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Abstract In the present paper, we have investigated the
motion of charged particles together with magnetic dipoles
to determine how well the spacetime deviation parameter ε

and external uniform magnetic field can mimic the spin of
a rotating Kerr black hole. Investigation of charged parti-
cle motion has shown that the deviation parameter ε in the
absence of an external magnetic fields can mimic the rotation
parameter of the Kerr spacetime up to a/M ≈ 0.5. The com-
bination of an external magnetic field and deviation param-
eter can do even a better job mimicking the rotation param-
eter up to a/M � 0.93, which corresponds to the rapidly
rotating case. Study of the dynamics of the magnetic dipoles
around quasi-Schwarzschild black holes in the external mag-
netic field has shown that there are degeneracy values of the
ISCO radius of test particles at εcr > ε ≥ 0.35 which may
lead to two different values of the innermost stable circular
orbit (ISCO) radius. When the deviation parameter is in the
range of ε ∈ (−1, 1), it can mimic the spin of a rotating Kerr
black hole in the range a/M ∈ (0.0537, 0.3952) for mag-
netic dipoles with values of the magnetic coupling parameter
β ∈ [−0.25, 0.25] in corotating orbits.
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b e-mail: javlon@astrin.uz
c e-mail: ahmadjon@astrin.uz
d e-mail: ahmedov@astrin.uz
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1 Introduction

The first exact analytical solution of the vacuum field equa-
tions of Einstein’s general relativity has been obtained just
after its discovery in 1916 by Schwarzschild [1] and describes
the exterior spacetime of the non-rotating spherically sym-
metric black hole. The rotating black hole solution was
obtained by Kerr and includes two parameters: the total mass
of the black hole and its rotation parameter. Most obser-
vational features of the astrophysical black holes can be,
in principle, explained by the solution describing the Kerr
black hole. On the other hand one may alternatively consider
the extension of the Kerr solution with additional parame-
ters, see, for example, [2–11]. The electric charge may also
affect the gravitational field of the charged black hole and
the properties of such objects have been studied in [12–18]
for different astrophysical scenarios. The black hole may be
considered as embedded on the brane of higher dimensional
spacetime; see Refs. [19–23], where several properties of
back holes with brane charge have been studied. Black holes
may have gravitomagnetic monopole charge and the authors
of Refs. [3,24–29] have studied the properties of spacetime
with nonvanishing gravitomagnetic charge. The authors of
Refs. [30–38] have studied the deformed spacetime of black
holes and its properties.

One of the interesting extensions of the Kerr solution has
been proposed in [4] where an approximate solution of the
Einstein vacuum equations has been obtained. Also the lead-
ing order deviation from Kerr solution due to the spacetime
quadrupole moment was introduced. The spacetime prop-
erties around the so-called quasi-Kerr black hole have been
studied in Refs. [39,40]. In a previous paper, we have studied
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weak lensing near the quasi-Kerr black hole [41]. Recently
we have also studied the charged particle motion around a
quasi-Kerr compact object in the presence of a magnetic field
[42].

Testing general relativity and alternative theories of grav-
ity through gravitational lensing and motion of test particles
under the various conditions is important to distinguish the
central black hole parameters from the ones of alternate grav-
ity theories, since their effects are similar or exactly the same
at some range of values of the parameters of theories of grav-
ity. For example in our previous work we have shown how
the effects of the MOG field parameters [43], the conformal
parameters [44,45], the coupling parameter of the Einstein–
Gauss–Bonnet theory [46], the electric charge of a black hole
in Einstein–Maxwell theory [47], the stringy charge [45],
perfect fluid dark matter [48] and quantum gravity [49] can
mimic the spin of a rotating Kerr black hole. On the other
hand, by now, in spite of the attempts to detect neutron stars
as recycled radio pulsars near the supermassive black hole
Sagittarius A* in the center of the Milky Way by the GRAV-
ITY collaboration, we do not have any astrophysical observa-
tions of them. One of the reasons of the absence of the pulsars
around SgrA* is the scattering of radio waves in the plasma
medium surrounding the SMBH and the other one might be
the dominant effects of the magnetic interaction between the
neutron star’s dipole moment and the magnetic field around
the black hole created by either the magnetic charge of the
central black hole or the electric current of accreting matter.
The stable circular and chaotic motions of neutral particles
[50], the dynamics and quasiharmonic oscillations of charged
particles around static and rotating black holes immersed in
external asypmtotically uniform magnetic fields [51–55] and
plasma magnetosphere surrounding black holes in different
gravity models have been analyzed in detail by the authors of
Refs. [56–60] in particular using the method of the Lyapunov
to show the difference between regular and chaotic orbits. It
is also shown that even a small misalignment and frame drag-
ging effects cause a reduction of the chaotic motion.

