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Abstract The standard model leptons can be gauged in
an anomaly free way by three possible gauge symmetries
namely Le − Lμ, Le − Lτ , and Lμ − Lτ . Of these, Le − Lμ

and Le − Lτ forces can mediate between the Sun and the
planets and change the perihelion precession of planetary
orbits. It is well known that a deviation from the 1/r2 New-
tonian force can give rise to a perihelion advancement in the
planetary orbit, for instance, as in the well known case of
Einstein’s gravity (GR) which was tested from the observa-
tion of the perihelion advancement of the Mercury. We con-
sider the long range Yukawa potential which arises between
the Sun and the planets if the mass of the gauge boson is
MZ ′ ≤ O(10−19)eV. We derive the formula of perihelion
advancement for Yukawa type fifth force due to the mediation
of such U (1)Le−Lμ,τ gauge bosons. The perihelion advance-
ment for Yukawa potential is proportional to the square of
the semi major axis of the orbit for small MZ ′ , unlike GR
where it is largest for the nearest planet. For higher values of
MZ ′ , an exponential suppression of the perihelion advance-
ment occurs. We take the observational limits for all planets
for which the perihelion advancement is measured and we
obtain the upper bound on the gauge boson coupling g for
all the planets. The Mars gives the stronger bound on g for
the mass range ≤ 10−19eV and we obtain the exclusion plot.
This mass range of gauge boson can be a possible candidate
of fuzzy dark matter whose effect can therefore be observed
in the precession measurement of the planetary orbits.

a e-mail: tanmay@prl.res.in
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1 Introduction

It is well known that a deviation from the inverse square
law force between the Sun and the planets results in the per-
ihelion precession of the planetary orbits around the Sun.
One of the most prominent example is the case of the Ein-
stein’s general relativity (GR) which predicts a deviation
from Newtonian 1/r2 gravity. In fact, one of the famous
classical tests of GR was to explain the perihelion advance-
ment of the Mercury. There was a mismatch of about 43 arc
seconds per century from the observation [1] which could
not be explained from Newtonian mechanics by consider-
ing all non-relativistic effects such as perturbations from the
other Solar System bodies, oblateness of the Sun, etc. GR
explains the discrepancy with a prediction of contribution
of 42.9799′′/Julian century [2]. However there is an uncer-
tainty in the GR prediction which is about 10−3 arc seconds
per century [2–5] for the Mercury orbit. The current most
accurate detection of perihelion precession of Mercury is
done by MESSENGER mission [3]. In the near future, more
accurate results will come from BepiColombo mission [6].
Other planets also experience such perihelion shift, although
the shifts are small since they are at larger distance from the
Sun [7,8].

The uncertainty in GR prediction opens up the possibility
to explore the existence of Yukawa type potential between
the Sun and the planets leading to the fifth force which is a
deviation from the inverse-square law. Massless or ultralight
scalar, pseudoscalar or vector particles can mediate such fifth
force between the Sun and the planets. Many recent papers
constrain the fifth force originated from either scalar-tensor
theories of gravity [9–11] or the dark matter components
[11–13]. Fifth forces due to ultra light axions was studied
in [14]. Ultra light scalar particles can also be probed from
the coupling of electron in long range force effects in tor-
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sion balance experiment [15]. They can also be probed from
superradiance phenomena [16,17]. The unparticle long range
force from perihelion precession of Mercury was studied in
[18]. Perihelion precession of planets can also constrain the
fifth force of dark matter [5]. In this paper, we consider the
Yukawa type potential which arises in a gauged Le − Lμ,τ

scenario and we calculate the perihelion shift of planets (Mer-
cury, Venus, Earth, Mars, Jupiter, and Saturn) due to coupling
of the ultralight vector gauge bosons with the electron current
of the macroscopic objects along with the GR effect.

In the leptonic sector of the standard model, we can con-
struct three gauge symmetries Le − Lμ, Le − Lτ , Lμ − Lτ

in an anomaly free way and they can be gauged [20–23].
Le−Lμ and Le−Lτ [24–27] long range forces can be probed
in a neutrino oscillation experiment. Lμ−Lτ long range force
cannot be probed in neutrino oscillation experiment because
Earth and Sun do not contain any muon charge. However, if
there is an inevitable Z − Z ′ mixing, then Lμ − Lτ force
can be probed [28]. Recently in [29,30], Lμ − Lτ long range
force was probed from the orbital period decay of neutron
star-neutron star and neutron star-white dwarf binary systems
since they contain large muon charge. However, as the Sun
and the planets contain lots of electrons and the number of
electrons is approximately equal to the number of baryons,
we can probe Le−Lμ,τ long range force from the Solar Sys-
tem. The number of electrons in i’th macroscopic object (Sun
or planet) is given by Ni = Mi/mn , where Mi is the mass of
the i’th object andmn is the mass of nucleon which is roughly
1GeV. Le − Lμ,τ gauge boson is mediated between the clas-
sical electron current sources: Sun and planet as shown in
Fig. 1. This causes a fifth force between the planet and the
Sun along with the gravitational force and contributes to the
perihelion shift of the planets. The Yukawa type of potential

