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Abstract The gravitational dynamics of a collapsing mat-
ter configuration which is simultaneously radiating heat flux
is studied in f (R) gravity. Three particular functional forms
in f (R) gravity are considered to show that it is possible to
envisage boundary conditions such that the end state of the
collapse has a weak singularity and that the matter configu-
ration radiates away all of its mass before collapsing to reach
the central singularity.

1 Introduction

The general theory of relativity (GR) is an impeccably robust
relativistic theory of gravity. It forms the basis for our under-
standing of gravitational phenomenon at small as well as
large scales [1,2]. However, it is well known that GR can-
not be the ultimate theory of gravitation since it has a well
defined regime of validity; for example, understanding past
and future spacetime singularities are beyond the reach of
GR. Suitable modification(s) of GR is(are) essential to under-
stand singularities, or to resolve them. It is believed that a
quantum theory of gravity may lead to solution to the prob-
lems affecting GR [2–6]. Naturally, in absence of any con-
sensus on the theory of quantum gravity, modified theories
of gravity with quantum corrections are also of interest. The
Einstein- Hilbert action may be thought of as only a low
energy contribution and higher curvature terms consistent
with the diffeomorphism invariance may become relevant as
one goes to higher energies. Higher curvature corrections
should leave imprints at low energy scales which become
important for low energy physics too [5–7]. Out of these alter-
nate theories, we shall study the f (R) model since it has been
found interesting in the cosmological studies as well. These
f (R) gravity models are thought of as alternate to the dark
energy models [8–10]. The standard way to construct these
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f (R) theories is to replace the Einstein- Hilbert Lagrangian
by a well defined function of Ricci scalar, f (R) (for general
relativity f (R) = R) [11,12]. For a detailed review of the
motivation, validity of various functional forms f (R), appli-
cations as well as shortcomings of these gravity theories have
been extensively analyzed [13–21].

The purpose of the present work is to construct some
examples of spacetimes in f (R) gravity which admit grav-
itationally weak spacetime singularities [22]. The physical
situation which we consider here is the following: the initial
mass of the collapsing star or matter configuration is so high
that the force of gravity overwhelms the thermal or quantum
mechanical pressures. As a result, no stable configuration
such as a neutron star or a white dwarf exists during the
collapse process. Generically, such collapsing matter config-
urations admit diverging density and curvatures at the central
singularity (we must emphasize that spherically symmetry is
assumed throughout the collapse). However, we shall show
below that it is possible, without violating energy conditions,
that during the gravitational collapse matter is radiated away
at such a rate that the matter boundary never reaches its hori-
zon. In this case, no horizon is formed at the boundary since
the star radiates off all its mass before reaching the singu-
larity. The central singularity is naked but is gravitationally
weak. During this process, all the physical quantities energy
density, radial and tangential pressure, pressure anisotropy,
heat flux, remain regular and positive throughout the col-
lapse. The luminosity and adiabatic index are also regular
and positive, and admits maximum value when the matter
approaches the singularity. Thus, for an observer at infin-
ity observing the collapse, the configuration shall become
extremely bright, reaching its maximum luminosity before
turning off, indicating that it has radiated off all its mass.
Solutions of such kind are not unknown and is possible in
the Newtonian gravity as well. Consider a star in the New-
tonian gravity which is extremely heavy to be supported by
the Pauli exclusion principle alone. So, when the gravita-
tion contraction takes place, thermal pressure may balance
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to some extent. But since there is no event horizon, the star
shall continue to radiate all the gravitational energy to infin-
ity. Hence all the matter contained in the star shall be con-
verted to thermal radiation and radiated off. We show here
that configurations of similar nature are also possible in f (R)

gravity.
From a theoretical point of view, gravitational collapse of

matter is important and recently, there has been an increas-
ing interest to understand whether the nature of collapse is
altered in modified gravity [19,23–26]. Although it remains
to study in detail if compact objects formed in theories like the
f (R) gravity can be experimentally detected, several inves-
tigations have already been carried out in this direction. The
idea is to use the multi-wavelength and well as the gravita-
tional wave data to probe matter under extreme gravity (like
the composition of the inner core of a neutron star) which
remain unknown, as neither they can they be probed directly
with astrophysical observations nor are they they within the
reach of the present-day theory experiments. Alternatively,
the direct gravitational wave data have also made it possible
to investigate if these objects are possible in alternate gravity
theories. In particular, the recent detection of GW190814,
have fueled the speculation that it might be the heaviest neu-
tron star till date [27]. It has been argued that some models
of f (R) gravity can indeed explain the origin of such a large
mass of (2.5–2.7)M�, even using the well- known equations
of state [28,29].

