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Abstract A unique feature of generalised parton distribu-
tions is their relation to the QCD energy–momentum tensor.
In particular, they provide access to the mechanical properties
of the proton i.e. the distributions of pressure and shear stress
induced by its quark and gluon structure. In principle the
pressure distribution can be experimentally determined in a
model-independent way from a dispersive analysis of deeply
virtual Compton scattering data through the measurement
of the subtraction constant. In practice the kinematic cov-
erage and accuracy of existing experimental data make this
endeavour a challenge. Elaborating on recent global fits of
deeply virtual Compton scattering measurements using artifi-
cial neural networks, our analysis presents the current knowl-
edge on this subtraction constant and assesses the impact of
the most frequent systematic assumptions made in this field
of research. This study will pave the way for future works
when more precise data will become available, e.g. obtained
in the foreseen electron-ion colliders EIC and EIcC.

1 Introduction

Quantum chromodynamics (QCD) provides today’s standard
description of hadrons. In this theory, hadrons are depicted
as complex objects made out of fundamental building blocks
referred to as partons: quarks and gluons. This picture has
been extensively studied over the last fifty years, but many of
the basic questions about partonic media still await a precise
quantitative answer to this day. In particular, in spite of impor-
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tant theoretical advances since the beginning of the 2000s,
our knowledge of distributions of certain properties like pres-
sure and shear stress inside hadrons – the so-called “mechan-
ical” properties – is still poor. Understanding those properties
therefore remains among the main challenges faced by mod-
ern nuclear and high energy physics.

QCD factorisation theorems provide us with tools to study
the properties of partonic media up to an arbitrarily high accu-
racy, only limited by the order of the perturbative expansion
describing the short distance part of scattering processes. In
particular, generalised parton distributions (GPDs) offer a
rigorous theoretical framework that can be used to study the
3D structure of hadrons [1–5]. GPDs offer a consistent uni-
fied framework encompassing the usual parton distribution
functions (PDFs) and elastic form factors (EFFs), and pro-
viding even more information. Such a non-trivial connec-
tion is used to obtain tomographic pictures of the nucleon,
where spatial distributions of partons carrying a fraction of
the nucleon momentum are projected onto the plane perpen-
dicular to the direction of the nucleon motion [6–8]. Another
exciting feature of GPDs is their relation to the QCD energy–
momentum tensor (EMT), which would otherwise probably
only be accessible via graviton scattering. This unique rela-
tion allows to evaluate the total angular momentum carried by
gluons or quarks of a given flavour [2,3], which is essential to
solve the long-standing puzzle of the nucleon spin decompo-
sition that emerged 30 years ago with the EMC measurements
[9]. On top of this, the relation between GPDs and the EMT
can also be used to access information about the mechani-
cal properties of partonic systems [10,11], like distributions
of pressure inside the nucleon – which is the subject of this
article.

The potential of studying the mechanical properties of
the proton in the formalism of GPDs was first recognised in
Ref. [12]. This subject has recently gained a lot of interest
and seen vital theoretical progress. In addition, precise data
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have become available, recently allowing for the first data-
driven estimates of a nucleon pressure distribution [13,14].
These analyses aim at extracting the so-called subtraction
constant from deeply virtual Compton scattering (DVCS)
data. The constant naturally appears in the dispersive studies
of DVCS amplitudes and it carries information about one of
the EMT form factors that is crucial for the understanding
of the mechanical properties. We point out that the subject
in general has been recognised as a key element of current
or future experiments, in particular those to be conducted
in the electron-ion collider (EIC) [15,16], Chinese electron-
ion collider (EIcC) [17,18], large hadron-electron collider
(LHeC) [19].

In this article we benchmark the extraction of the sub-
traction constant from DVCS data. We present results of our
extraction of the subtraction constant from the existing world
DVCS proton data. To deliver a self-contained exposition,
we remind the leading-order (LO) QCD evolution formulas,
which in general are known, but appear in the literature in a
scattered form. Compared to the first data-driven estimates,
our analysis is characterised by a reduced model dependence,
which is achieved by the use of artificial neural network tech-
niques to describe the contribution of the four chiral-even
leading-twist GPDs. The results of this analysis summarise
our current knowledge of the DVCS subtraction constant and
assess the impact of the most common systematic assump-
tions made in that research topic. This will pave the way for
future studies when new precise data will be released.