Recent observation of the image of the supermassive black
hole at the center of the elliptical galaxy M87 [61,62] and
detection of the gravitational waves by the LIGO-Virgo col-
laboration [63,64] provided a test of general relativity in the
strong field regime. In fact gravitational waves generated
by binary compact objects and the wave properties strongly
depend on their spin and chaos degrees of freedom in the sys-
tem. The existence of chaotic motion in such systems in the
problems of two spinning black holes in the post-Newtonian
approximation has been shown in Refs. [65–76].

At the same time these experiments and observations open
a window for testing the modified and alternative theories of
gravity together with an analysis of X-ray observations from
active galactic nuclei (AGN) [77–79]. The second genera-
tion Very long baseline interferometer (VLBI) instrument

GRAVITY through precise observations of highly relativis-
tic motions of matter and the S2 star close to Sgr A* has also
provided experimental tests of general relativity in strong
fields.

Despite the fact that in general relativity the black hole
cannot have its own magnetic field due to the no-hair the-
orem [80], the latter can be considered as immersed in an
external magnetic field [81] created by the current of electric
charges in the accretion disk. The spacetime curvature will
change the original structure of the external magnetic field.
The detailed specifications of these changes and test particle
motion around compact object in the presence of a magnetic
field have been studied in Refs. [48,82–100]. The structure
of the electromagnetic field around compact objects in alter-
nate and modified theories of gravity has been explored in
Refs. [45,53,101–122]. Quantum interference effects in con-
formal Weyl gravity have been studied in [123]. Periodic
circular orbits, regular orbits and chaotic orbits of neutral
and charged particles around various black holes have been
investigated in Refs. [56–60,124,125]. The magnetic dipole
motion around a black hole in the presence of an asymptot-
ically uniform magnetic field has been studied in [126,127]
with further development to the case of modified gravity the-
ories in [43–45,49,128–135].

In this work our main purpose is to study the charged parti-
cles and magnetic dipoles motion around a magnetized quasi-
Schwarzschild black hole. The paper is organized as follows:
Sect. 2 is devoted to a study of the dynamics of charged par-
ticles around a quasi-Schwarzschild black hole and compari-
son with one in Kerr spacetime. The magnetic dipole motion
around a quasi-Schwarzschild black hole immersed in an
external magnetic field is explored in Sect. 3. In this sec-
tion the obtained results are compared with particles dynam-
ics around Kerr black hole. Then the obtained results are
applied to real astrophysical scenarios in Sect. 4. We con-
clude our results in Sect. 5. Throughout the paper we use the
spacelike signature (−,+,+,+) and the system of units where
G = 1 = c.

2 Charged particle motion: quasi-Schwarzschild versus
Kerr black hole

2.1 Magnetic field around compact object

Before going through the investigation of magnetized par-
ticles motion around a quasi-Schwarzschild compact object
immersed in an external asymptotically uniform magnetic
field we start with the case when the particle is electrically
charged only. The quasi-Schwarzschild spacetime metric can
be obtained from a rotating quasi-Kerr one [4] using the fol-
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lowing decomposition:

gμν = gSchw
μν + εhμν,

where gSchw
μν corresponds to the standard Schwarzschild

metric and εhμν corresponds to the deviation from the
Schwarzschild spacetime. The parameter ε defines the devi-
ation from the spherically symmetric spacetime due to the
additional term in the mass quadrupole moment Q of the
gravitating object by

Q = −εM3 ,

and it can take both negative and positive signs [4]. In the
linear approximation in ε the contravariant components of
the spacetime metric can be written as

gμν = gμν
Schw − εhμν,

and thus the upper indices of hμν can be lowered by using the
Schwarzschild metric tensor. The contravariant components
of hμν are given by the expressions (see [4])

htt = f −1(1 − 3 cos2 θ)F1,

hrr = f (1 − 3 cos2 θ)F1,

hθθ = − 1

r2 (1 − 3 cos2 θ)F2,

hφφ = − 1

r2 sin2 θ
(1 − 3 cos2 θ)F2,

f = 1 − 2M

r
,

where the radial functions F1 and F2 read

F1 = −5(r − M)
(
2M2 + 6Mr − 3r2

)