In this paper, we shall not concern ourselves with com-
pact objects like the white dwarf or a neutron star. We
shall assume that the matter is extremely massive, and such
objects continue to collapse under its own gravity. The grav-
itational collapse phenomenon in GR show that the col-
lapse outcome depends upon, among other quantities, the
choices of mass profiles and velocity profiles of the collaps-
ing matter. In the context of inhomogeneous LTB models
in GR, these issues have been considered in great detail
for various matter models including dust and viscous flu-
ids [30,31]. The stellar collapse of stellar collapse in f (R)

gravity using different forms of f (R) function and differ-
ent matter distributions may be found in [32–46]. Although
different type of f (R) models may be considered, only
the ones which are in agreement with the standard cosmo-
logical observations should be of interest. Here, we con-
sider three models of f (R) gravity given respectively by:
(a) f (R) = (R + λR2) [47] , (b) f (R) ∼ R1+ε , with
ε << 1 [37] and (c) f (R) = R + λ

[
exp (−σ R) − 1

]
, with

λσ < 1, [48]. All three theories play a major role in the study
of the early and the late universe. For example, in the R+λR2

model, the R2 term is weak in the weak gravity regime. But it
also contributes significantly during the early universe and in
strong gravity regime. Here, we study gravitational collapse
of an extremely massive object (so massive that its gravita-
tional attraction predominates thermal or quantum mechan-

ical pressures), and so naturally, since we are in a strong
gravitational field, this model may assume significance. In
all these theories, we shall show that an extremely massive
spherical matter cloud, admitting radial and tangential pres-
sures, and outgoing heat flux, can collapse in a manner that
no horizon is formed at the boundary (since the star radi-
ates off all its mass before reaching the singularity) making
the central singularity naked but weakly singular. To ensure
that the gravitational collapse proceeds continuously with-
out forming any stable object, we assume the radius of the
2-sphere cross-sections decrease linearly with time. The inte-
rior collapsing spacetime shall be smoothly matched with
the exterior Vaidya spacetime [49] over a timelike surface �

[50].
We approach the problem as follows. In Sect. 2, we give

the field equations of f (R) gravity and the junction condi-
tions for smooth matching of the interior and the exterior
spacetimes across the timelike hypersurface �. This section
also includes the solutions of the f (R) field equations along
with the explicit expressions for physical quantities. For the
solution, we use the Karmarkar condition [51–53]. These
conditions determine gravitational potentials for static and
non-static systems [54–57]. We must mention here that sim-
ilar studies on f (R) gravity have been carried out in [41].
However, the solutions obtained there are restrictive in the
sense that one of the metric function have been kept con-
stant to derive the values of other metric function. On the
other hand we shall show that such conditions are overly
restrictive. Note that since Karmarkar condition expresses
relationship between metric functions, the forms of metric
functions are arbitrary, and dependent on one’s choice. How-
ever we argue that this arbitrariness may be removed if met-
ric functions are related to matter variables. For example,
if we assume a specific form of pressure anisotropy (dif-
ference of the radial and tangential pressures, denoted by
� = pt − pr ), this gives rise to unambiguous set of gravita-
tional potentials, and a class of metric representing collaps-
ing spacetimes. We inspect the physical relevance of these
exact solutions by verifying the energy conditions. The sta-
bility criteria and discussion about the luminosity and adi-
abatic index, radial and transverse velocity are carried out
in Sect. 2.1. It is shown that a faraway observer will see a
source whose luminosity is exponentially increasing until
a time when it shuts off quickly. This is due to the fact
that the total mass of the star radiates linearly and, as the
star reaches its maximum luminosity there is no mass left
to radiate. The evolution of the temperature profiles dur-
ing stellar collapse is also studied in Sect. 2.2 since they
play an important role in the study of transport processes
in radiative gravitational collapse [58–66]. In Sect. 3 con-
tains discussion of the results accompanied with concluding
remarks.
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2 Field equations and matching conditions

The action for the f (R) gravity is obtained by replacing
the standard Einstein–Hilbert Lagrangian by a well defined
function of Ricci scalar [16]

S = 1

2

∫ √−g
[
f (R) + 2LM (gμν,�m)

]
d4x , (1)

where �m refers collectively to all matter fields, LM is the
Lagrangian density of the matter fields �m , g is the deter-
minant of the metric tensor gμν , R is the Ricci scalar curva-
ture and f (R) is the generic function of Ricci scalar defin-
ing the theory under consideration and (using units with
c = 1 = 8πG). Varying the action (1) with respect to the
metric tensor gμν yields the following field equations:

F(R) Rμν−1

2
f (R) gμν−

(∇μ ∇ν−gμν �
)
F(R) = T M

μν,

(2)

where F(R) = d f (R)/dR, and � ≡ ∇μ∇μ. This equation
may also be rewritten as

Rμν − (1/2) gμν R = F(R)−1
(
T M

μν + T D
μν

)
, (3)

where the left side of the Eq. (3) is the usual Einstein tensor,
T M

μν and T D
μν are the energy momentum tensor and effective

energy momentum tensor having the form as:

T M
μν = (pt + ρ)uμuν + pt gμν + (pr − pt )XμXν

+qμuν + qνuμ , (4)

T D
μν = (1/2) [ f (R) − R F(R)] gμν

+ (∇μ∇ν − gμν �
)
F(R). (5)

Here, ρ, pr and pt are the energy density, radial pressure and
the tangential pressure respectively. Also, qμ uμ, Xμ repre-
sents the radial heat flow vector, 4-velocity vector and space-
like 4-vector respectively, which satisfy uμuμ = −XμXμ =
−1 and uμXμ = uμqμ = 0.

