5 Notice
that (1) and (8) are normalized independently.

Now, we compute

Aαβ(L , T ) = 〈νD
β e−iHT+ipL |νP

α (0, 0)〉
= 〈νD

β |νP
α (L , T )〉, (11)

i.e., the amplitude of probability of detection of neutrinos in
state |νD

β 〉 when they were generated in state |νP
α (0, 0)〉 after

traveling the distance L during the time interval T , being H
the Hamiltonian and p the momentum operators. Using the
condition 〈νa(p)|νa(p′)〉 = (2π)2Ea(p)δ(p − p′):

Aαβ(L , T ) =
∑

a

U∗
αaUβa√

2πσpPσpD

∫
dpe

− (p−pa )2

4σ2
p e−i Ea(p)T+i pL .

(12)

Let us consider sharply peaked Gaussian functions in
momentum space, with average momentum and energy given
by (4) and (6).6 In this context, the relativistic dispersion rela-
tion can be approximated by Ea(p) ≈ εa +va(p− pa), with

va = ∂Ea(p)

∂p

∣∣∣∣
p=pa

= pa
εa

≈ 1 − m2
a

2E2 . (13)

Thus,

Aαβ(L , T ) =
√

2σx PσxD

σ 2
x

∑

a

U∗
αaUβa

× exp

(
−iεaT + i pa L − (L − vaT )2

4σ 2
x

)
.

(14)

In (14), σx is the effective size of the detection region that
takes into account space and time intervals in which the neu-
trino and all particles in the detection process are overlapped.
Since the neutrino that reached the detection process car-
ries information about the production process, σx takes into
account features of both production and detection, in a similar

5 This constrain can be relaxed, see [26]
6 Dispersion due to different phase velocities is negligible [25].

way to σp - the effective resolution with which the detection
process can measure momentum:7

σ 2
x = σ 2

x P + σ 2
xD and

1

σ 2
p

= 1

σ 2
pP

+ 1

σ 2
pD

. (15)

Both are related by σxσp = 1
2 .

Squaring the amplitude in (14) and integrating out the T
dependence, we obtain

Pαβ(L) = 2σx PσxD

σ 2
x

∑

a,b

U∗
αaUβaUαbU

∗
βbe

i(1−ξ)
�m2

ab
2E L

×
∫

dT exp

[
− (L − vaT )2 + (L − vbT )2

4σ 2
x

]
e−iξ

�m2
ab

2E T . (16)

After integration, we substitute the expression in (13) for
the velocity of relativistic mass eigenstates in the exponents,

preserving the terms of first order in m2
a

E2 (or one order higher
if the first order vanishes) and find

Pαβ(L) = 2
√

2πσx PσxD

σx

×
∑

a,b

√
2

v2
a + v2

b

U∗
αaUβaUαbU

∗
βb

×e−i
�m2

ab L
2E e

−
(

L
Labcoh

)2

e
− (�εab)2

8σ2
e , (17)

with

�εab = ξ
�m2

abL

2E
, and Lab

coh = 4
√

2E2

|�m2
ab|

σx , (18)

where σ 2
e ≈ 1

2 (v2
a + v2

b)σ
2
p .

The probability in (17) is not normalized [18,26], and its
magnitude is dependent on the sizes of the produced and
detected wave-packets and their overlap. Indeed,

∑

β

Pαβ(L) = 2
√

2πσx PσxD

σx

∑

a

|Uαa |2
va

≈ 2
√

2πσx PσxD

σx
. (19)

In addition, it is not dimensionless but has a unit of length.
As we will see in next sections, this is not a problem if we
interpret the mass neutrino wavefunctions as pointer states
in the von Neumann sense, unitarity will be automatically
obeyed.8

7 In the literature σx is most commonly referred as the size of the wave-
packet. Here we want to emphasize that it is related to the momentum
resolution in the detection process.
8 A number of references overcome this problem by using quantum
field theory, for instance check [18,26].
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Fig. 1 Illustration of the condition for coherent production and detec-
tion of neutrinos, �pab << σp , with p1, p2 and p3 the mean momenta
of the massive neutrino wave-packets given in (6)

The discussion about the physical meaning of the expo-
nentials (17) can be found in many references [11,13,18,25,
39]. Here we highlight:

• The exponential e
−
(

L
Labcoh

)2

defines the coherence length,
Lab
coh , that is the effective distance after which mass eigen-

states νa and νb lose coherence due to separation of their
wave-packets. For L << Lab

coh wave-packet separation
is negligible.