in such a scenario is V (r) � g2

4πr e
−MZ ′r , where g is the con-

stant of coupling between the electron and the gauge boson
and MZ ′ is the mass of the gauge boson. MZ ′ is restricted
by the distance between the Sun and the planet which gives
the strongest bound on gauge boson mass MZ ′ < 10−19eV.
Therefore, the lower bound of the range of this force is given
by λ = 1

MZ ′ > 109Km. Le − Lμ,τ long range force can also
be probed from MICROSCOPE experiment [31–33]. In this
mass range the vector gauge boson can also be a candidate for
fuzzy dark matter (FDM), although FDM is usually referred
to as ultralight scalars [34,35].

The paper is organised as follows. In Sect. 2, we give a
detail calculation of the perihelion precession of planets due
to such fifth force in the background of the Schwarzschild
geometry around the Sun. In Sect. 3, we obtain constraints
on the Le − Lμ,τ gauge coupling and the mass of the gauge
boson for planets Mercury, Venus, Earth, Mars, Jupiter, and
Saturn and we obtain the exclusion plot of g versus MZ ′ for
all the planets mentioned before. In Sect. 4, we summarize

Fig. 1 Mediation of Le − Lμ,τ vector gauge bosons between planet
and Sun

our results. We use the natural system of units throughout the
paper.

2 Perihelion precession of planets due to long range
Yukawa type of potential in the Schwarzschild
spacetime background

The dynamics of a Sun-planet system in presence of a
Schwarzschild background and a non gravitational Yukawa
type Le − Lμ,τ long range force is given by the following
action:

S = −Mp

∫ √
−gμν ẋμ ẋνdτ − g

∫
Aμ J

μdτ, (1)

where “˙” (overdot) denotes the derivative with respect to the
proper time τ , gμν is the metric tensor for the background
spacetime, Mp is the mass of the planet, g is the coupling
constant which couples the classical current Jμ = qẋμ of
the planet with the Le − Lμ,τ gauge field Aμ due to the Sun,
and q is the total charge due to the presence of electrons in
the planet. Varying the action Eq. (1), we obtain the equation
of motion of the planet as

ẍα + �α
μν ẋ

μ ẋν = gq

Mp
gαμ(∂μAν − ∂ν Aμ)ẋν . (2)

In Appendix A, we show the detailed calculation of Eq. (2).
For the static case Aμ = {V (r), 0, 0, 0}, where V (r) is the
potential leading to a long range Le − Lμ,τ Yukawa type
force. �α

μν denotes the Christoffel symbol for the background
spacetime. For the Sun-Planet system, the background is a
Schwarzschild spacetime outside the Sun and it is described

123



Eur. Phys. J. C (2021) 81 :286 Page 3 of 10 286

by the line element

ds2 = −
(

1 − 2M

r

)
dt2 +

(
1 − 2M

r

)−1
dr2 + r2dθ2

+r2 sin2 θdφ2, (3)

where M is the mass of the Sun. The Christoffel symbols for
the metric Eq. (3) are given in Appendix A.

Hence, to obtain the solution for temporal part of the
Eq. (2), we write

ẗ + 2M

r2
(

1 − 2M
r

) ṙ ṫ = gq

Mp

(
1 − 2M

r

) dV

dr
ṙ . (4)

Integrating Eq. (4) once, we get

ṫ =
(
E + gqV

Mp

)
(

1 − 2M
r

) , (5)

where E is the constant of motion. E is interpreted as the total
energy per unit rest mass for a timelike geodesic relative to
a static observer at infinity.

Similarly, the φ part of Eq. (2) is

φ̈ + 2

r
ṙ φ̇ = 0. (6)

After integration we get

φ̇ = L

r2 , (7)

where L is the angular momentum of the system per unit
mass, which is also a constant of motion.