We now consider a general non- static shear free spher-
ically symmetric spacetime metric given by the following
form

ds2 = −a(r)2dt2 + b(r)2s(t)2

×
(
dr2 + r2dθ2 + r2 sin2 θdφ2

)
. (6)

The forms of uμ, Xμ and qμ in terms of the metric (6) are

uμ = a−1 δ
μ
0 ; Xμ = (b s)−1 δ

μ
1 ; qμ = (b s)−1 Xμ, (7)

The magnitude of the expansion scalar � and Ricci scalar
for the metric (6) have the form

� = �μu
ν = 3 ṡ

a s
, (8)

R = 6
ss̈ + ṡ2

a2 s2 − 2

b2 s2

×
[
a′′

a
− b′2

b2 + a′b′

a b
+ 2

b′′

b
+ 2

r

(
a′

a
+ 2

b′

b

)]
. (9)

The field equations in f (R) gravity for the metric (6), energy
momentum tensor (4), (5) and (7) are

ρ = F

s2

[
3 ṡ2

a2 − 1

b2

(
2 b′′

b
− b′ 2

b 2 + 4

r

b′

b

)]

+
(

f − R F

2

)
+ 3ṡ Ḟ

s a2

− 1

b2 s2

[
F ′′ + F ′

(
b′

b
+ 2

r

)]
, (10)

pr = F

s2

[
− 1

a2

(
2s s̈ + ṡ2

)

+ 1

b2

(
2 a′ b′

a b
+ 2

r

(
a′

a
+ b′

b

)
+ b′ 2

b 2

)]

−
(

f − R F

2

)

− Ḟ

a2

(
F̈

Ḟ
+ 2ṡ

s

)
+ F ′

b2 s2

(
a′

a
+ 2

r
+ 2b′

b

)
, (11)

pt = F

s2

[
− 1

a2

(
2s s̈ + ṡ2

)

+ 1

b2

(
a′′

a
+ b′′

b
− b′ 2

b 2 + 1

r

(
a′

a
+ b′

b

))]

−
(

f − R F

2

)

− Ḟ

a2

(
F̈

Ḟ
+ 2ṡ

s

)
+ 1

b2 s2

(
F ′′ + F ′

(
a′

a
+ 1

r

))
,

(12)

q = − 2 a′ ṡ Ḟ
a2 b2 s3 + 1

a2 b2 s2

(
Ḟ ′ − Ḟa′

a
− ṡ F ′

s

)
, (13)

where prime and dot are the derivatives with respect to r and
t respectively.

Let us consider the junction conditions for the smooth
matching of the interior manifold M− (Eq. (6) considered
above) with the exterior manifoldM+ across timelike hyper-
surface �, at r = rb. As described in [67,68], the junction
conditions for the f (R) gravity requires the matching of sev-
eral geometric quantities other than the induced metric (hi j )
and the extrinsic curvature (Ki j ). In fact, it has been estab-
lished that in f (R) gravity, the following variables must be
matched at the boundary:

[hi j ]+− = 0, (14)

F(R) [Ki j − (1/3)K hi j ]+− = 0, (15)

[K ]+− = 0, (16)

(∂F(R)/∂R) [∂τ R]+− = 0, (17)

[R]+− = 0, (18)
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where τ represents the proper time of the timelike hypersur-
face, and K is the trace of the extrinsic curvature. Out of
these five conditions, for the set of f (R) theories under con-
sideration, it is sufficient to match the metric, the extrinsic
curvature, the Ricci scalar, and the derivative of the Ricci as
given above, determined from either sides.

The Vaidya spacetime in the outgoing coordinate is taken
to be our exterior spacetime M+ [49]

ds2+ = −
[

1 − 2 M(v)

r

]
dv2 − 2dvdr

+r2
(
dθ2 + sin2 θdφ2

)
, (19)

For our later convenience, let us define the proper time, dτ =
a(r)� dt . The junction condition as given (14), implies the
following conditions

r� (v) = (r b s)� , (20)
(
dv

dτ

)−2

�

=
(

1 − 2M

r
+ 2

dr
dv

)

�

, (21)

where τ represents the proper time defined on the hypersur-
face �. The normal vector fields to � are given by

n−
l = [

0, (b s)� , 0, 0
]
,

n+
l =

[
1 − 2M

r
+ 2

dr
dv

]− 1
2

�

[
− dr
dv

δ0
l + δ1

l

]

�

. (22)

The extrinsic curvatures for metrics (6) and (19) are given by

K−
ττ = −

[
a′

a b s

]

�

, K−
θθ =

[
r b s

(
1 + r b′

b

)]

�

, (23)

K+
ττ =

[
d2v

dτ 2

(
dv

dτ

)−1

−
(
dv

dτ

)
M

r2

]

�

,

K+
θθ =

[(
dv

dτ

) (
1 − 2M

r

)
r − r

dr
dτ

]

�

, (24)

K−
φφ = sin2 θK−

θθ , K+
φφ = sin2 θK+

θθ . (25)

Now, from the junction condition on Ki j (because of the
conditions that K must satisfy on the hypersurface, matching
Ki j is enough), we get the following. From the equality for
the θθ components at hypersurface �, and the Eqs. (20) and
(21), we obtain
[
r b s

(
1 + r b′

b

)]

�

=
[(

dv

dτ

) (
1 − 2M

r

)
r − r

dr
dτ

]

�

, (26)

and the total energy inside the boundary hypersurface �,
given by the Misner–Sharp mass, denoted by 2m (such that
m = M on the matching hypersurface) [69,70], where

m� =
[
r3 ṡ2 b3s

2 a2 − r3 s b′ 2

2 b
− r2 s b′

]

�

. (27)