• The term e
− (�εab)2

8σ2
e defines the conditions under which

neutrinos are produced and detected coherently. In the
limit,

�εab << σe, (Coherence Condition) (20)

the conditions for coherent production and detection of
the mass eigenstates νa and νb are set (see Fig. 1). In the
relativistic regime and in one dimension, (20) is equiva-
lent to �pab << σp [17].

Therefore, L << Lab
coh and �ab << σe are usually

referred as the conditions for the observability of neutrino
oscillations.

3 Weak measurements and weak values

In this section, we formalize the concept of quantum mea-
surement in the von Neumann regime and use it to distin-
guish between the strong (great disturbance, wavefunction
collapse) and weak measurements (very little disturbance)
[28–33].

3.1 von Neumann measurements

In the von Neumann measurement model [40,41], the mea-
suring device (or pointer) is a secondary quantum system
with canonical variables xD and pD satisfying [xD,pD] = i ,
in natural units. The Hamiltonian that describes the inter-
action between the system and the device usually couples
the observable of interest, that we call A,with some of the

canonical variables, xD , for example, so that the change in
the conjugate variable, pD , reveals information about A. The
interaction Hamiltonian can be written as

Hint = −δ(t − t0)AxD, (21)

where the delta function assures the interaction to happen
for times only in the vicinity of t0 while, at any other instant,
the system evolves freely. To illustrate how the pointer vari-
able, pD in our example, acquires information about A, we
compute its evolution at times close to t0 in the Heisenberg
picture:

d

dt
pD(t) = i[Hint ,pD(t)]

= −iδ(t − t0)A(t)[xD(t),pD(t)]
= δ(t − t0)A(t), (22)

then,

pD(t > t0) − pD(t < t0) =
∫

dtδ(t − t0)A(t) = A(t0).

(23)

Therefore, the change in the pointer immediately after t0
gives the information about the status of the observer of inter-
est at t0.

3.2 Statistics of the pointer variable

Consider an ensemble defined by a system prepared in state
|ψi 〉 and measuring device in state |φ〉. A system ensem-
ble prepared in a specific initial state defines a preselected
ensemble. We know the effect of the measurement on the
device is to change the status of its pointer variable pD pro-
portionally to the system observable of interest A according
to (23). Starting from the initial state of the system plus mea-
suring device, |�i 〉 = |ψi 〉|φ〉, we find that the impact of the
measurement on this state is given by

|� f 〉 = e−i
∫
Hint dt |�i 〉 = eiAxD |ψi 〉|φ〉. (24)

Projecting (24) into the pointer variable space

〈pD|� f 〉 =
∑

a

|a〉〈a|ψi 〉〈pDeiaxD |φ〉

=
∑

a

|a〉〈a|ψi 〉φ(pD − a), (25)

in which {|a〉} are the eigenvectors of operator A, and
φ(pD −a) = 〈pD − a|φ〉 is the shifted (by a) wavefunction,
φ(pD), due to the action of the translation operator eiaxD . The
probability distribution of the pointer apparatus state after the
measurement is given by the absolute square of (25)
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Fig. 2 Illustration of a pointer wavefunction that can resolve the spec-
trum of eigenvalues of the system observableA in a strong measurement,
σp << �ai j . The amplitude of the distributions are proportional to the
probability amplitude of the system to be in the state |ai 〉. In the limiting
case of σp → 0, one recovers Born’s rule. Detector and system are fully
entangled immediately after the measurement

Fig. 3 Illustration of a pointer wavefunction that cannot resolve the
spectrum of eigenvalues of the system observable A in a weak measure-
ment, σp >> �ai j . The amplitude of the distributions are proportional
to the probability amplitude of the system to be in the state |ai 〉. Because
of the poor resolution, detector and system are not fully entangled and
the system wavefunction is very little disturbed after the measurement

Pf (pD) = |〈pD|� f 〉|2 =
∑

a

|〈a|ψi 〉|2|φ(pD − a)|2. (26)

Remark that for the probability interpretation to hold, we
need a normalized pointer wavefunction,

〈φ|φ〉 =
∫

dpD|φ(pD)|2 = 1. (27)

What we call strong or weak measurement depends very
much on the spread of the apparatus wavefunction in the pD-
space, σp, relative to the separation, �ai j , of the eigenvalues,
{ai }, of the system.9 If the pointer can resolve the spectrum,
in other words, if

σp << �ai j , (Strong measurement) (28)

it is called strong measurement, and is pictorially represented
in Fig. 2.