This article is organised as follows. A brief introduction
to the theoretical frameworks of EMT and GPDs is given
in Sects. 2 and 3 respectively. Section 4 is dedicated to the
LO evolution of the subtraction constant, and Sect. 5 to its
modelling. The extraction based on the artificial neural net-
work technique is presented in Sect. 6 and the corresponding
results are discussed in Sect. 7. The summary is given in
Sect. 8.
Notations Throughout the text we denote spatial vectors
by boldface symbols. ημν = diag(+,−,−,−) is the
Minkowski metric. For convenience, we use the compact
notations: a{μbν} =aμbν +aνbμ and a[μbν] =aμbν −aνbμ.

2 Energy–momentum tensor

In the most general case, the proton matrix elements of the
local gauge-invariant EMT operator can be parameterised in
terms of five gravitational form factors (GFFs): Aa(t), Ba(t),
Ca(t), C̄a(t) and Da(t); as follows [20,21]:

〈p′, s′|Tμν
a (0)|p, s〉 = ū(p′, s′)

{
PμPν

M
Aa(t)

+ ΔμΔν − ημνΔ2

M
Ca(t) + MημνC̄a(t)

+ P{μiσν}ρΔρ

4M
[Aa(t) + Ba(t)]

+ P [μiσν]ρΔρ

4M
Da(t)

}
u(p, s). (1)

Here, t = Δ2 with Δ = p′ − p the four-momentum
transfer to the proton, P = (p′ + p)/2 is the average four-
momentum, M is the proton mass,u(p, s), ū(p′, s′) are Dirac
spinors with the covariant normalisation ū(p, s)u(p, s) =
2M , and s, s′ are the rest-frame polarisation vectors. The
label a denotes either the quark flavour (a = q) or the gluon
(a = g) contribution to the EMT. We refer to Ref. [22] for
a detailed discussion of the specific expressions of the EMT,
and their decompositions into quark and gluon contributions.

In the following, a summation over parton types a is meant
each time a generic GFF G ∈ {A, B,C, C̄, D} is written
without any parton type index:

G(t) =
∑
a=q,g

Ga(t), (2)

and similarly a summation over quark flavours q (flavour-
singlet combination) is meant each time this generic GFF G
is written with the superscript S:

GS(t) =
∑
a=q

Ga(t). (3)

When needed, we indicate the quark content with:

Gu+d(t) = Gu(t) + Gd(t), (4)

Gu+d+s(t) = Gu(t) + Gd(t) + Gs(t). (5)

Poincaré symmetry implies the following constraints on
the GFFs [2,23–25]:

A(0) = 1, (6)

B(0) = 0, (7)

C̄(t) = 0, (8)

and [26]:

DS(t) = −GA(t), (9)

Dg(t) = 0, (10)

where GA(t) is the flavour-singlet axial-vector form factor.
The GFFs Aa(t), Ba(t) and Ca(t) can be related to leading-
twist GPDs and thus can be probed at present experimental
facilities, see Sect. 3. Accessing C̄a(t) is more involved since
it is related to higher-twist distributions [21,27,28].

The static EMT is defined as the following Fourier trans-
form in the Breit frame, where P = 0 and t = −Δ2

[11,12,29]:
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T μν
a (r) =

ˆ
d3Δ

(2π)3 e−iΔ·r 〈p′, s|Tμν
a (0)|p, s〉
2P0 . (11)

It indicates how energy and momentum are distributed inside
the proton with the canonical polarisation s. Writing r = |r|
the radial coordinate, the energy εa(r), radial pressure pr,a(r)
and tangential pressure pt,a(r) distributions can be expressed
in the Breit frame as Fourier transforms of the GFFs Aa(t),
Ba(t), Ca(t) and C̄a(t):