8Mr(r − 2M)

−
15r(r − 2M) log

(
r

r−2M

)

16M2 , (1)

F2 = 5
(
2M2 − 3Mr − 3r2

)

8Mr

+
15

(
r2 − 2M2

)
log

(
r

r−2M

)

16M2 . (2)

After lowering the indices of hμν with the use of gSchw
μν the

quasi-Schwarzschild spacetime metric takes the following
form:

ds2 = gttdt
2 + grrdr2 + k(r, θ)r2d�2 , (3)

where

gtt = − f
[
1 − εF1(1 − 3 cos2 θ)

]
, (4)

grr = f −1
[
1 + εF1(1 − 3 cos2 θ)

]
, (5)

k(r, θ) = 1 − εF2(1 − 3 cos2 θ). (6)

In the spacetime metric the terms being proportional to ε pro-
vide the part being responsible for the quasi-Schwarzschild
effects. One can easily check that in the case of ε = 0 one
recovers Schwarzschild spacetime. It is worth noting here
that the condition grr = 0 gives the location of an event
horizon at re = 2M , being the same as in the case of the
Schwarzschild black hole.

Using the Wald method [81] one can find the components
of the four-vector potential of electromagnetic fields as

Aμ =
(

0, 0, 0,
1

2
B

)
. (7)

Using the metric (3) one can write the covariant components
as

Aμ =
{

0, 0, 0,
1

2
Bh(r, θ)r2 sin2 θ

}
. (8)

Now one can find the expression for the magnetic field around
a quasi-Schwarzschild compact object. The four-velocity of
the proper observer is given by

Uα =
{(

f

[
1 + 1

2
εF1(1 + 3 cos 2θ)

])− 1
2

, 0, 0, 0

}

. (9)

Then the orthonormal components of the magnetic field with
respect to the chosen frame takes the following form [42]:

Br̂ = B cos θ
1 + εF2(3 cos 2θ − 1)

1 + ε
2 F2(3 cos 2θ + 1)

,

B θ̂ = B sin θ
√

f

√
1 + ε

2 F1(1 + 3 cos 2θ)
√

1 + ε
2 F2(3 cos 2θ + 1)

(10)

×1 + ε
4

[
r F ′

2 + 2F2
]
(3 cos 2θ + 1)

√
1 − ε2

4 F2
1 (3 cos 2θ + 1)2

, (11)

Bφ̂ = 0 , (12)

where the prime ′ denotes the derivative with respect to
the radial coordinates. One can easily see that in pure
Schwarzschild spacetime it takes the form

Br̂ = B cos θ , (13)

B θ̂ = B
√

f sin θ , (14)

and in the Newtonian weak field regime M/r → 0 the com-
ponents of the magnetic field become

Br̂ = B cos θ , B θ̂ = B sin θ , (15)

consistent with the Newtonian limit.
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a b

Fig. 1 Effective potential as a function of radial coordinate r for the case M = 1. The left panel corresponds for the variation of the deformation
parameter. The right panel is for the variation of the magnetic interaction

2.2 Circular motion of charged test particle around a
quasi-Schwarzschild compact object

Now, we briefly study the equation of motion of a charged
particle around a quasi-Schwarzschild compact object. It is
more convenient to use the Hamilton–Jacobi equation of
motion for particles orbiting around central objects, which
is the case here. In the presence of an external electromag-
netic field the equation reads

gαβ

(
∂S

∂xα
+ eAα

)(
∂S

∂xβ
+ eAβ

)
= −m2 , (16)

with e and m being the electric charge and mass of the test
particle, respectively.

The equation of motion (16) is not separable when the
system is non-integrable. In this case, Eq. (16) should be
replaced with a Hamiltonian formalism [51,56–60]. How-
ever, when one investigates test particle motion in the equa-
torial plane, Eq. (16) can be expressed in the following sep-
arable form:

S = −Et + Lφ + Sr + Sθ , (17)

where E and L define the energy and angular momentum of
a test particle per unit mass, respectively. Thus, the equation
of motion of a test particle with unit mass reads

(L + eB
2m r

2(1 − εF2)
)2

r2(1 − εF2)
+ f

1 + εF1

(
∂S

∂r

)2

− E2

f (1 − εF1))
= −1 , (18)

where E = E/m and L = L/m are the specific energy and
angular momentum of a test particle, respectively.