The radial part of Eq. (2) is

r̈ − Mṙ2

r2
(

1 − 2M
r

) +
M

(
1 − 2M

r

)

r2 ṫ2 − r
(

1 − 2M

r

)
φ̇2

= gq

Mp

(
1 − 2M

r

)dV
dr

ṫ . (8)

Using Eqs. (5) and (7) in Eq. (8), we obtain

r̈ + M

r2
(

1 − 2M
r

)((
E + gqV

Mp

)2 − ṙ2
)

− L2

r3

(
1 − 2M

r

)

= gq

Mp

(
E + gqV

Mp

)dV
dr

. (9)

Again, for a timelike particle gμν ẋμ ẋν = −1 and this gives

(
E + gqV

Mp

)2 − 1

2
= ṙ2

2
+ L2

2r2 − ML2

r3 − M

r
. (10)

Using Eq. (10) in Eq. (9), we get

r̈ + 3ML2

r4 + M

r2 − L2

r3 = gq

Mp

(
E + gqV

Mp

)dV
dr

. (11)

We can also obtain Eq. (11) by directly differentiating
Eq. (10).

The potentialV (r) is generated due to the presence of elec-
trons in the Sun and it is given asV (r) � gQ

4πr e
−MZ ′r+O(MR ),

where R is the radius of the Sun. Note that we keep only the
Yukawa term in the form of V (r) as we are interested in the
leading order contribution only (see Appendix C). Hence,
from Eq. (10) we write

E2 − 1

2
= ṙ2

2
+ L2

2r2 − ML2

r3 − M

r
− g2N1N2E

4πMpr
e−MZ ′r , (12)

where we have neglected O(g4) term because the coupling is
small and its contribution will be negligible. Here Q = N1 is
the number of electrons in the Sun and q = N2 is the number
of electrons in the planet. For planar motion, Lx = Ly = 0,
and θ = π/2. The orbit of the planet is stable when E < 1.
In the presence of gravitational potential and fifth force E =
E � 1 − M

2a + g2Qq
4πMp

(
u+u2−e

−MZ ′ /u+−u2+u−e−MZ ′ /u−
u2+−u2−

)
which

is explained in Appendix D.
The first term on the right hand side of Eq. (12) repre-

sents the kinetic energy part, the second term is the centrifu-
gal potential part, and the fourth term is the usual Newto-
nian potential. Due to general relativistic ML2

r3 term, there is
an advancement of perihelion motion of a planet. The last
term arises due to exchange of a U (1)Le−Lμ,τ gauge bosons
between electrons of a planet and the Sun. Here, MZ ′ is the
mass of the gauge boson. MZ ′ is constrained from the range
of the potential which is basically the distance between the
planet and the Sun. Using ṙ = L

r2
dr
dφ

, we write Eq. (12) as

[ d

dφ

(1

r

)]2 + 1

r2 = E2 − 1

L2 + 2M

r3 + 2M

L2r

+ g2N1N2E

2πL2rMp
e−MZ ′r . (13)

Applying d
dφ

on both sides and using the reciprocal coordi-

nate u = 1
r we obtain from Eq. (13)

d2u

dφ2 + u = M

L2 + 3Mu2 + g2N1N2

4πL2Mp
e− MZ ′

u

+g2N1N2EMZ ′

4πL2Mpu
e− MZ ′

u . (14)

As E appears as a multiplication factor in Eq. (14), we take
E ≈ 1 as other terms are very small. Hence, expanding
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Eq. (14) up to the leading order of MZ ′ , we get

d2u

dφ2 + u = M

L2 + 3Mu2 + g2N1N2

4πL2Mp
− g2N1N2M2

Z ′
8πL2Mpu2 , (15)

where for non circular orbit d
dφ

(
1
r

)
�= 0. The first term on the

right hand side of Eq. (15) is the usual term which comes in
Newton’s theory. The second term is the general relativistic
term which is a perturbation of Newton’s theory. The last two
terms arise due to the presence of long range Yukawa type
potential in the theory.

We write Eq. (15) as

d2u

dφ2 + u = M ′

L2 + 3Mu2 − g2N1N2M2
Z ′

8πL2Mpu2 , (16)

where M ′ = M + g2N1N2/4πMp.
We assume that u = u0(φ) + �u(φ), where, u0(φ) is the

solution of Newton’s theory with the effective mass M ′ and
�u(φ) is the solution due to general relativistic correction
and Yukawa potential. Thus we write

d2u0

dφ2 + u0 = M ′

L2 . (17)

The solution of Eq. (17) is

u0 = M ′

L2 (1 + e cos φ), (18)

where e is the eccentricity of the planetary orbit. The equation
of motion for �u(φ) is

d2�u

dφ2 + �u = 3MM ′2

L4 (1 + e2 cos2 φ + 2e cos φ)

− g2N1N2M2
Z ′L4

8πL2MpM ′2(1 + e2 cos2 φ + 2e cos φ)
. (19)