εa(r) = M
ˆ

d3Δ

(2π)3 e−iΔ·r

×
{
Aa(t) + C̄a(t) + t

4M2 [Ba(t) − 4Ca(t)]
}

,

(12)

pr,a(r) = M
ˆ

d3Δ

(2π)3 e−iΔ·r

×
{
−C̄a(t) − 4

r2

t−1/2

M2

d

dt
[t3/2 Ca(t)]

}
, (13)

pt,a(r) = M
ˆ

d3Δ

(2π)3 e−iΔ·r

×
{
−C̄a(t) + 4

r2

t−1/2

M2

d

dt

(
t

d

dt

[
t3/2 Ca(t)

])}
.

(14)

In a relativistic system like the proton, pressure forces
are usually not isotropic. The isotropic pressure pa(r) and
pressure anisotropy sa(r) are then defined in terms of the
radial and tangential pressures:

pa(r) = [pr,a(r) + 2pt,a(r)]/3, (15)

sa(r) = pr,a(r) − pt,a(r), (16)

or, in terms of GFFs:

pa(r) = M
ˆ

d3Δ

(2π)3 e−iΔ·r
{
−C̄a(t) + 2

3

t

M2 Ca(t)

}
,

(17)

sa(r) = −4M

r2

ˆ
d3Δ

(2π)3 e−iΔ·r t−1/2

M2

d2

dt2[t5/2 Ca(t)]. (18)

Among the five distributions: εa(r), pr,a(r), pt,a(r), pa(r)
and sa(r); the pressure anisotropy sa(r) is the only one that
does not depend on the GFF C̄a(t). This feature makes its
current experimental access the least challenging.

These distributions permit the introduction of additional
definitions of proton radius beyond the usual electromagnetic
charge radii. Indeed the distributions ε(r) = ∑

a εa(r) and
pr (r) = ∑

a pr,a(r) are expected to be positive and can be
used to define the energy (or mass) and mechanical radii of
the nucleon [11,29] in terms of the GFFs A and C (summed
over all constituents):

〈r2〉E = 1

M

ˆ
d3r r2 ε(r) = 6

[
A′(0) − C(0)

M2

]
, (19)

〈r2〉mech = 1

Pr

ˆ
d3r r2 pr (r) = 6C(0)´ 0

−∞ dt C(t)
, (20)

with Pr = ´
d3r pr (r) and A′(t) = dA(t)/dt .

3 Generalised parton distributions

GPDs have been introduced by the end of the 90s [1–5] and
now constitute a mature field of research [30–35] with exper-
imental programmes carried out at CERN (COMPASS),
DESY (HERMES, H1 and ZEUS), Jefferson Lab (Halls A,
B and C) and in the future at the electron-ion collider EIC.
References [36–39] provide a recent account of the experi-
mental and phenomenological status and prospects of three
exclusive channels which attract most of current experimen-
tal interest, namely DVCS, deeply virtual meson production
(DVMP) and timelike Compton scattering (TCS).

The formal definition of GPDs in terms of matrix ele-
ments can be found in Ref. [31] and we will use the same
notations. From the point of view of the current EMT studies,
we are interested in the four leading-twist chiral-even GPDs:
Ha(x, ξ, t), Ea(x, ξ, t), H̃a(x, ξ, t) and Ẽa(x, ξ, t) where
a = q, g. Here, x is the average longitudinal light-front
momentum fraction of the active parton and ξ is the skew-
ness variable describing the transfer of longitudinal light-
front momentum to the system. GPDs also depend on both
factorisation, μF, and renormalisation, μR, scales, which will
be implicit (unless when specifically needed) to keep concise
notations.