For test particles moving at the equatorial plane (θ = π/2)
one can obtain the effective potential from the radial motion

ṙ2 = E2 − Veff , (19)

which reads

Veff = f (1 − F1ε)

⎧
⎨

⎩
1 +

(
L

h
(
r, π

2

)
r2

− ωB

)2
⎫
⎬

⎭
, (20)

with ωB = eB/(2mc) defining the cyclotron frequency
of a charged particle which corresponds to the interaction
between electrically charged particle and external magnetic
field. The radial dependence of such an effective potential is
shown in Fig. 1. It is clearly seen that the increase in the devi-
ation parameter also increases the effective potential while
the magnetic field has an opposite action as was shown in
Refs. [51–53]

For a circular motion of a particle at equatorial plane one
can set the following standard conditions:

Veff(r) = E2, V ′
eff(r) = 0, (21)

which results in the angular momentum of a charged test
particle to have the radial dependence as presented in Fig. 2.
We see the usual Schwarzschild shape for the line for which
ε = 0 in the right panel. However, starting from some value
of the deviation parameter around ε ≈ 0.32 it changes the
shape of lines, which causes them to have a maximum point at
the corresponding radius that vanishes starting from the case
when ε ≈ 0.8. We will come back to this point later in the
next subsection where it contains an important description of
defining the ISCO radius.
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Fig. 2 Radial dependence of the angular momentum of a test particle for the different values of the magnetic interaction (left panel) and deformation
(right panel)

2.3 Innermost stable circular orbits: quasi-Schwarzschild
versus Kerr black hole

In this subsection we investigate so-called innermost stable
circular orbits (ISCO) around a quasi-Schwarzschild com-
pact object immersed in an asymptotically uniform magnetic
field. Based on the obtained results we will try to answer the
question how the parameters ε and B can mimic the rotation
parameter a of the well-known Kerr solution. The idea is that,
if the parameters mentioned can mimic the rotation param-
eter a of a Kerr black hole, then for the same ISCO radius
one can get a correspondence constraint between the rotation
parameter and the parameters ε and B. First, we investigate
the relation between the ISCO radius and the parameters of
interest. To do so, one can add additional requirement to the
condition (21), reading

V ′′
eff(r) = 0 . (22)

Taking into account these three conditions (together with
(21)) one might plot the mutual dependence between the
ISCO radius and parameters ε and B as plotted in Fig. 3.
One can see from the graphs that the increase of the two
parameters ε and B reduces the ISCO radius of a charged
test particle. From the left panel it is clearly seen that if
one increases the deviation parameter ε up to some value
then the ISCO radius starts to reduce, becoming smaller and
smaller instead of taking its initial values before reducing.
To make the situation clear one should take into account the
condition on angular momentum of a test particle that says
that for a particle to move on the last stable circular orbit
its angular momentum should have a minimum on that orbit
radius. Using this condition one can refer to the graph of
dependence between angular momentum of a test particle on
circular orbit radius as in the right panel of Fig. 2. We have
mentioned this point in the previous subsection saying that

the angular momentum for the absence of external magnetic
field would have maximum points when the deviation param-
eter is between 0.32 and 0.8. But, plotting Fig. 3 we just used
the case when the angular momentum of a test particle has an
extremum. So, we need to exclude such maxima from these
extremum points, which results in the fact that one needs to
erase the lower part of ISCO lines starting from the turning
points, which is shown with shaded region in the left panel
of Fig. 3. For the case of a magnetic field the situation is
typical as expected, i.e. if one increases the magnetic field
the Lorentz force becomes stronger, which makes the ISCO
radius smaller.

Finally, we plan to answer the question stated in the begin-
ning of this subsection: how well can the parameters ε and B
mimic the rotation parameter a of the Kerr metric? Knowing
how the ISCO in the case of Kerr metric behaves under the
influence of a rotation parameter one can plot the degeneracy
between these parameters as shown in Fig. 4. It was expected
from the dependence of ISCO on the parameter ε that this
parameter cannot completely mimic the rotation parameter
as the ISCO radius did not tend to M , which is the case for
an extremal rotation a → 1 in the Kerr metric. Now it is
once more clearly seen that this parameter can only mimic
the rotation parameter up to approximately ≈ 0.5 when the
external magnetic field is absent. One can, however, see that
the magnetic parameter itself can mimic the rotation param-
eter up to ≈ 0.88. It is also seen from the right panel that in
the presence of both magnetic field and deviation parameter
the mimic range exceeds a > 0.9, being competitive with
the rapidly rotating Kerr spacetime.