The solution of Eq. (19) is

�u = 3MM ′2

L4

[
1 + e2

2
− e2

6
cos 2φ + eφ sin φ

]

−g2N1N2M2
Z ′L4

8πL2MpM ′2
[

− cos φ

e(1 + e cos φ)

+ sin2 φ

(1 − e2)(1 + e cos φ)

− e

(1 − e2)3/2 sin φ cos−1
( e + cos φ

1 + e cos φ

)]
. (20)

When �u increases linearly with φ, it contributes to the peri-
helion precession of planets. Therefore, we identify only the
related terms in Eq. (20), neglect all other terms, and rewrite

�u as

�u = 3MM ′2

L4 eφ sin φ

+g2N1N2M2
Z ′L2

8πMpM ′2
e

(1 − e2)(1 + e)
φ sin φ, (21)

where we used cos−1
(

e+cos φ
1+e cos φ

)
�

√
1−e2

1+e φ + O(φ2).

Using Eqs. (18) and (21), we get the total solution as

u = M ′

L2 (1 + e cos φ) + 3MM ′2

L4 eφ sin φ

+g2N1N2M2
Z ′L2

8πMpM ′2
e

(1 − e2)(1 + e)
φ sin φ, (22)

or,

u = M ′

L2 [1 + e cos φ(1 − α)], (23)

where,

α = 3MM ′

L2 + g2N1N2M2
Z ′L4

8πMpM ′3
1

(1 − e2)(1 + e)
. (24)

Under φ → φ+2π , u is not same. Hence, the planet does not
follow the previous orbit. So the motion of the planet is not
periodic. The change in azimuthal angle after one precession
is

�φ = 2π

1 − α
− 2π ≈ 2πα. (25)

The semi major axis and the orbital angular momentum are
related by a = L2

M ′(1−e2)
. Using this expression in Eq. (25)

we get

�φ = 6πM

a(1 − e2)
+ g2N1N2M2

Z ′a2(1 − e2)

4MpM ′(1 + e)
. (26)

In natural system of units Eq. (26) is

�φ = 6πGM

a(1 − e2)
+ g2N1N2M2

Z ′a2(1 − e2)

4Mp(GM + g2N1N2
4πMp

)(1 + e)
. (27)

The energy due to gravity is much larger than the energy
due to long range Yukawa type force. The last term of
Eq. (27) indicates that long range force, which arises due to
U (1)Le−Lμ,τ gauge boson exchange between the electrons of
composite objects, contributes to the perihelion advance of
planets within the permissible limit.
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Table 1 Summary of the
masses, eccentricities [37] of the
orbits, perihelion distances from
the Sun and upper bounds on
gauge boson mass MZ ′ which
are mediated between the
planets and Sun in our Solar
System

Planet Mass Mp(GeV) Eccentricity (e) Perihelion distance a (AU) MZ ′ (eV)

Mercury 1.84 × 1050 0.206 0.31 ≤ 4.26 × 10−18

Venus 2.73 × 1051 0.007 0.72 ≤ 1.83 × 10−18

Earth 3.35 × 1051 0.017 0.98 ≤ 1.35 × 10−18

Mars 3.59 × 1050 0.093 1.38 ≤ 9.56 × 10−19

Jupiter 1.07 × 1054 0.048 4.95 ≤ 2.67 × 10−19

Saturn 3.19 × 1053 0.056 9.02 ≤ 1.46 × 10−19

Table 2 Summary of the uncertainties in the perihelion advance in arc-
seconds per century and upper bounds on gauge boson-electron cou-
pling g for the values of MZ ′ discussed in Table1 for planets in our
Solar System

Planet Uncertainty in
perihelion
advance (as/cy)

g from perihelion
advance

Mercury 3.0 × 10−3 ≤ 1.055 × 10−24

Venus 1.6 × 10−3 ≤ 1.377 × 10−24

Earth 1.9 × 10−4 ≤ 6.021 × 10−25

Mars 3.7 × 10−5 ≤ 3.506 × 10−25

Jupiter 2.8 × 10−2 ≤ 2.477 × 10−23

Saturn 4.7 × 10−4 ≤ 5.040 × 10−24

3 Constraints on U(1)Le−Lμ,τ gauge coupling for
planets in Solar system

The contribution of the gauge boson must be within the
excess of perihelion advance from the GR prediction, i.e;
(�φ)obs − (�φ)GR ≥ (�φ)Le−Lμ,τ . The first term in the
right hand side of Eq. (27) is (�φ)GR and the second term is
(�φ)Le−Lμ,τ . Putting the observed and GR values for (�φ),
we can constrain the U (1)Le−Lμ,τ gauge coupling constants
for all the planets in our Solar System. For Mercury planet,
we write

g2N1N2M2
Z ′a2(1 − e2)