In the opposite limit,

σp >> �ai j (Weak measurement), (29)

we say that the system is weakly measured by the apparatus,
see Fig. 3.

Weak measurements were first proposed as a way in which
one can extract average state information without entirely
collapsing the system [41]. In fact, due to large uncertainty
σp in the apparatus wavefunction, after measurement, the
state of the apparatus is not strongly correlated or entangled

9 It is common to model the pointer with a Gaussian wavefunction.

with any of the states {|ai 〉} of the system. This can be seen
graphically in Fig 3. For comparison, observe how the states
of the system and apparatus are fully correlated after a strong
measurement (resembling Born’s rule) in Fig. 2.

A useful way of thinking about weak measurements is that
the eigenvalues of A are so close that the effect of the trans-
lation operator on the pointer is very small. More precisely,
suppose our pointer just measured a1 (went from zero to a1

by means of eia1xD ) in Fig. 3, to move its center to a2 we
operate with:

ei(a2−a1)xD = 1 + i�a21xD − 1

2
(�a21)

2x2
D + · · · (30)

with �a21 = a2 − a1. However, due to (29),

〈φ(�a21)
2x2

D|φ〉 = (�a21)
2σ 2

x ≈ (�a21)
2

σ 2
p

<< 1. (31)

Hence, in case the measurement is weak, it is enough to use
the expansion in (30) up to first order.

Although strong and weak measurements are conceptually
different, they are quantitatively equivalent with respect to
expectation values [42]. In other words,

〈� f |pD|� f 〉 = 〈A〉ψi , (32)

independently of σp.

3.3 Pre- and postselected ensembles

If the expectation values of the observables of the system
are the same independently of the measurement type (see
(32)), then one can judge unnecessary to talk explicitly about
the weak nature of the neutrino energy-momentum measure-
ment. The problem is that, as we are going to see in the next
section, neutrino oscillation measurements are, in general,
made in pre- and postselected ensembles, and the results of
these measurements are not expectation values, butweak val-
ues, a concept introduced in 1988 by Aharanov, Albert and
Vaidman (AAV) [31,43–45].

To understand the concept of weak value, suppose that
after the measurement described by the Hamiltonian in (21)
in the system ensemble �i , we focus only on the measure-
ment outcomes from the system subensemble that ended up
in some specific state |ψ f 〉. We name this subensemble �i f .
We can find the statistics of the apparatus pointer variable
by taking (24) and applying to it the system conditional final
state

|�i f 〉 = 〈ψ f |� f 〉 = 〈ψ f e
−i

∫
Hint dt |�i 〉

= 〈ψ f e
iAxD |ψi 〉|φ〉. (33)
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Fig. 4 Illustration of the resulting pointer wavefunction (green), with
mean given by the real part of the weak value, ReAw , when, together
with weak measurements, there is postselection of the state |ψ f 〉. Its
amplitude is proportional to 〈ψ f |ψi 〉. On purpose, ReAw is shown out-
side the range of eigenvalues ai , to highlight one of the most interesting
properties of weak values

Now, we expand the exponential inside (33), to obtain

|�i f 〉 ≈ 〈ψ f |ψi 〉(1 + i AwxD − 1

2
A2

wx
2
D + · · · )|φ〉, (34)

where An
w is called the nth order weak value of A, An

w ≡
〈ψ f An |ψi 〉
〈ψ f |ψi 〉 . We use the hypothesis of weak measurements to

argue that, for the apparatus, the action of the Hamiltonian in
(21) is just a small perturbation and we truncate the expansion
at first order in xD ,

〈pD|�i f 〉 ≈ 〈ψ f |ψi 〉〈pD1 + i AwxD|φ〉, (35)

using the approximation 1 + i AwxD ≈ ei AwxD , which acts
as a translation operator in pD-space,

〈pD1 + i AwxD|φ〉 ≈ 〈pD − Aw|φ〉. (36)

Assuming for the state of the pointer before the measurement,

〈pD|φ〉 = φ(pD) ∝ e
− p2

D
4σ2

p , with σxσp = 1

2
, (37)

and that Aw is a complex number, Aw = ReAw + iImAw,
then, the probability distribution for the apparatus after the
measurement is

|〈pD − ReAw − iImAw|φ〉|2 ∝ e
(ImAw)2

2σ2
p e

− (pD−ReAw)2

2σ2
p

≈ |φ(pD − ReAw)|2, (38)

which is proportional to the initial probability distribution
translated by ReAw in pD-space.10 Therefore, instead of
moving the pointer to some eigenvalue, as in (26), a weak
measurement with pre- and postselection move the pointer
to the real part of the observable weak value, see Fig. 4.