The degeneracy plot between the deviation parameter ε

and the magnetic coupling parameter ωB for a few fixed val-
ues of the ISCO radius is illustrated in Fig. 5. We see that the
magnetic interaction has a considerably stronger effect than
the effect of deformation of a spacetime.
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Fig. 3 ISCO radius of a test particle orbiting in the equatorial plane of a quasi-Schwarzschild compact object for different values of the magnetic
interaction (left panel) and deformation parameter (right panel)

Fig. 4 Degeneracy plot that shows the correspondence between of the dimensionless rotation parameter a of a Kerr metric with ε and B parameters

3 Magnetic dipole motion: quasi-Schwarzschild versus
Kerr black hole

In this section we focus on the magnetic dipole motion
around a quasi-Schwarzschild compact object immersed in
an asymptotically uniform magnetic field. The Hamilton–
Jacobi equation of motion of magnetic dipole takes the fol-
lowing form:

gμν ∂S
∂xμ

∂S
∂xν

= −
(
m − 1

2
DμνFμν

)2

. (23)

Here, Dμν is the antisymmetric polarization tensor which
defines the electrodynamic properties of the particle. We
assume that the particle is electrically neutral q = 0 and
the polarization tensor is only described by the magnetic
moment μ itself. It is worth to note here that it is also pos-
sible to investigate in an alternate way the motion of the
magnetic dipole with an electric charge where one just needs
to take the left hand side of Eq. (16) instead of the one in
Eq. (23). However, in this work we aim to apply the motion
of the magnetic dipoles to magnetized neutron stars orbiting
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Fig. 5 Degeneracy plots for ε and ωB for given values of ISCO radii

around supermassive black holes where the neutron star can
be treated as an electrically neutral test particle with nonvan-
ishing magnetic dipole moment. Since the mass of a typical
supermassive black hole is much greater than the mass of a
typical neutron star this allows us to take the neutron star as
a test particle moving in the spacetime of the former one.
Therefore hereafter we focus on the motion of electrically
neutral magnetic dipole only. In this case the components of
this tensor can be written as [45]

Dμν = ημναβuαμβ, (24)

which satisfies the following condition:

Dμνuν = 0, (25)

where μα describes the magnetic four-momentum of a mag-
netic dipole. Fμν = ∂μAν − ∂ν Aμ is the electromagnetic
field tensor, which can also be written in terms of the com-
ponents of electromagnetic field as

Fμν = −ημναβB
αuβ + 2u[μEν] (26)

where ηαβσγ is the pseudo-tensorial form of the Levi-Civita
symbol εαβσγ defined as

ηαβσγ = √−gεαβσγ , ηαβσγ = − 1√−g
εαβσγ , (27)

with g = det|gμν | = −r4 sin2 θ for the spacetime metric (3)
and

εαβσγ =

⎧
⎪⎨

⎪⎩

+1 , for even permutations ,

−1 , for odd permutations ,

0 , for the other combinations .

(28)

Having taken the contraction with (24) and using (25) with
(26) one can write

DμνFμν = 2μαBα = 2μα̂Bα̂ . (29)

For simplicity we consider the magnetic interaction between
the magnetic dipole and external magnetic field to be weak
enough (due to the weakness of the external test magnetic
field), so we can use the approximation

(DμνFμν

)2 → 0. It is
expected that in a given external magnetic field the magnetic
momentum of a particle aligns along this external field. If one
assumes a particle moving at the equatorial plane (θ = π/2)
then, since this magnetic field has only a normal component

B θ̂ to this equatorial plane, so does the magnetic moment

μθ̂ , which is consistent with the lowest energy condition of
the magnetic dipole. The scalar product (29) then becomes

DμνFμν = 2μBA; (30)

here A(r) defines the proportionality function taking into

account Eq. (10) and for B θ̂ reads

A = A(r) =
√

f
1 − εF1

1 − εF2

1 − ε
2

[
r F ′

2 + 2F2
]