The connection between GPDs and GFFs Aa(t), Ba(t)
and Ca(t) is the following [31]:

ˆ 1

−1
dx x Hq(x, ξ, t) = Aq(t) + 4ξ2Cq(t), (21)

ˆ 1

−1
dx x Eq(x, ξ, t) = Bq(t) − 4ξ2Cq(t), (22)

∑
q

ˆ 1

−1
dx H̃q(x, ξ, t) = GA(t), (23)

for quarks, and:

ˆ 1

−1
dx Hg(x, ξ, t) = Ag(t) + 4ξ2Cg(t), (24)

ˆ 1

−1
dx Eg(x, ξ, t) = Bg(t) − 4ξ2Cg(t), (25)
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for gluons. The GPD Ẽa(x, ξ, t) does not relate to these
GFFs,1 but is a significant ingredient in the description
of DVCS amplitudes and therefore important in the phe-
nomenological applications.

We focus now on the extraction of the GFF Ca(t) from
DVCS data. The DVCS amplitude can be parameterised in
terms of structure functions known as Compton form factors
(CFFs). For illustration we only give the formulas for the
CFF H(ξ, t) related to the GPD Ha(x, ξ, t):

H(ξ, t, Q2) =
∑
q

Hq(ξ, t, Q2) + Hg(ξ, t, Q2), (26)

where the quark Hq and gluon Hg contributions read:

Hq (ξ, t, Q2) =
ˆ 1

−1

dx

ξ

{
T q

(
x

ξ
, μ2

F, Q2
)
Hq (x, ξ, t, μ2

F)

}
, (27)

Hg(ξ, t, Q2) =
ˆ 1

−1

dx

ξ

{
T g

(
x

ξ
, μ2

F, Q2
)

Hg(x, ξ, t, μ2
F)

x

}
.

(28)

Here, Q2 is the virtuality of the photon mediating the interac-
tion between the lepton beam and the proton target in DVCS.
The functions T q and T g are the renormalised coefficient
functions (see Ref. [41] and refs. therein, in slightly different
form – here we added the explicit factors of x and ξ to empha-
size the x

ξ
dependence of T q,g) which for the LO description

of the DVCS hard scattering kernel read:

T q = −e2
q ξ/(x + ξ − iε) − (x → −x), (29)

T g = 0, (30)

where eq is the quark fractional electric charge in units of the
proton charge |e|.

In Eqs. (27) and (28) we see that CFFs are convolu-
tions of GPDs. The so-called deconvolution problem, which
consists in extracting GPDs from CFFs, is far from trivial,
and is still an open question today. In the absence of non-
parametric extractions of GPDs, an experimental determi-
nation of most GFFs thus comes with a significant model
uncertainty. However it is possible to access the GFF Ca(t)
at the level of amplitudes, i.e. without the deconvolution of
neither Ha(x, ξ, t) nor Ea(x, ξ, t). This allows one in prin-
ciple to avoid any model dependence in the extraction of
Ca(t), which makes this situation unique in the context of
GPD studies.

Thanks to the analytic properties of CFFs [42–44], a dis-
persion relation connects the real and imaginary parts of the
CFF H, which reads:

CH (t, Q2) = ReH(ξ, t, Q2)

1 Ẽq (x, ξ, t) is however related to some GFF associated with the EMT
for polarised quarks [40].

− 1

π

 1

0
dξ ′ Im H(ξ ′, t, Q2)

(
1

ξ − ξ ′ − 1

ξ + ξ ′

)
, (31)

where
ffl

denotes the principal value integral and CH (t, Q2)

is the so-called subtraction constant (here constant over ξ ).
Similar equations hold for the CFFs E , H̃ and Ẽ , but with
the opposite subtraction constant for E and null subtraction
constants for H̃ and Ẽ .

The D-term is defined by the coefficients proportional to
the highest powers of ξ in the polynomiality relations of a
given GPD [31]. It therefore allows one to access the GFF
Ca(t) via Eqs. (21) and (24). Remarkably the subtraction
constant CH is related (to any order in QCD perturbation
theory) to the quark and gluon D-terms in the following way:

CH (t, Q2) =
∑
q

CqH (t, Q2) + Cg
H (t, Q2), (32)

with (omitting the dependence on μ2
F and Q2 for the sake of

conciseness):

CqH (t, Q2) = 2

π

ˆ ∞

1
dω ImT q(ω)

ˆ 1

−1
dz

Dq
term(z, t)

ω − z
,

(33)

Cg
H (t, Q2) = 2

π

ˆ ∞

1

dω

ω
ImT g(ω)

ˆ 1

−1
dz

Dg
term(z, t)

ω − z
.