4Mp(GM + g2N1N2
4πMp

)(1 + e)

(century

T

)

< 3.0 × 10−3arcsecond/century, (28)

where 3 × 10−3 arcsecond/century is the uncertainty in the
perihelion advancement from its GR prediction and put upper
bound on the gauge coupling. T = 88 days is the orbital
time period of Mercury. Similarly, we can put upper bounds
on g for other planets. In this section, we constrain the
U (1)Le−Lμ,τ gauge coupling from the observed perihelion
advancement of the planets in the Solar System. We consider
six planets: Mercury, Venus, Earth, Mars, Jupiter, and Sat-
urn. Here, we take the mass of the Sun as M = 1057GeV.
Using Eq. (27), we put an upper bound on g from the uncer-

Fig. 2 Values of the gauge coupling of each planets corresponding to
the Sun-planet distance obtained from Table2. Violet dot is for Jupiter
planet, blue dot is for Mercury planet, black dot is for Venus, cyan dot is
for Saturn, green dot is for Earth and yellow dot is for Mars. The yellow
shaded region is excluded from the torsion balance experiments

tainty of their perihelion advance. In Table 1, we obtain the
upper bound on masses of the gauge bosons which are medi-
ated between the Sun and the planets and, in Table 2, we
show the constraints on the gauge coupling constants from
the uncertainties [19,36] of perihelion advance.

We can write from the fifth force constraint

g2N1N2

4πGMMp
< 1. (29)

This gives the upper bound on g as g < 3.54 × 10−19 for all
the planets. In Fig.2 we show the values of gauge coupling
of the planets corresponding to the planet-Sun distance.

For U (1)Le−Lμ,τ vector gauge bosons exchange between
the planet and the Sun, the mass of the gauge boson is
MZ ′ ≤ O(10−19)eV . In Fig.3, we obtain the exclusion
plots of gauge boson electron coupling for the six planets by
numerically solving Eq. (14). There is an extra multiplica-

tive factor exp[−M ′
Z L

2

M ′ ] in the expression of α if we solve
Eq. (14) numerically in order to incorporate the exponential
suppresion due to higher values of MZ ′ .

The regions above the coloured lines corresponding to
every planets are excluded. Eq. (27) suggests that the peri-
helion shift due to the mediation of Le − Lμ,τ gauge bosons

123



286 Page 6 of 10 Eur. Phys. J. C (2021) 81 :286

Fig. 3 Plot of the coupling
constant g vs the mass of the
gauge bosons MZ ′ for all the
planets. Here red, black, green,
yellow, violet and cyan lines
stand for the Mercury, Venus,
Earth, Mars, Jupiter and Saturn
respectively

is proportional to the square of the semi major axis. This
is completely opposite from the standard GR result where
the perihelion shift is inversely proportional to a for small
MZ ′ . However, for higher values of MZ ′ , the exponential sup-
pression starts dominating. So the contribution of the gauge
boson mediation for perihelion shift is larger for outer plan-
ets. However it also depends on the available uncertainties
for perihelion precession of the planets and other parameters
like orbital time period and eccentricity. From Table 2, we
obtain the stronger bound on the gauge boson coupling is
g ≤ O(10−25). From Fig. 3 it is clear that the Mars gives
the strongest bound among all the planets considered. As
we go to the lower mass region, the exponential term in the
potential will become less effective and the Yukawa potential
effectively becomes Coulomb potential at MZ ′ → 0. Thus
it will be degenerate with 1/r2-Newtonian force and will
not contribute to the perihelion precession of planets at all.
So as we go to the lower mass (< 10−19eV ) region, we get
weaker bound on g. On the other hand, for higher mass region
(> 10−19eV ) the long range force theory breaks down and,
thus we can not go arbitrarily for higher masses.

4 Discussions

Since the Sun and the planets contain a significant number of
electrons, long range Yukawa type fifth force can be medi-
ated between the electrons of Sun and planet in a gauged
Le − Lμ,τ scenario. Also there can be the dipole radiation
of the gauge boson for the planeraty orbits. Following our
previous work [29] on compact binary systems in a gauged
Lμ − Lτ scenario, the energy loss due to dipole radiation

is proportional to the fourth power of the orbital frequency.
The orbital frequency of the Sun-Mercury binary system is
� ∼ 8.79×10−31GeV which is roughly three order of mag-
nitude smaller than the orbital frequency of neutron star-
neutron star and neutron star-white dwarf binary systems
(� ∼ 10−28GeV). The dipole radiation is also proportional
to the square of difference in the charge to mass ratio of the
binary system. For the Sun-planet binary system the charge to
mass ratio is negligibly small and, hence, the dipole radiation
is negligible.