Now, again from the matching of the K+
ττ = K−

ττ component
we have the following equation:

−
[

a′

a b s

]

�

=
[
d2v

dτ 2

(
dv

dτ

)−1

−
(
dv

dτ

)
M

r2

]

�

, (28)

and, substituting the relation between proper and coordinate
time along with the Eqs. (20) and (27) into the Eq. (26) we
have
(
dv

dτ

)

�

=
(

1 + r b′

b
+ r b ṡ

a

)−1

�

. (29)

Now, differentiating (29) with respect to the τ and using
Eqs. (27) and (29), we can rewrite (28). Further, comparing
with equations (11) and (13) we have the following useful
form
(
pr + T D

rr + b sT D
tr

)

�

= (q b s)� . (30)

where,

T D
rr =

(
f − R F

2

)
+ Ḟ

a2

(
F̈

Ḟ
+ 2ṡ

s

)

− F ′

b2 s2

(
a′

a
+ 2

r
+ 2b′

b

)
, (31)

T D
tr = 1

a2 b2 s2

(
Ḟ ′ − Ḟa′

a
− ṡ F ′

s

)
, (32)

are the dark source terms. From Eq. (30), it is found that just
like for general relativity, the radial pressure does not vanish
at the boundary but, instead is proportional to the dissipative
as well as radiative dark source terms. The extra terms T D

rr
and T D

tr on the LHS of Eq. (30) are the dark source term and
may appear due to the higher order curvature geometry of
the collapsing sphere [41].

Let us now move to match K as given in (14). The expres-
sions for the trace of extrinsic curvatures on the either sides
lead to the following matching condition on the hypersurface:
[
pr + T D

rr + b sT D
tr − q b s

]

�

= 2 [M − m]� , (33)

and naturally, this condition is identically satisfied due to the
above mentioned equations. The matching of the Ricci and its
proper time derivative gives the following conditions which
are to be satisfied for the metric of the internal manifold (at
the hypersurface �):

ss̈ + ṡ2 = a2

3b2

[
a′′

a
+ 2

b′′

b
+ a′b′

a b

+2

r

(
a′

a
+ 2

b′

b

)
− b′2

b2

]
,

3ṡ s̈ + s
...
s = 0. (34)

The metric of the internal manifold must be chosen so as
to satisfy the two conditions in (34). To determine metric
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functions according to all these junction conditions, it is nec-
essary to use some auxiliary conditions. We shall see below
that these equations are consistent with a collapsing time
dependent internal metric. In fact, one may argue that junc-
tion conditions indeed force such a possibility. Additionally,
we must also ascertain the physical viability of the spacetime
metric. From Eqs. (11), (12) and (6), the pressure anisotropy
factor � = pt − pr has the form

� = F

b2 s2

[
b′′

b
− 2 b′ 2

b2 + a′′

a
− 2 a′ b′

a b
− 1

r

(
a′

a
+ b′

b

)]

+ F ′′

b2 s2 − F ′

b2 s2

(
2b′

b
+ 1

r

)
. (35)

The general expression for the shear free spacetime as given
in (35) is has the complicated form. To find the solution of
the metric functions and mathematical simplicity, we take an
adhoc form of the pressure anisotropy � to be:

� = F ′′

b2 s2 − F ′

b2 s2

(
2b′

b
+ 1

r

)

− F

b2 s2

[
2 a′ b′

a b
− a′′

a
+ a′

r a

]
(36)

Although, we have chosen this form of the anisotropy in
pressure � for the mathematical simplicity, later we will see
that they represents the physically viable solutions of the
potentials. Also, this choice of � is physically significant,
such that � is regular throughout the collapse. It must be
noted that this choice of the anisotropy (36) reduces the total
pressure anisotropic equation (35) as differential equation of
only one function, given by

0 = 1

s2 b2

(
b′′

b
− 2 b′ 2

b2 − b′

r b

)

, (37)

The form of the function b(r) is

b(r) = −2[C3 r
2 + 2C4]−1, (38)

where C3 and C4 are constant of integration.
Let us now use the fact that under certain conditions, a

(n + 1)-dimensional space can be embedded into a pseudo
Euclidean space of dimension (n + 2) [51]. Thus the neces-
sary and sufficient condition for any Riemannian space to be
an embedding class I is the Karmarkar condition [52,53],

Rrtrt Rθφθφ = Rrθrθ Rtφtφ − Rθr tθ Rφr tφ. (39)

The non vanishing components of the Riemann tensor for the
metric (6) are

Rrtrt = a2
(
a′′

a
− b2s

a2 s̈ − a′

a

b′

b

)
,

Rθφθφ = r4b2s2

(
b2

a2 ṡ
2 − 2b′

rb
− b′ 2

b2

)

sin2 θ, (40)

Rrθrθ = r2b2s2

(
b2

a2 ṡ
2 − b′

rb
− b′′

b
+ b′ 2

b2

)

,

Rθr tθ = r2b2s

a
a′ṡ, (41)

Rtφtφ = r2a2b

(
a′

ra
− b2s

a2 s̈ + a′

a

b′

b

)
sin2 θ ,

Rφr tφ = sin2 θRθr tθ . (42)

Using the expressions for Riemannian tensors from Eqs. (40)–
(42) into the Eq. (39) we have

0 = b2ṡ2b3

(
a′′

a
− 2

a′

a

b′
b

+ a′ 2

a2 − a′

ra

)