(34)

At LO the explicit gluon dependence of the subtraction con-
stant vanishes and the imaginary part of the quark coefficient
function merely selects the value ω = 1:

CH (t, Q2) = 2
∑
q

e2
q

ˆ 1

−1
dz

Dq
term(z, t, μ2

F ≡ Q2)

1 − z
. (35)

Here, Q2 is identified with μ2
F. Because Gegenbauer polyno-

mials diagonalise the ERBL evolution equations at LO, the
D-term is often expanded into a series of these polynomi-
als [30]:

Dq
term(z, t, μ2

F) = (1 − z2)
∑
odd n

dqn (t, μ2
F)C3/2

n (z), (36)

Dg
term(z, t, μ2

F) = 3

2
(1 − z2)2

∑
odd n

dgn (t, μ2
F)C5/2

n−1(z), (37)

where dqn (t, μ2
F), dgn (t, μ2

F) are the coefficients of the expan-
sion. The values of the first three flavour-singlet coefficients:

du+d
1 (0, μ2

0) 	 −4.0, (38)

du+d
3 (0, μ2

0) 	 −1.2, (39)

du+d
5 (0, μ2

0) 	 −0.4. (40)

from the chiral quark-soliton model (χQSM) at a low scale
μ0 	 600 MeV, are reported in Ref. [30]. We observe that
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each coefficient is roughly three times bigger than its succes-
sor.

Gegenbauer polynomials Cα
n (z) are classically defined as

a family of orthogonal polynomials with respect to the weight
function (1− z2)α−1/2, but they can also be regarded as coef-
ficients of the formal series (in the variable t) of the following
generating function:

1

(1 − 2zt + t2)α
=

∞∑
n=0

Cα
n (z)tn . (41)

For |t | < 1 we observe that:

∞∑
n=0

ˆ 1

−1
dz

(1 − z2)C3/2
n (z)

1 − z
tn

=
ˆ +1

−1
dz

1 + z

(1 − 2zt + t2)3/2 = 2

1 − t
=

∞∑
n=0

2tn . (42)

Therefore the DVCS subtraction constant at LO can be con-
veniently written as:

CH (t, Q2) = 4
∑
q

e2
q

∑
odd n

dqn (t, μ2
F ≡ Q2). (43)

The first element of this expansion carries information about
the GFF Ca(t). By definition of the D-term, using (21) and
(24):

ˆ 1

−1
dz zDq

term(z, t) = 4Cq(t), (44)

ˆ 1

−1
dz Dg

term(z, t) = 4Cg(t). (45)

Since C3/2
1 (z) = 3z and C5/2

0 (z) = 1, the definition of

Gegenbauer polynomials C3/2
n (z) and C5/2

n (z) as orthogo-
nal polynomials associated to the respective weights 1 − z2

and (1 − z2)2, complemented by the expansions (36) and
(37), yields:

dq1 (t, μ2
F) = 5Cq(t, μ

2
F), (46)

dg1 (t, μ2
F) = 5Cg(t, μ

2
F). (47)

Note that:

d(t) =
∑
q

dq1 (t, μ2
F) + dg1 (t, μ2

F)

= 5

( ∑
q

Cq(t, μ
2
F) + Cg(t, μ

2
F)

)
, (48)

becomes scale independent as it is one of the gravitational
form factors of the full EMT.

Through Eq. (18), the two relations (46) and (47) provide
a direct handle on the distribution of pressure anisotropy (for
quarks and gluons) in the proton:

sq (r) = −4M

5r2

ˆ
d3Δ

(2π)3 e−iΔ·r t−1/2

M2

d2

dt2

[
t5/2 dq1 (t)

]
, (49)

sg(r) = −4M

5r2

ˆ
d3Δ

(2π)3 e−iΔ·r t−1/2

M2

d2

dt2

[
t5/2 dg1 (t)

]
, (50)

where the dependence on the factorisation scale μ2
F is

implicit. The phenomenological challenge of the experimen-
tal determination of pressure forces in the proton thus boils
down to the extraction of the first term in the expansion
(43) of the (measurable) DVCS subtraction constant. In the
next section we will show that each term in this expansion
behaves differently under LO evolution, allowing one to sep-
arate dq1 (t, μ2

F) and dg1 (t, μ2
F) from the rest of the series (43).