Due to the presence of electrons in Earth and Moon, there
can be a mediation of Le − Lμ,τ type of gauge bosons
and the mass of the gauge boson is constrained by the dis-
tance between the Earth and the Moon which yields MZ ′ <

5.15 × 10−16eV. Due to this large gauge boson mass, we
will have loose bound on the gauge coupling and it is sub-
dominant since, in the manuscript, we are considering the
mass range MZ ′ < 10−19eV and probing the ultralight gauge
bosons from perihelion precession measurements. However,
due to the presence of different electron number densities in
the Earth and the Moon, there is a differential acceleration
of the Earth-Moon system towards the Sun. The presence of
electrons in the Sun at the Solar distance causes a Le − Lμ,τ

type of potential and it puts a bound on the gauge coupling
g < 6.4 × 10−25 with the range ∼ 1013cm (Earth-Sun dis-
tance) [25,39–43].

This ultralight vector gauge bosons mediated between the
Sun and the planets can contribute to the perihelion shift in
addition to the GR prediction. From the perihelion shift calcu-
lation in presence of a long range Yukawa type potential, we
obtain an upper bound on the gauge coupling g ≤ O(10−25)

in a gauged Le−Lμ,τ scenario. The mass of the gauge bosons
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is constrained by the distance between the Sun and the planet
which gives MZ ′ ≤ O(10−19)eV. The electron-gauge boson
coupling obtained from perihelion shift measurement is six
order of magnitude more stringent than our fifth force con-
straint Eq. (29). From Eq. (27) we conclude that, while the
precession of perihelion due to GR is largely contributed by
the planets close to Sun, the contribution of vector gauge
bosons in perihelion precession is dominated by the outer
planets.

The non-universal neutrino masses will explicitly break
the L A − LB where A �= B = e, μ, τ as pointed out by
[38]. For such light Z ′ the best bounds on the leptonic gauge
couplings come from neutrino decays νi → ν j Z ′. The decay
of neutrino to the longitudinal component of Z ′ is equivalent
to the decay into the Goldstone boson with coupling to the
neutrinos gi j = g′mν/M ′

Z . Such decays are suppressed by
neutrino masses but enhanced by the small Z ′ mass and the
best bounds on light Z ′ couplings come from constrains on
neutrino decays.

The coupling constant of long range forces is constrained
to be small ( g′ from fifth force and neutrino oscillation exper-
iments). The Higgs field which gives mass to the Z ′ boson
need not be the same as the fields whose vacuum expecta-
tion values (vevs) give masses to neutrinos. There are several
mechanisms for explaining the smallness of the long range
gauge coupling g′ compared to the other couplings of the
standard model. For instance the Z ′ mass may arise in a
SUSY theory from the Fayet-Ilioupoulous (FI) term and the
smallness of MZ ′ can then be related to the GUT scale vev
of the FI term as motivated by inflation [32,44]. Such small
value of coupling can also be generated by clockwork mech-
anism [45].

The bound on coupling g that we have obtained is not only
as good as the torsion balance [46] or the neutrino oscilla-
tion experiment [25], but also our results possess additional
importance for the following reasons:

(a) Our analysis of the perihelion precession is sensitive to
the magnitude of the potential and the nature of the poten-
tial, i.e. the deviation from the inverse square law.

(b) In our analysis, we are probing larger distance (up to the
planet Saturn) compare to the earth Sun distance.

(c) Since the perihelion shift depends on the value of uncer-
tainty in GR prediction, the future BepiColombo mis-
sion [6] can give more accurate result and the bound
on coupling will become even more stronger. The mis-
sion has an accuracy of measuring the perihelion pre-
cession at a few part in 106 [6] which will make our
bound roughly one or two order more stringent than our
present bound in the mass range that we are consider-
ing (at MZ ′ ∼ O(10−18)eV, the gauge coupling will
be g ∼ O(10−26)) and the bound will be as good as
neutrino decay [38]. Note that, in our analysis, the mass

of the gauge boson cannot be very small, otherwise it
will be degenerate with the Coulomb potential. Also,
the mass cannot be very large, otherwise the long range
force theory breaks down.