−r2b3ss̈

(
b′′

b
− 2

b′ 2

b2 − b′

rb

)

+r2aa′b′′
(
b′

b
+ 1

r

)
− r2aba′′

(
b′ 2

b2 + 2
b′

rb

)

+raba′
(
b′

rb
+ 2

b′ 2

b2

)

. (43)

For a given form of metric function b(r) (38), the class I
condition in Eq. (43) is nonlinear. A physical relevant col-
lapsing model must satisfy (30) and (43) simultaneously. It
must be noted that simplest choice of solutions of (30) is a
linear solution [71]

s(t) = −CZ t, (44)

CZ > 0. The form of the other metric function a(r) is
obtained by using Eq. (38) and (44) into the class 1 condition
(43)

a(r) = 1

2
√

2C3C4
[C2

4 (C1b(r) + 4C2C3)
2 − 4C2

Z ]1/2 (45)

where C1 and C2 are integration constants. Surprisingly,
the quantity in the numerator inside the square root, arises
naturally from the matching of the Ricci scalar (and it’s
derivative), given in (34) These forms of the solutions of
the gravitational potentials are same as obtained in [57] for
shear free spacetime. In [57], it has been shown that for the
static case, Karmarkar condition together with the pressure
isotropy yields the Schwarzschild [72] like form of the metric
functions. Also, it has been shown that these set of gravita-
tional potentials are the special class of those found in [73].
Thus, although we have assume this particular form of �

(36) for the mathematical simplicity, represents the physi-
cally viable solutions.

It is now instructive to rewrite the physical quantities of
the matter cloud in terms of the metric variables for a better
understanding of the dynamics of spacetime during the col-
lapse process. These expressions have been written in detail
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in the Appendix. The boundary condition (30) in the view of
these equations in the Appendix, (63)–(65) becomes

2s s̈ + ṡ2 − 2xṡ + b s T D
rt = y − T D

rr , (46)

where T D
rr and T D

rt are given by equations (31) and (32)
respectively and the quantities x and y are

x =
(
a′

b

)

�

,

y =
(
a2

b2

[
b′ 2

b2 + 2

r

b′

b
+ 2a′b′

ab
+ 2

r

a′

a

])

�

. (47)

The metric functions a(r) and b(r) should not vanish during
the collapsing phenomena, since otherwise the metric shall
become degenerate. This also implies that their signatures
remain unchanged. For second metric potential to be positive
i.e. a(r) > 0 we must have, from (45), that

C2
Z < C2

4

[
C1

C3r2 + 2C4
− 2C2C3

]2

. (48)

This equation also implies that at the center of the cloud,
r = 0, we must have CZ < C1 − 2C2C3C4.

The graphical representations of the physical quantities
(62)–(65) shows that they are well defined throughout the
stellar collapse for both the f (R) models. Figures 1a–c, 2a–
c, 3a–c and 4a–c shows that the density, radial pressure, tan-
gential pressure and pressure anisotropy are positive and reg-
ular throughout the collapse for all the f (R) models and the
parameters considered here. Also, as seen from the Fig. 5a–
c, the heat flux increase as the collapse starts and remains
positive throughout the collapse for these cases (Fig. 6).

A related quantity of importance in this study is the total
luminosity visible to an observer at infinity, which may be
defined in terms of the mass loss from the boundary surface:

L∞ = −
(
dm

dv

)

�

=
[
r2 s2 b2 pr

2

(
1 + r b′

b
+ r b ṡ

a

)2
]

�

, (49)

where we have used the Eqs. (11), (27) and (28). Now, as soon
as the black hole is formed, by definition, the luminosity of
the surface is zero. From the above equation, this implies that
sufficient condition for the formation of a black hole is
[

1 + r b′

b
+ r b ṡ

a

]

�

= 0. (50)

Naturally, for any static observer at asymptotic infinity, the
redshift diverges at the time of formation of the black hole.

To show that these spacetime solutions are physically
viable, we show that they satisfy the energy conditions as
well. Indeed, all the energy conditions namely weak (W), null
(N), dominant (D) and strong (S) hold good for the collapsing
star. In the following we list these conditions [72,74,75]

E1 : (ρ + pr )2 − 4q2 ≥ 0 (D/S/W)
E2 : ρ − pr ≥ 0 (D)

E3 : ρ− pr −2pt +
√

(ρ + pr )2 − 4q2 ≥ 0 (D)

E4 : ρ − pr +
√

(ρ + pr )2 − 4q2 ≥ 0 (W/D)

E5 : ρ − pr + 2pt +
√

(ρ + pr )2 − 4q2 ≥ 0 (D/W/S)

E6 : 2pt +
√

(ρ + pr )2 − 4q2 ≥ 0 (S)
The star should also satisfy

E7 : ρ > 0, pr > 0, pt > 0, and ρ′ < 0, p′
r < 0, p′

t < 0.

It is clear from the above conditions that E1, E2,E3 & E7
are enough to validate the physical conditions existing inside
the star. For the radiating- collapsing stellar models in f (R)

gravity, Fig. 8a–c show that the energy conditions are positive
and regular throughout the interior of the star.