10 Notice that we neglected the factor e
(ImAw)2

2σ2
pD after ’≈’ sign in (38).

This term has impact on the normalization of the pointer wavefunction
after the measurement but does not change the center of the final distri-
bution. Physically, it is related to the “back-action” on the variable xD
due to the sudden change in pD . In weak limit, of very little disturbance,
the correction coming from such term is assumed to be negligible [43].

We usually think in eigenvalues as the only possible
answers to single quantum measurements, but this section
teaches us that with enough uncertainty in the detection and
postselection, an entirely new type of answer appears: the
weak value, Aw. The weak value is considered a property of
a single system under pre- and postselection, revealed by a
single measurement [46]. All physical consequences of the
interactions of the system under such circumstances depend
on Aw. Weak values can lie beyond the range of eigenvalues
ofA, so-called anomalous weak values [47,48], as illustrated
in Fig. 4.

Observe in Fig. 4 that, due to the uncertainty in detec-
tion process, the eigenfunctions of observable A look like
wave-packets with mean values ai . Under general pre- and
postselection, i.e. initial and final states are not restricted
to be eigenvectors of the observable A - an effective wave-
packet emerges with the mean value given by ReAw. Some-
thing analogous will happen to neutrinos in the next section,
where weak values of energy and momentum will character-
ize them.

4 Neutrino oscillations and the weak regime

In this section we adapt the weak values formalism to neu-
trino detection. Start by interpreting the detection region
(see discussion before (15)), as an apparatus (or pointer)
that will measure the neutrino energy and momentum with
uncertainties σe and σp, respectively. In the relativistic one-
dimensional case, it is redundant to talk in terms of momen-
tum and energy; then, in the following, we refer to momen-
tum measurement. In the pointer interpretation, (20) must be
understood in the same sense as (29):

σp >> �pab. (Weak measurement) (39)

As an apparatus, the detection region has conjugate variables
pD and xD obeying [xD,pD] = i . In pD-space, its wavefunc-
tion, φ(pD) = 〈pD|φ〉, is given by the combination of the
production and detection Gaussian envelopes in (2) and (9),
respectively:11

φ(pD) = φP (pD)φD(pD) ∝ e
− p2

D
4σ2

pP e
− p2

D
4σ2

pD = e
− p2

D
4σ2

p , (40)

where we used (15). Thus, we model the detection region
as a Gaussian pointer with resolution σp, as in the previous
section. Here, σp is the momentum resolution in neutrino
detection, according to (15).

11 Actually, it is just after the measurement, pD → pD − pa , that φP
and φD will be equal to the Gaussian envelopes in (2) and (9).
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We construct the Hamiltonian coupling the neutrino
momentum, p, to the pointer conjugate variable, xD as12

Hint (t) = −δ(t − T )pxD, (41)

where T is the average time of detection. According to
this Hamiltonian, in analogy with (23), after measurement
(assuming the initial value of pD is zero):

pD(t > T ) = p(t = T ). (42)

In case the measurement is made for a neutrino mass eigen-
state νa , described by (1), we have, in Heisenberg picture
(initial state |νP

a 〉|φ〉),
〈νP

a 〈φpD(t > T )|φ〉|νP
a 〉 = 〈φ|φ〉〈νP

a p(t = T )|νP
a 〉

= pa, (43)

with |φ〉 the (normalized) state of the detection region. In
other words, the detection region momentum distribution
after the measurement (t > T ) is clustered around pD = pa ,
given in (6), as expected. This is just telling us that the detec-
tion process behaves as if a wave-packet with mean momen-
tum pa and uncertainty σp just arrived. In our example, if pa
is known, the corresponding energy, εa , is also known.

The next subsection is devoted to the most general case of
coherent detection of several mass eigenstates with postse-
lection (detection of a specific flavor). Weak values naturally
appear.

4.1 Neutrino oscillations with pre- and postselection

In case the neutrino is preselected in the state |νP
α 〉, evolves

freely to |νP
α (L , T )〉, until being detected and, consequently,

postselected in the state |νD
β 〉, we can write for the initial state

|�α〉 = |νP
α (L , T )〉|φ〉. (44)

In analogy with (33),

|�αβ(L , T )〉 = 〈νD
β |�α〉

= 〈νD
β e−i

∫
Hint dt |νP

α (L , T )〉|φ〉
= 〈νD

β eipxD |νP
α (L , T )〉|φ〉. (45)

Using the weak measurement hypothesis (39),

|�αβ(L , T )〉 ≈ 〈νD
β |νP

α (L , T )〉
(

1 + i pαβ
w xD

)
|φ〉

≈ 〈νD
β |νP

α (L , T )〉|φ(pD − Re{pαβ
w })〉, (46)

12 Notice that we are not imposing any kind of new interaction in the
detection process, Hint , here, is just an artifact of calculation.