Moreover, we emphasize the novel physics behind the work
which suggests that we can study the gauge boson electron
coupling in a gauged Le − Lμ,τ scenario by planetary obser-
vations and we can constrain the arising long range force
from perihelion precession of planets. These gauge bosons
(MZ ′ ≤ 10−19eV) can be a possible candidate of fuzzy dark
matter and can be probed from precession measurement of
planetary orbits.
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Appendix A: Equation of motion of a planet in presence
of a Schwarzschild background and a non gravitational
Yukawa type of potential

The action which describes the motion of a planet in
Schwarzschild background and a non gravitational long
range Yukawa type of potential is given by Eq. (1).

Suppose S1 = Mp
∫ √

−gμν ẋμ ẋνdτ . For this action, the
Lagrangian is

L = Mp

√
gμν

dxμ

dτ

dxν

dτ
. (A.1)

Hence, the equation of motion is

d

dτ

( ∂L
∂
(

∂xσ

∂τ

)
)

− ∂L
∂xσ

= 0, (A.2)
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or,

1

L
dL
dτ

gμσ

dxμ

dτ
= gμσ

d2xμ

dτ 2 + ∂αgμσ

dxα

dτ

dxμ

dτ

−1

2
∂σ gμν

dxμ

dτ

dxν

dτ
. (A.3)

Multiplying gρσ we have,

d2xρ

dτ 2 + gρσ ∂νgμσ

dxν

dτ

dxμ

dτ
− gρσ 1

2
∂σ gμν

dxμ

dτ

dxν

dτ

= 1

L
dL
dτ

dxρ

dτ
, (A.4)

or,

d2xρ

dτ 2 + 1

2
gρσ (∂νgμσ + ∂μgνσ − ∂σ gμν)

dxμ

dτ

dxν

dτ

= 1

L
(dL
dτ

)dxρ

dτ
, (A.5)

or,

d2xρ

dτ 2 + �ρ
μν

dxμ

dτ

dxν

dτ
= 1

L
dL
dτ

dxρ

dτ
, (A.6)

where, �
ρ
μν = 1

2g
ρσ (∂νgμσ + ∂μgνσ − ∂σ gμν) is called the

Christoffel symbol. We can choose τ in such a way that dL
dτ

=
0. This is called affine parametrization. So,

d2xρ

dτ 2 + �ρ
μν

dxμ

dτ

dxν

dτ
= 0. (A.7)

Suppose S2 = gq
∫
Aμ

dxμ

dτ
dτ = gq

∫
Aμdxμ. Hence,

δS2 = gq
∫

δAμdx
μ + gq

∫
Aμδ(dxμ), (A.8)

or,

δS2 = gq
∫

∂Aμ

∂xν
δxνdxμ + gq

∫
Aμd(δxμ). (A.9)

Using integration by parts and using the fact that the total
derivative term will not contribute to the integration, we can
write

δS2 = gq
∫

∂Aμ

∂xν
δxνdxμ − gq

∫
d Aμδxμ. (A.10)

or,

δS2 = gq
∫

∂Aμ

∂xν
δxνdxμ − gq

∫
∂Aμ

∂xν
dxνδxμ. (A.11)

Since μ and ν are dummy indices, we interchange μ and ν

in the first term. Hence, we can write

δS2 = gq
∫

(∂μAν − ∂ν Aμ)dxνδxμ

= gq
∫

(∂μAν − ∂ν Aμ)
dxν

dτ
δxμdτ. (A.12)

Imposing the fact δS1 + δS2 = 0 and using Eq. (A.4),
Eq. (A.7) and Eq. (A.12) we can write

ẍρ + �ρ
μν ẋ

μ ẋν = gq

Mp
gρμ(∂μAν − ∂ν Aμ)ẋν, (A.13)

which matches with Eq. (2).

Apendix B: Christoffel symbols for the Schwarzschiild
metric

The christoffel symbols for the Schwarzschiild metric defined
in Eq. (3) are

�t
r t = M

r2
(

1 − 2M
r

) , �r
tt = M

r2

(
1 − 2M

r

)
,

�r
rr = − M

r2
(

1 − 2M
r

) , �r
θθ = −r

(
1 − 2M

r

)
,

�r
φφ = −r sin2 θ

(
1 − 2M

r

)
, �θ

rθ = 1

r
,

�θ
φφ = − sin θ cos θ, �

φ
φr = 1

r
, �

φ
θφ = cot θ.