√
1 − ε2F2

1

. (31)

Plugging the scalar product of Dμν and Fμν into the equation
of motion (23) one can find the effective potential at the
equatorial plane:

Veff =
(

1 − 2M

r

) [
1 − εF1

] {
(1 − βA)2 + L2

r2 [1 − εF2]

}
,

(32)

here β = 2μB/m is called the magnetic coupling parameter;
it defines the electromagnetic interaction between magnetic
dipole and external magnetic field. In real astrophysical sce-
narios, for example in the case of a typical neutron star orbit-
ing around a supermassive black hole with magnetic dipole
moment μ = (1/2)BNSR3

NS the coupling magnetic parame-
ter is

β � 11

250

(
BNS

1012G

)(
RNS

106cm

)3 (
Bext

10G

) (
mNS

M	

)−1

, (33)

where BNS is the magnetic field at the surface of the neutron
star, RNS and mNS are radius and mass of the neutron star,
respectively. The radial dependence of the effective potential
is plotted in Fig. 6. We see that effective potential for the
magnetic dipole behaves similarly to the charged particle one.

From the same conditions (21) as for the trajectory of the
particle to be circular one can easily find the expressions for
the angular momentum and the energy of the test particle:
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L2 = r3(1 − Aβ) (1 − εF2)
2 {

(1 − Aβ)
[
f ′ (1 − εF1) − ε f F ′

1

] − 2β fA′ (1 − εF1)
}

(1 − εF2)
[
(1 − εF1) (2 f − r f ′) + f rεF ′

1

] − f rε (1 − εF1) F ′
2

, (34)

E2 = (1 − βA) f 2 (1 − εF1)
2 {

(1 − βA)rεF ′
2 + 2 (1 − εF2)

[
1 − β

(A + rA′)]}

(1 − εF2)
[
(1 − εF1) (2 f − r f ′) + ε f r F ′

1

] − f rε (1 − εF1) F ′
2

. (35)

The orbit of a particle moving at equatorial plane being
circular makes the angular momentum of a particle have the
radial dependence as plotted in Fig. 7. From the shift of the
minimum of the lines one can state how the ISCO radius
changes for the different values of the magnetic coupling
parameter and also for various values of the deviation param-
eter. From the upper panel it appears that if one increases the
magnetic interaction between magnetic dipole and external
magnetic field then the ISCO radius increases.

Having obtained the effective potential and the radial
dependence for the angular momentum one can now inves-
tigate ISCO for a magnetic dipole moving at the equatorial
plane. We can use either the condition given in Eq. (22) or the
angular momentum to have a minimum at the ISCO radius.
Then the dependence of the ISCO radius of the parameter ε

and the magnetic coupling parameter β becomes as presented
in Fig. 8.

Figure 8 demonstrates the dependence of the ISCO radius
of magnetic dipole around a quasi-Schwarzschild black hole
from the deviation (on the top panel) and magnetic coupling
(on the bottom panel) parameters. We see from the plots
that increasing the magnetic coupling parameter increases
the ISCO radius. Moreover, it appears that it has a value
around β = 2/3 at which the ISCO radius tends to infinity,
telling that no stable circular orbits can occur no matter how
far the magnetic dipole is orbiting. In the upper panel we
have cut the lower part of the ISCO radius dependence for
the same reason as in the previous section which tells that
for the chosen value of the deviation parameter the angular
momentum of a test particle can have both a minimum and
a maximum where we should take only the minimum points
that are physically relevant.

4 Astrophysical applications of the study

One of the important and actual key issues in relativistic
astrophysics is testing the theory of gravity by a study of the
test magnetic dipoles motion, in particular, in an exploration
of the motion of the neutron stars (pulsars and/or magnetars)
treated as test magnetic dipoles around supermassive black
holes (hereafter SMBH), which may give a possibility to test
both gravitational and electromagnetic fields around a SMBH
due to their accurate pulses in observations which may help