4 Evolution of D-term and DVCS subtraction constant

The evolution of the D-term (and therefore of the DVCS sub-
traction constant) is governed by the ERBL evolution equa-
tions [45,46]. These equations can be explicitly solved at
LO once the D-term is expressed in terms of Gegenbauer
polynomials, just like in Eqs. (36) and (37). We follow the
presentation of Ref. [31].

Let n f denote the number of active quark flavours. The
anomalous dimensions γn , γ ±

n driving the LO evolution read:

γn = γQQ(n), (51)

γ ±
n = 1

2

(
γQQ(n) + γGG(n)

±
√

[γQQ(n) − γGG(n)]2 + 4γQG(n)γGQ(n)

)
,

(52)

where [47]:

γQQ(n) = CF

(
1

2
− 1

(n + 1)(n + 2)
+ 2

n+1∑
k=2

1

k

)
, (53)

γQG(n) = −n f TF
n2 + 3n + 4

n(n + 1)(n + 2)
, (54)

γGQ(n) = −2CF
n2 + 3n + 4

(n + 1)(n + 2)(n + 3)
, (55)

γGG(n) = 2

3
n f TF + CA

×
(

1

6
− 2

n(n + 1)
− 2

(n + 2)(n + 3)
+ 2

n+1∑
k=2

1

k

)
. (56)

Here CF = 4/3, TF = 1/2 and CA = 3.
At the leading logarithmic accuracy and for a non-singlet

combination of q1 and q2 quark flavours, the evolution from
the initial scale μ2

F,0 to the final scale μ2
F is given by:
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dq1
n (t, μ2

F) − dq2
n (t, μ2

F)

=
[
dq1
n (t, μ2

F,0) − dq2
n (t, μ2

F,0)
] (

αs(μ
2
F)

αs(μ
2
F,0)

) 2γn
β0

. (57)

Introducing the mixing coefficients, a±
n :

a±
n = 2

n f

n

γ ±
n − γn

γQG(n)
, (58)

the singlet combination of coefficients of the Gegenbauer
expansion (36), and the gluon coefficients of the analogous
expansion (37), read:

1

n f

∑
q

dqn (t, μ2
F) = d+

n (t, μ2
F) + d−

n (t, μ2
F), (59)

dgn (t, μ2
F) = a+

n d
+
n (t, μ2

F) + a−
n d

−
n (t, μ2

F). (60)

This decomposition is convenient since the coefficients d±
n

evolve multiplicatively:

d±
n (t, μ2

F) = d±
n (t, μ2

F,0)

(
αs(μ

2
F)

αs(μ
2
F,0)

) 2γ ±
n

β0

. (61)

The inversion of the system Eqs. (59), (60) is straightforward:

d±
n (t, μ2

F,0) = ±
dgn (t, μ2

F,0) − a∓
n

n f

∑
q

dqn (t, μ2
F,0)

a+
n − a−

n
. (62)

It is useful to look at the behavior of the D-term in the
μ2

F → ∞ limit. Since all the anomalous dimensions γ ±
n are

positive, except γ −
1 = 0, all dqn and dgn coefficients vanish in

this limit, except maybe the following two [30]:

1

n f

∑
q

dq1 (t, μ2
F)

μ2
F→∞−−−−→ d−

1 (t, μ2
F,0), (63)

dg1 (t, μ2
F)

μ2
F→∞−−−−→ a−

1 d−
1 (t, μ2

F,0), (64)

with:

d−
1 (t, μ2

F,0) = d(t, μ2
F,0)

TF
n f TF + 2CF

, (65)

a−
1 d−

1 (t, μ2
F,0) = d(t, μ2

F,0)
2CF

n f TF + 2CF
, (66)

where d(t, μ2
F,0) has been defined in Eq. (48).