2.1 Stability criteria

The study of dynamical instability (stability) of spherical stel-
lar system shows that for adiabatic index � < 4/3 (� > 4/3)

the stellar system becomes unstable (stable) as the weight of
the stellar system increase much faster (remains less than)
than that of its pressure [76]. Also, the causality condition
imposes certain constraints on the dynamics of the stellar
system such that inside the star, the radial Vr and the trans-
verse Vt components of the speed of sound should be less
than the speed of the light (c = 1), so that 0 ≤ Vr ≤ 1 and
0 ≤ Vt ≤ 1 [77]. Thus, to check the stability/instability of
the collapsing stellar system, we need to study the behavior
of the important physical quantities, adiabatic index, sound
of the speed which are defined as [50,77,78]

�e f f =
[
∂(ln pr )

∂(ln ρ)

]

�

=
[(

ṗr
pr

)(
ρ̇

ρ

)]

�

(51)

Vr = d pr
dρ

, V t = d pt
dρ

(52)

Although stability may be understood from the behavior
of the pressure and density variables, the quantities in (51)
and (52) are considered to be better to establish stability.
For f (R) = R + λR2 model with λ = 5, Figs. 7a and 11a
shows that the total luminosity and the adiabatic index are
positive and increasing. Note that the adiabatic index attains
a maximum value where the luminosity is maximum. This
behavior of the luminosity and adiabatic index can be inter-
preted as follows. Any static observer at asymptotic infinity
will see an exponentially radiating radial source until a time
when luminosity reaches its maximum value after which it
instantaneously turn off. This is due to the fact that the total
mass of the star radiates linearly as seen from the Fig. 6b
and when the star reaches its maximum luminosity, there
is no mass left to radiates and hence the observer at rest
at infinity will see sudden turn off of the light source. The
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Fig. 1 a–c Shows the plots of the density ρ (62) w.r.t. time t and
radial r coordinates for f (R) = R + λR2 with λ = 5, f (R) = R1+ε

with ε = 0.01 and f (R) = R + λ
[
exp (−γ R) − 1

]
with λ = 0.1 &

γ = 0.0002 respectively. For each of these f (R) models, it remains
regular as well as positive throughout the collapse

Fig. 2 a–c Shows the plots of the radial pressure pr (63) w.r.t. time t
and radial r coordinates for f (R) = R+λR2 with λ = 5, f (R) = R1+ε

with ε = 0.01 and f (R) = R + λ
[
exp (−γ R) − 1

]
with λ = 0.1 &

γ = 0.0002 respectively. For each of these f (R) models, it remains
regular as well as positive throughout the collapse

Fig. 3 a–c Shows the plots of the tangential pressure pt (64) w.r.t.
time t and radial r coordinates for f (R) = R + λR2 with λ = 5,
f (R) = R1+ε with ε = 0.01 and f (R) = R + λ

[
exp (−γ R) − 1

]

with λ = 0.1 & γ = 0.0002 respectively. For each of these f (R)

models, it remains regular as well as positive throughout the collapse

similar kind of behavior were obtained in [78]. Figure 11a
shows that the effective adiabatic index is positive and less
than 4/3 which implies that the considered stellar system is

unstable and representing the collapsing scenario [76]. For
f (R) = R1+ε , and f (R) = R + λ

[
exp (−σ R) − 1

]
mod-

els, similar behavior of luminosity is obtained as that of for
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Fig. 4 a–c Shows the plots of the pressure anisotropy � (36) w.r.t.
time t and radial r coordinates for f (R) = R + λR2 with λ = 5,
f (R) = R1+ε with ε = 0.01 and f (R) = R + λ

[
exp (−γ R) − 1

]

with λ = 0.1 & γ = 0.0002 respectively. For each of these f (R)

models, it remains regular as well as positive throughout the collapse

Fig. 5 a–c Shows the plots of the heat flux q (65) w.r.t. time t and radial r coordinates for f (R) = R + λR2 with λ = 5, f (R) = R1+ε with
ε = 0.01 and f (R) = R + λ

[
exp (−γ R) − 1

]
with λ = 0.1 & γ = 0.0002 respectively. For each of these f (R) models, it remains positive

throughout the collapse

(a) (b)

Fig. 6 a Plot of the expansion scalar � (66) w.r.t. time t and radial r coordinates. At the beginning of collapse � has zero value and it starts
decreasing and remains negative throughout the collapse. b Plot of the mass of the collapsing star (67) w.r.t. time t , and it shows that mass radiates
linearly
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(a) (b) (c)

Fig. 7 a–c Shows the plots of the luminosity (49) at r = r� = 1, w.r.t. time t for f (R) = R + λR2 with λ = 5, f (R) = R1+ε with ε = 0.01 and
f (R) = R + λ

[
exp (−γ R) − 1

]
with λ = 0.1 & γ = 0.0002 respectively

Fig. 8 a–c Shows the plots of energy conditions E1, E2 and E3 w.r.t. time t and radial r coordinates for f (R) = R+λR2 with λ = 5 respectively

Fig. 9 a–c Shows the plots of energy conditions E1, E2 and E3 w.r.t. time t and radial r coordinates for f (R) = R1+ε with ε = 0.01 respectively
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Fig. 10 a–c Shows the plots of energy conditions E1, E2 and E3 w.r.t. time t and radial r coordinates for f (R) = R + λ
[
exp (−γ R) − 1

]
with

λ = 0.1 & γ = 0.0002 respectively

(a) (b) (c)

Fig. 11 a–c Shows the plots of adiabatic index at r = r� = 1, w.r.t. time t for f (R) = R + λR2 with λ = 5, f (R) = R1+ε with ε = 0.01 and
f (R) = R + λ

[
exp (−γ R) − 1

]
with λ = 0.1 & γ = 0.0002 respectively

the first model. Figure 11b shows that the effective adiabatic
index is constant function of time, and is positive and less than
4/3, which implies it represents the collapsing scenario. As
we have shown graphically that the star radiates all its mass
before reaching at the singularity. So, there are no trapped
surfaces formed during the collapse. Which implies that nei-
ther the black hole nor naked singularity are the end state of
the collapse.