to measure the distance through Doppler effect. In the obser-
vations of such models it can be realized that the neutron star
could be found near a galactic center. However, by now, it is
quite difficult to find radio pulsars, due to Compton scatter-
ing of radio pulses in a dense charged electron gas around the
Sgr A*. The first and by now a single neutron star-magnetar,
called SGR 1745-2900, around Sgr A* has been discovered
in 2013 [136]. In our calculations we use the parameters of the
magnetar treating it as a magnetic dipole orbiting Sgr A*. On
other hand, theoretical problematic issues occur on the analy-
sis of observational properties, such as QPO, the ISCO radius
around the SMBH when the parameters of different alternate
gravity reflect similar effects on the properties; in those cases
it is impossible for gravity’s effect to play a dominant role. In
fact mostly astrophysical black holes are accepted as rotat-
ing black holes. Here we aimed to analyze the ISCO radius,
comparing it with the effects of spacetime deformation and
spin of a Kerr black hole when the two provide the same
value for the ISCO radius of the magnetic dipoles. Note that
for comparison we consider a quasi-Schwarzschild compact
object immersed in an external asymptotically uniform mag-
netic field and a Kerr black hole without magnetic field. We
assume the real astrophysical case of the magnetar orbiting
the SMBH Sgr A*. Note also that one can consider a mag-
netic dipole as a neutral one in the absence of an external
magnetic field.

The value of the magnetic coupling parameter β for the
magnetar SGR (PSR) J1745-2900 with the magnetic dipole
moment μ � 1.6 × 1032G · cm3 orbiting the supermassive
BH Sgr A* is [136]

βPSR J1745−2900 � 0.716

(
Bext

10G

)
. (36)

The ISCO radius of test particles around a rotating Kerr
black hole is defined by the following expression for retro-
grade (+) and prograde (−) orbits [137]:

risco = 3 + Z2 ± √
(3 − Z1)(3 + Z1 + 2Z2) , (37)

where

Z1 − 1=
(

3
√

1 + a + 3
√

1 − a
)

3
√

1 − a2 , Z2
2 − Z2

1 =3a2 .
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Fig. 6 Effective potential as a function of r/M for different values of the deviation (left panel) and the magnetic interaction (right panel) parameters

Fig. 7 Radial dependence of the angular momentum of a magnetic dipole for the different values of the magnetic parameter β (left panel) and
deviation ε (right panel)

Fig. 8 Dependence of the ISCO radius of test particles orbiting at the equatorial plane around a quasi-Schwarzschild black hole from the deviation
for given β (left panel) and magnetic coupling parameters for given ε (right panel)
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Fig. 9 Dependence of the ISCO radius of the magnetic dipoles from
the deviation parameter of a quasi-Schwarzschild black hole and the
spin of a Kerr black hole (left panel). The degeneracy plot is for the

spin of a Kerr BHs a and the deviation parameter ε for the different
values of the magnetic coupling parameter β = 0.25, 0,−0.25

Fig. 10 Degeneracy plot between dimensionless spin of the Kerr BHs a and the magnetic coupling parameter β and deviation parameter ε providing
the same value for the ISCO radius for magnetic dipoles around the Schwarzschild black hole immersed in an external asymptotically uniform
magnetic field

Now, in order to compare the effects of the spin and devi-
ation parameters on the ISCO radius we will present the
dependence of the ISCO radius of the deviation parameter
ε and spin of a Kerr black hole for the magnetic dipoles
with negative and positive values of the magnetic coupling
parameters, with β = ±0.25 and neutral particles. We note
that when the direction of the magnetic dipole moment of
the test particle aligns along the magnetic field the magnetic
coupling parameter is positive, otherwise it is negative.

In Fig. 9 we provide the behavior of the ISCO radius of the
magnetic dipoles around a quasi-Schwarzschild black hole in
the presence and absence of an external magnetic field (blue
dashed, red dot-dashed and black solid lines in the top panel
of the figure) and around a rotating Kerr black hole in the
absence of an external magnetic field. One may see from the
top panel of the figure that an increase of the positive devia-

tion parameter causes a decrease of the ISCO radius while a
negative one leads to an increase. In some cases it is similar to
the effect of the spin of a Kerr black hole. Moreover, positive
(negative) values of the magnetic coupling parameter shift
the ISCO radius outwards from (towards) the central black
hole. In the bottom panel we show (compare) the effects of
the deviation parameter of a quasi-Schwarzchild and the spin
of a Kerr black holes for the degeneracy cases of the mag-
netic dipoles having the same values for the ISCO radius. One
may see from the degeneracy plot that a negative deviation
parameter can mimic the spin of a Kerr black hole providing
the same value of the ISCO radius for corotating orbits of
magnetized particles with the magnetic coupling parameter
β = 0.25 up to a/M � 0.3952 while, for the particles with
the parameter β = 0 and β = −0.25, it mimics up to the spin
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Fig. 11 Relations between the deviation parameter ε and magnetic
coupling parameter β for fixed values of the ISCO radius of the magnetic
dipoles

value of a Kerr black hole a � 0.1984M and a � 0.0537M ,
respectively.