Fig. 5 Illustration of the weak measurement features of neutrino oscil-
lations. The detection of the flavor |νβ 〉 constitutes postselection. As

usual, the resulting wave-packet (green) has mean given by Repαβ
w and

we interpret it as the wave-packet of the detected νβ or, generically, the
“flavor wave-packet”. Its amplitude is proportional to 〈νβ |να(L , T )〉

where pαβ
w is also a function of L and T , given by

pαβ
w (L , T ) = 〈νD

β p|νP
α (L , T )〉

〈νD
β |νP

α (L , T )〉 . (47)

Hence, the neutrino momentum measured by the particles in
the detection region at average coordinates (T, L) is given
by pD = Re{pαβ

w (L , T )}. Analogously, the energy is the real
part of

εαβ
w (L , T ) = 〈νD

β H|νP
α (L , T )〉

〈νD
β |νP

α (L , T )〉 . (48)

Notice that the flavor neutrino behaves as a single particle
wave-packet with average energy and momentum Reεαβ

w and
Repαβ

w at (T, L), see Fig. 5, in the same sense the massive
wave-packets have averages εa and pa .

4.2 Normalization and probability current

In this subsection, we work with one massive neutrino νa ,
mass ma , and explain how to write its wavefunction, prob-
ability density, and current satisfying the pointer interpreta-
tion. This is a standard treatment for massive particles, such
as electrons or muons. In the next subsection, we mix the
massive neutrinos and find an analogous treatment for flavor
neutrinos.

Equations (27) and (40) imply that for our interpretation of
the detection region as a pointer, the production and detection
Gaussian envelopes should not be normalized separately but
in a correlated manner,

∫
dp|φ(p− pa)|2 =

∫
dp|φP (p− pa)|2|φD(p− pa)|2 = 1,

(49)

and therefore

φ(p − pa) = 1

(2πσ 2
p)

1
4

e
(p−pa )2

4σ2
p . (50)

123
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The coordinate space wavefunction at time T and position L
for this particle is, in analogy with (3), the space-time integral
of φ(p − pa):

Aa(L , T ) = 〈νD
a |νP

a (L , T )〉
=

∫
dp√

2π
√
Ea(p)

φ(p − pa)e
−i Ea(p)T+i pL .

(51)

For sharply peaked wave-packets,

Aa(L , T ) ≈
∫

dp√
2π

√
2εa

φ(p − pa)e
−iεaTe−iva(p−pa)TeipL

= 1√
2π

√
2εa

(
2π

σ 2
x

) 1
4

× exp

(
− iεaT + i pa L − (L − vaT )2

4σ 2
x

)
. (52)

Relativistic particles with defined masses, such as νa , obey
Klein–Gordon equation.13 From (52), the Klein–Gordon cur-
rent for an arbitrary particle produced as |νP

a 〉 and detected
as |νD

a 〉 after propagating a distance L during some time T
is given by

Ja(L , T ) = 2pa |Aa(L , T )|2. (53)

Together with the probability density, ρa(L , T ) = 2εa |Aa(L , T )

|2, Ja(L , T ) satisfies the Klein–Gordon continuity equation,

∂

∂T
ρa(L , T ) + ∂

∂L
Ja(L , T ) = 0. (54)

What we call probability density is actually a number (of
particles) density. The way Aa(L , T ) is normalized in (51),
however, is so that there is only one massive neutrino νa in
the whole space at any given time:

∫
dL ρa(L , T ) = 1. (55)

Note that, with such a convention, ρa has dimension of
1/length as it should be in a one-particle theory and Ja ∝
1/time. Therefore, integrating Ja for the whole time of the
experiment should give us the probability that, after the detec-
tion, the detector will register a particle of index a:

Pa(L) =
∫

dT Ja(L , T ) = 1, (56)

as expected.

13 As matter of fact, νa obeys Dirac equation. Klein–Gordon density
and currents are approximations of their respective Dirac counterparts
when spinor degrees of freedom are ignored. The calculations in the fol-
lowing can be reproduced without ignoring the spinors by using Gordon
decomposition [50].