2.2 Thermal properties

Earlier studies have shown that relaxation effects are impor-
tant to understand dissipative gravitational collapse [59–
61,64,79–81]. To study the temperature profiles, we consider
the transport equation for the metric (6) given by [58,59,82]

τhν
μq̇ν + qμ = −k

(
hν

μ∇νT + T u̇μ

)
(53)

τ (qbs),t + q a b s = −k (aT ),r

bs
, (54)

where, α > 0,β > 0, γ > 0 and σ > 0, & hμν = gμν +
uμuν . Also,

τc = (α/γ ) (T )−σ , k = γ τc T
3, τ = τc (β γ )/α (55)

where τc is the mean collision time, k is thermal conductivity
and τ represents the relaxation time respectively [59,66]. The
quantity τ measures the strength of relaxational effects and
is called the causality index. The values τ = 0 or β = 0
represents the noncausal temperature profile.

Using conditions in Eq. (55), the the causal heat transport
equation (54) becomes

βT−σ (qbs),t + q a b s = −α (aT ),r

bs
T 3−σ . (56)

The noncausal solution of the heat transport equation (56),
with β = 0 i.e. τ = 0 are [66]

(a T )4 = − 4

α

∫
a4 q b2 s2 dr + G(t), σ = 0 (57)

ln (a T ) = − 1

α

∫
q b2 s2 dr + G(t). σ = 4 (58)
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(a) (b) (c)

Fig. 12 a–c Shows the plots of the temperature profiles of the collapsing stellar system w.r.t. radial coordinate r for σ = 0 and for f (R) = R+λR2

with λ = 5, f (R) = R1+ε with ε = 0.01 and f (R) = R + λ
[
exp (−γ R) − 1

]
with λ = 0.1 & γ = 0.0002 respectively

The causal solution of the above heat transport equation (56)
are [66]

(a T )4 = − 4

α

[
β

∫
a3 b s(q b s),t dr +

∫
a4 q b2 s2 dr

]

+G(t), σ = 0 (59)

(a T )4 = −4β

α
exp

(
−

∫
4 q b2 s2

α
dr

)

∫
a3 b s(q b s),t dr exp

(∫
4 q b2 s2

α
dr

)

+G(t) exp

(
−

∫
4 q b2 s2

α
dr

)
, σ = 4 (60)

where G(t) appears as a function of integration and is deter-
mined by following boundary condition

(
T 4

)

�
=

(
L∞

4πδr2b2s2

)

�

. (61)

where L∞ is the total luminosity for an observer at infinity
given by (49) and δ > 0 is constant.

The Fig. 12a–c shows that for all these three f (R) models
under consideration, the stellar system deviates from thermo-
dynamical equilibrium due to the relaxation effects. Also, the
causal and noncausal temperature profiles differ inside the
interior of the star and causal temperature remains greater
than that of the non-causal temperature.

3 Discussion of the results

In this paper, we investigated the dynamics of a collapsing
matter configuration in f (R) gravity. The matter is assumed
to be so massive that no stable compact objects like a white
dwarf or a neutron star forms. The interior spacetime is
smoothly matched to the outgoing radiation Vaidya met-

ric across a timelike hypersurface. Incidentally, as has been
noted earlier too, the matching conditions for the f (R) grav-
ity is highly restrictive, since the geometric variables which
are to matched here not only includes induced metric and the
extrinsic curvatures, but also the trace of the extrinsic cur-
vatures, and the Ricci scalar along with it’s time derivative.
However, we have shown that all these matching conditions
can be carried out consistently, leading to a spacetime solu-
tion which admits a collapsing scenario in which the matter
cloud radiates heat flux, in such a manner that the entire mat-
ter is radiated out without forming a black hole. Although
similar solutions have been reported earlier for GR, our solu-
tion incorporates these features into the collapsing models of
three particular f (R) gravity models, while maintaining all
the energy conditions. In particular, for all the three f (R)

theories we have analyzed physical quantities like energy
density, in Eq. (62), radial pressure (63) and tangential pres-
sure in Eq. (64), pressure anisotropy, in Eq. (36) and it can be
seen from the Figs. 1a–c, 2a–c, 3a–c and 4a–c that they are
regular and positive throughout the collapse. From Fig. 5a–c
it is also clear that the radial heat flux (65) is finite and posi-
tive throughout collapse. In particular, for f (R) = R+λR2,
Figs. 7a and 11a show that both total luminosity and the
effective adiabatic index are positive and increasing and have
maximum value where luminosity is maximum. This behav-
ior of the luminosity and adiabatic index can be interpreted as
follows: an observer at rest at infinity will see a exponential
radiating radial source until it reaches time when luminosity
reaches its maximum value and then instantaneous turn off
of the radial source. This happens since the total mass of the
star radiates linearly as seen from the Fig. 6b, and when the
star reaches its maximum luminosity, there is no mass left
to radiate and hence the observer at rest at infinity will see
sudden turn off of the light source. The similar kind of behav-
ior were obtained in GR too [78]. The Fig. 11a also shows
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that the effective adiabatic index is positive and less than 4/3
which implies that the considered stellar system is unstable
and represents a collapsing phenomena. Also note that the
Fig. 8a–c show that the energy conditions are positive and
regular throughout the interior of the star.