Here, we will focus on how the magnetic coupling param-
eter can mimic the spin of the Kerr black hole providing
the same value for the ISCO radius of the magnetic dipoles
around a Schwarzschild black hole. One may easily cal-
culate the ISCO radius for magnetic dipoles around the
Schwarzschild black hole keeping the deviation parameter
zero.

One can construct the degeneracy plot between the mag-
netic parameter in quasi-Schwarzschild metric and the rota-
tion parameter of the Kerr one. From the right panel of Fig. 8
it is clearly seen that for fixed values of the deviation param-
eter ε the ISCO radius grows similar to the case when one
increases the magnetic coupling parameter. It leads to the
conclusion that this coupling parameter should only mimic
the rotation parameter of a Kerr metric for retrograde orbits.
One can be ensured of this from the degeneracy plot as illus-
trated in Fig. 10

The degeneracy between values of parameter ε and mag-
netic coupling parameter for fixed values of the ISCO radius
is presented in Fig. 11. One can easily see that there are
degeneracy values for the deviation parameter when the mag-
netic coupling parameter is fixed which provides the same
value for the ISCO radius. Consequently, with the increase
of the ISCO radius the range of degeneracy values of the
deviation parameter increases.

5 Conclusion

In this work the motion of charged particles together with
magnetic dipoles has been investigated to determine how well
the spacetime deviation parameter ε and external uniform
magnetic field can mimic the rotation parameter of a Kerr
black hole, which is the main point of this study.

The investigation of charged particle motion has shown
that the deviation parameter ε in the absence of an external
magnetic field can mimic the rotation parameter of the Kerr
spacetime up to a ≈ 0.46 which means that the black hole
is assumed to be a Kerr one; up to such a rotation parame-
ter there can be also a static quasi-Schwarzschild one with
deviation parameter up to ε ≈ 0.8. It has been also shown
that the external magnetic field itself (i.e. without deviation
parameter of spacetime) can mimic the rotation parameter
up to a ≈ 0.88. The combination of these two parameters
can do an even better but not considerable job mimicking the
rotation parameter up to a > 0.9.

The study of the dynamics of the magnetic dipoles around
a quasi-Schwarzschild black hole in the external magnetic
field has shown that the maximum value of the effective
potential for fixed values of the specific angular momen-
tum of the magnetic dipoles and the deviation parameter
of the spacetime around the BH increases with the increase
of the magnetic coupling parameter. The positive deviation
parameter increases the effective potential at fixed values of
the angular momentum and the magnetic coupling parame-
ter while the negative ones decrease. It is shown that there
are degeneracy values of the ISCO radius of test particles
at εcr > ε ≥ 0.35, which may lead to two different values
of the ISCO radius. Finally, we have studied how the devia-
tion parameter mimics the spin of the Kerr BH providing the
same values for the ISCO radius of the test particles. Since
we consider magnetic dipoles as test ones, we have chosen
here two different signs for the magnetic coupling parameter
in the range of β ∈ [−0.25, 0.25] and obtained the result
that when the value of the deviation parameter is in the range
of ε ∈ (−1, 1) it can mimic the spin of a rotating Kerr
BH in the range a/M ∈ (0.0537, 0.3952) for the magnetic
dipoles with the values of the magnetic coupling parameter
β ∈ [−0.25, 0.25] in corotating orbits. However, the mimic
values of the spin parameter in counterrotating orbits lie in the
range of a/M ∈ (0.0152, 0.7863). We have pointed out that,
since the magnetic coupling parameter increases the ISCO
radius of the magnetic dipoles, it can mimic the spin of the
Kerr BH only in corotating orbits up to its value β = 0.5922.
Moreover, we have shown the degeneracy relations between
the magnetic coupling parameter and the deviation parame-
ters for fixed values of the ISCO radius and found that the
ISCO radius can be the same at the two different positive val-
ues of the deviation parameter for fixed values of the magnetic
coupling parameter. The study performed can be applied to
the dynamics of magnetized matter and neutron stars in the
environment close to SMBH.
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