In the next section, we illustrate the role of weak values in
neutrino oscillations by finding the appropriate currents for
flavor neutrinos.

4.3 Neutrino oscillation probability

In analogy with Eq. (53) and Re{pαβ
w } in place of pa :

Jαβ(L , T ) = 2Re{pαβ
w }|Aαβ(L , T )|2, (57)

with Aαβ(L , T ) = ∑
a U

∗
αaUβa Aa(L , T ). At order m2

E2 , Jαβ

obeys a continuity equation of the form:

∑

β

(
∂

∂T
ραβ(L , T ) + ∂

∂L
Jαβ(L , T )

)
= 0, (58)

with ραβ(L , T ) = 2Re{εαβ
w }|Aαβ(L , T )|2. Indeed, (57) and

(58) can be derived from manipulating Klein-Gordon equa-
tion without ever referring to weak measurements. On the
other hand, weak measurements provide a physical interpre-
tation. Different from (53), (57) describes a probability that
is not conserved, in general, due to flavor transformations.

The time-independent flavor oscillation probability is
defined as the probability current integrated over the area
of the detector for the entire time duration of the experiment,

Pαβ( �L) =
∫

dT
∫

S
d AJαβ( �L, T ). (59)

Since we are working in just one dimension, this integral
simplifies to

Pαβ(L) =
∫

dT Jαβ(L , T ). (60)

This is equivalent to (56) in the context of mixed particles, it
gives the probability that the detector will register an index
β. Substituting (57) into (60), we have

Pαβ(L) =
∫

dT 2Re{pαβ
w }|Aαβ(L , T )|2

= 2Re
∑

a,b

U∗
αaUβaUαbU

∗
βb

×
∫

dT 〈νP
b (L , T )|νD

b 〉〈νD
a p|νP

a (L , T )〉. (61)

Now, 〈νD
a |νP

a (L , T )〉 ≈ Aa(L , T ) as given by (52). For the
second term in (61), and

〈νD
a p|νP

a (L , T )〉 ≈
(
pa + 2i

L − vaT

4σ 2
x

)
Aa(L , T ). (62)

123



Eur. Phys. J. C (2021) 81 :330 Page 9 of 10 330

Back to (61), and using relations (4) and (6), we integrate14

Pαβ(L) ≈ Re

{∑

a,b

U∗
αaUβaUαbU

∗
βb

√
2

v2
a + v2

b

pa
1√
εa

× 1√
εb

e−i
�m2

abL
2E e

−
(

L
Labcoh

)2

e
− (�εab)2

8σ2
e

}
. (63)

Pαβ is dimensionless and normalized (recall (19) and
related discussion). When the dependence of pa , εa and va
on the index a is negligible,

Pαβ(L) ≈
∑

a,b

U∗
αaUβaUαbU

∗
βb

×e−i
�m2

ab L
2E e

−
(

L
Labcoh

)2

e
− (�εab)2

8σ2
e , (64)

and we reach the standard oscillation probability.
Of course, by neglecting the impact of the mass eigenstate

indexes in pa , εa and va , we are neglecting the impact of the
weak values on the phenomenological formula (64) itself.15

But the point here is that to find Eq. (57) was regarded as
a conceptual problem in some previous references (check
[34–37]). The argument is that Hilbert spaces and probabil-
ity currents are unequivocally defined for particles with defi-
nite mass, which is not the case of neutrinos. However, such
problems do not arise in postselected quantum mechanics,
where the intermediate process is not an ordinary quantum
state, described by one ket, but a pre- and postselected state,
characterized by two kets at the same space-time point and
the weak value.

5 Conclusion

This paper gives an overview of both the theory of neutrino
oscillations and the basic von Neumann measurement the-
ory. An advantage of the von Neumann model is that we can
embed on it quantum mechanical uncertainties and model
the coherent detection of neutrino wave-packets by treating
the measuring apparatus as a quantum system. When these
uncertainties are sufficiently large, see (29), we call it a weak
measurement. We describe neutrino oscillations as a posts-
elected weak measurement with the detected wavefunction
mean value given by the weak value; see Eq. (47) and Fig. 5.
It is then straightforward to write down the currents and den-
sities for the postselected wavefunctions and reach the prob-
ability’s usual formula.

14 We neglect the integral involving the term 2i L−vaT
4σ 2

x
.

15 Although in principle one could test the theory presented here by

detecting anomalous weak values [31], anything of order m2

E impacting
energy or momentum measurement is impractical.
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