For f (R) = R1+ε and f (R) = R + λ
[
exp (−σ R) − 1

]

similar behavior is obtained as well. For example, Fig. 11b
and c shows that the effective adiabatic index is constant
function of time, and is positive and less than 4/3, and hence
represents a collapsing scenario. We have shown graphically
that the star radiates all its mass before reaching the singu-
larity. So, there are no trapped surfaces formed during the
collapse. This implies that neither a black hole nor a naked
singularity exist at the end state of collapse. The Figs. 9a–
c and 10a–c show that these model under consideration are
physically viable. Also, the results obtained here reduces to
those for GR for f (R) = R [57] (Figs. 11, 12).

Let us now comment on the nature of the central singular-
ity. First, we note that the Ricci scalar (9) together with (44)
imply that it diverges at t = 0, when all the matter has been
radiated away. So, naturally the question arises regarding
the gravitational strength of the central curvature singular-
ity (a strong singularity would imply a naked singularity).
However, in the present case, the curvature scalars go as t−2

which is precisely the sufficient condition for the singularity
to be weak. So, our solutions represent a physically viable
model where the spherically symmetric collapsing matter
cloud undergoes gravitational collapse, which, during the
collapse, also radiates away mass in the form of heat flux.
The flux is radiated at such a rate that no horizon is ever
formed and the central singularity is naked but gravitation-
ally weak in nature.
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Appendix

In this appendix, we give the detail expressions of the phys-
ical quantities of the collapsing matter cloud in terms of the
metric functions. More precisely, we give the values for (10)–
(13), and other quantities like the expansion scalar (8) and
the Misner–Sharp mass function (27).

ρ = 6FC3C
3
4

S1C
2
Z t

2

[
C1 − 2C2C3

(
2C4 + C3r

2
)]2

+ 3ṡ Ḟ

s a2 − F ′′
b2 s2 + f − R F

2
− F ′

b2 s2

[
b′
b

+ 2

r

]
, (62)

pr = FC3C
2
4

S1C
2
Z t

2

[
2C1C2C3

(
12C2

4 + 4C3C4r
2 − C3r

2
)

−C2
1

(
4C4 − C3r

2
)

− 8C2
2C

2
3C4

(
2C4 + C3r

2
)2

]

−
(

f − R F

2

)
− Ḟ

a2

(
F̈

Ḟ
+ 2ṡ

s

)

+ F ′
b2 s2

(
a′
a

+ 2

r
+ 2b′

b

)
, (63)

pt = FC3C
2
4

S1C
2
Z t

2

[
C4

1C
2
4

(
C3r

2 − 4C4

)

+2C3
1C2C3C

2
4

(
−3C2

3r
4 + 8C3C4r

2 + 28C2
4

)]

+ F ′
r b2 s2 + 2FC2

1C3C
2
4

S1C
2
Z t

2

[(
C3r

2 + 2C4

)2

×
[
6C2

2C
2
3C

2
4

(
C3r

2 − 6C4

)
+ C2

Z

(
2C4 − C3r

2
)]]

+ F ′a′
a b2 s2 + 2FC1C2C

2
3C

2
4

S1C
2
Z t

2

×
[(

C3r
2 + 2C4

)3 [
C2
Z

(
C3r

2 − 6C4

)

−4C2
2C

2
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2
4

(
C3r

2 − 10C4

)]]

+ F ′′
b2 s2 − 8FC2

2C
3
3C

3
4

S1C
2
Z t

2

[(
C3r

2 + 2C4

)4

×
(

4C2
2C

2
3C

2
4 − C2

Z

) ]

−
(

f − R F

2

)
− Ḟ

a2

(
F̈

Ḟ
+ 2ṡ

s

)
, (64)

q = −

⎡

⎢⎢⎢
⎣
C5/2

4 C3/2
3

C2
Z t

3

4
√

2r FC1

[
4C2C3 − 2C1

C3r2+2C4

]

[
C2

4

(
4C2C3 − 2C1

C3r2+2C4

)2 − 4C2
Z

]3/2

⎤

⎥⎥⎥
⎦

+ 1

a2 b2 s2

[
Ḟ ′ − Ḟa′

a
− ṡ F ′

s

]
, (65)

� = 6
√
C3C4

t

√
C2

4

(
2C2C3 − C1

C3r2+2C4

)
− 2C2

Z

, (66)

m = 8tr3C3C
3
4CZ

(
C3r2 + 2C4

)3

×
⎡

⎣
2C2C3

(
C3r

2 + 2C4

)
− C1

2
(
C3r2 + 2C4

) (
C2C3C

2
4 − C2

Z

)
− C1C

2
4

⎤

⎦ ,
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S1 = C2
4

(
2C2 C3 − C1/

(
2C4 + C3 r

2
))2 − C2

Z . (67)
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