We conclude with the following remark. If the light
flavours contribute equally, i.e. if dq1

n (t, μ2
F,0) = dq2

n (t, μ2
F,0)

for the two light flavours q1 and q2, then the non-singlet com-
bination (57) identically vanishes and the left-hand side of
the singlet combination (59) reduces to the common value
for the considered light flavours.

5 Modelling of DVCS subtraction constant

We have seen that an unbiased extraction at LO is theoreti-
cally possible through the lever arm in Q2 of the subtraction
constant, but the weak t and Q2 dependence of current exper-
imental data motivates us to introduce a simplified modelling
of the D-term. Those simplifications are typical of analyses
like the present one. We list below these assumptions and
discuss their importance on the extraction of D-term infor-
mation.

1. We restrict the analysis only to the first element of the
Gegenbauer expansions (36) and (37), i.e. only dq1 (t, μ2

F)

is directly fitted.
We may hope that these Gegenbauer expansions converge,
and consequently that their general terms asymptotically
vanish. However this does not justify a strict dominance of
the first terms of the series; extrapolating the successive
ratios (	 1/3) of chiral quark-soliton model estimates
(38)–(40) to infinite orders, we may think that retaining
onlyd1 generates a 50% systematic uncertainty. In order to
fit coefficients proportional to other terms of these expan-
sions, in particular dq3 (t, μ2

F), one needs extra constraints
separating various contributions, in this case either the t
or μ2

F unique dependence. Since not much is known about
the t-dependence from first principles (in particular there
is no reason to think that all coefficients obey the same
t-dependence), GPD evolution provides a natural tool to
extract dq3 (t, μ2

F) and even higher order terms. To achieve
this, one needs both precise data and a large arm in Q2 to
study the evolution carefully. In the following we show
that the current data does not allow for such kind of anal-
ysis. EIC and EIcC are natural candidates for changing
this conclusion, but the quantitative assessment of their
impact goes beyond the scope of the present study.

2. We assume an equal contribution dudsn (t, μ2
F) of light

quarks to each coefficient dqn of the D-term expansion
(36), i.e.:

dun = ddn = dsn ≡ dudsn . (67)

In particular, the previous assumption focuses our study
on duds1 (t, μ2

F) satisfying:

du1 = dd1 = ds1 ≡ duds1 . (68)

This is a common assumption, met e.g. in the chiral quark–
soliton model [30,48]. We stress that disentangling the
separate quark flavour contributions is not possible at LO
with DVCS alone, but should be feasible for instance
by studying hard exclusive meson production data. Early
studies of this type [49] demonstrate the potential of such
kind of analysis.
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In such a case, the relation (43) between the subtraction
constant and the coefficients dq1 becomes:

CH (t, Q2) = 8

3
duds1 (t, Q2) = 8

9

∑
q

dq1 (t, Q2). (69)

As we will see in Sect. 7, some studies consider only
two active quark flavours (i.e. no strange quark), which
still equally contribute to the D-term. With an obvious
adaptation of notations, the relation (43) now reads:

CH (t, Q2) = 20

9
dud1 (t, Q2) = 10

9

∑
q

dq1 (t, Q2). (70)

3. Because of the absence of a direct sensitivity to the gluon
D-term in a LO analysis of DVCS, dg1 is not fitted to the
data.
Instead, dg1 is radiatively generated starting from a low
factorisation scale where a valence quark picture of the
proton should hold. Although it contradicts the conclu-
sion of Ref. [50], this assumption is frequently met in
the computation of various parton distribution functions
from quark models, and does not prevent an analysis of
the existing DVCS data. Here we set:

dg1 (t, μ2
F,0) = 0 at μ2

F,0 = 0.1 GeV2. (71)

The sensitivity of this choice on the extraction of
duds1 (t, μ2

F) is discussed in the following. The radiative
generation of gluons will manifest itself with a non-
vanishing dg1 (t, μ2