(B.1)

Appendix C: Equation of motion for the vector field Aμ

The vector field Aμ satisfies the Klein-Gordon equation

�Aμ = M2
Z ′ Aμ. (C.1)

Now, for the static case, Aμ = {V (r), 0, 0, 0}. Hence,

�V (r) = M2
Z ′V (r). (C.2)

In the background of the Schwarzschild spacetime, equa-
tion (C.2) becomes

(
1 − 2M

r

)d2V

dr2 + 2

r

(
1 − M

r

)dV
dr

= M2
Z ′V (r). (C.3)

So, in the Schwarzschild background, V (r) will not satisfy
the Klein-Gordon equation. So we expand V (r) in a pertur-
bation series where the perturbation parameter is M

R , and the
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leading order term is the Yukawa term. Let,

V (r) = V0(r) + M

R
V1(r) + O

(M

R

)2
, (C.4)

where

V0(r) = c
e−M ′

Z r

r
, c = g2N1N2

4π
, (C.5)

such that

d2V0

dr2 + 2

r

dV0

dr
= M2

Z ′V0. (C.6)

Inserting Eq. (C.4) in Eq. (C.3), we get the equation for V1(r)

1

R

d2V1

dr2 + 2

r R

dV1

dr
= M2

Z ′V1

R
+ 2

r

d2V0

dr2 + 2

r2

dV0

dr
. (C.7)

Let,

V1(r) = χ(r)
e−M ′

Z r

r
. (C.8)

Now, Eq. (C.7) becomes

1

R

d2χ

dr2 − 1

R
2M ′

Z
dχ

dr
= 2c

(M2
Z ′
r

+ 1

r3 + M ′
Z

r2

)
. (C.9)

Integrating Eq. (C.9) once we get

dχ

dr
− 2M ′

Zχ = 2cR
[
M2

Z ′ ln(M ′
Zr) − 1

2r2 − M ′
Z

r

]
+ k1R,

(C.10)

where k1 is the integration constant. Eq. (C.10) can be written
as

d

dr

(
e−2M ′

Z rχ
)

= 2cRe−2M ′
Z r

[
M2

Z ′ ln(M ′
Zr)

− 1

2r2 − M ′
Z

r

]
+ k1Re

−2M ′
Z r . (C.11)

From Eq. (C.11), we can write

e−2M ′
Z rχ(r) = 2cR

[
M2

Z ′

∫ r

∞
e−2M ′

Z x ln(M ′
Z x)dx

−
∫ r

∞
e−2M ′

Z x

2x2 dx −
∫ r

∞
M ′

Ze
−2M ′

Z x

x
dx

]

− k1R

2M ′
Z
e−2M ′

Z r + k2, (C.12)

where k2 is an integration constant. Doing integration by
parts, Eq. (C.12) becomes

χ(r) = cR
[

− M ′
Z ln(M ′

Zr) + 1

r
+ M ′

Ze
2M ′

Z r Ei (−2M ′
Zr)

]

− k1R

2M ′
Z

+ k2e
2M ′

Z r , (C.13)

where Ei (x) is a special function called the exponential inte-
gral function which is defined as

Ei (x) = −
∫ ∞

−x

e−t

t
dt. (C.14)

We chose k2 = 0 as e2M ′
Z r diverges. We also chose k1 = 0 as

we are looking for particular integral. Hence, from Eq. (C.13)
we get

V1(r) = cRe−M ′
Z r

r

[1

r
− M ′

Z ln(M ′
Zr)

+M ′
Ze

2M ′
Z r Ei (−2M ′

Zr)
]
. (C.15)

So the total solution of the potential is

V (r) = ce−M ′
Z r

r

[
1 + M

r
{1 − M ′

Zr ln(M ′
Zr)

+M ′
Zre

2M ′
Z r Ei (−2M ′

Zr)}
]

+ O
(M2

R2

)
. (C.16)

We take the leading order term which is the Yukawa term
in our calculation. The higher order terms are comparatively
small.

Appendix D: Total energy of the binary system due to
gravity and long range Yukawa type potential

For Newtonian gravity, we can write

E2 − 1

L2 = − 1

a2(1 − e2)
,

2M

L2 = 2

a(1 − e2)
. (D.1)

Dividing the above two expression, we obtain

E2 − 1

M
= −1

a
, (D.2)

or,

E �
√

1 − M

a
≈ 1 − M

2a
. (D.3)

In presence of long range Yukawa potential, we obtain E from
the condition du

dφ
= 0 at u = u+ = 1/a(1 + e) (aphelion)

and u = u− = 1/a(1 − e) (perihelion),

E�1 − M

2a
+ g2Qq

4πMp

(
u+u2−e−MZ ′/u+ − u2+u−e−MZ ′/u−

u2+ − u2−

)

(D.4)
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where 1 in the right hand side is the rest energy per unit mass
in the Minkowski background. The second term is ≈ 10−8

and the third Yukawa term is smaller than the Newtonian
term.
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