F) at scales μ2
F > μ2

F,0.
4. Since a significant amount of current DVCS data pos-

sess Q2 values larger than the squared mass of the charm
quark, m2

c = (1.28 ± 0.03)2 GeV2, dc1(t, μ2
F) may con-

tribute to the subtraction constant.
This contribution is expected to be negligible in the con-
sidered kinematic range. However, it can be conveniently
generated by the evolution equations, similarly to gluons.
In this analysis we explore this possibility with the fol-
lowing boundary condition:

dc1(t,m2
c) = 0. (72)

The radiative generation of charm quarks will manifest
itself with a non-vanishing dc1(t, μ2

F) at scales μ2
F > m2

c .
5. We adopt a multipole form for the t-dependence of

d(t, μ2
F) for d ∈ {duds1 , duds3 , dc1, dg1 }:

d(t, μ2
F) = d(μ2

F)

(
1 − t

Λ2

)−α

, (73)

where duds1 (μ2
F), duds3 (μ2

F), dc1(μ2
F) and dg1 (μ2

F) are
parameters to be determined. Unless explicitly stated oth-
erwise, the parameters Λ = 0.8 GeV and α = 3 are kept
fixed in our fits. In the following we will refer to it as the
tripole Ansatz. The value of Λ is motivated by the chiral
quark-soliton model [10,51], while that for α ensures a
realistic shape of the pressure distribution at large t [29].

We will also explore the possibility of extracting one of the
parameters dg1 (μ2

F), duds3 (μ2
F), Λ or α together with duds1 (μ2

F)

in the following.

6 Input from global fits to DVCS data

The procedure described in this section is used to find repli-
cas representing the subtraction constant from a given set of
replicas representing CFFs. In particular we detail the imple-
mentation of the multipole Ansatz (73) driving the kinematic
extrapolation to vanishing t .

In Ref. [52], 30 distinct DVCS observables spread over
2500 kinematic configurations and collected over 17 years
were jointly analysed in terms of CFFs relying on a neural
network approach. In this study the real and imaginary parts
of each CFF were independently described and simultane-
ously fitted to experimental data. All four leading-twist and
chiral-even GPDs were considered, and no assumption was
made beyond the validity of a leading-twist analysis. The
uncertainties of experimental data are reflected through a set
of 101 replicas for each of the eight extracted functions (i.e.
for real and imaginary parts of each CFF).

Let us denote the replicas associated to the real and imag-
inary parts of the CFF H by:

ReHNN
i (ξ, t, Q2) and Im HNN

i (ξ, t, Q2), (74)

where i = 0, . . . , 100, and where the superscript NN indi-
cates that a given quantity is obtained in the neural network
analysis. Here, each replica is a function of the three variables
ξ , t and Q2, and represents a single neural network built of
(i) three input neurons receiving the values of ξ , t and Q2,
(ii) one hidden layer with six neurons, and (iii) one output
neuron returning either the real or imaginary part of the CFF
H. The parameters of this function, which are weights and
biases “trained” to the experimental data, are real numbers
(for details see Ref. [52]). Those numbers are not intuitive
in the sense that they do not carry any physical meaning –
they are not “human readable” or interpretable. The replica
for i = 0 is obtained from a direct fit to the experimental
data, while those for i �= 0 are obtained from data where the
central values are randomly smeared according to uncertain-
ties. In this case i is used to distinguish between the unique
values of the random seed used in the smearing procedure.
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The subtraction constant is evaluated from a pair of i-th
replicas (0 ≤ i ≤ 100) using the dispersion relation:

CH,i (ξ, t, Q2) = ReHNN
i (ξ, t, Q2)

− 1

π

 1

ε

dξ ′ Im HNN
i (ξ, t, Q2)

(
1

ξ − ξ ′ − 1

ξ + ξ ′

)
,

(75)

where the ξ ′-integration ranges between ε = 10−6 and 1
instead of 0 and 1 as in Eq. (31). This corresponds to the
kinematic domain probed by the replicas in the global CFF
fit to DVCS data. This replacement of the integration range
introduces a negligible O(1%) bias, see Ref. [52] for further
details. We remind that dispersion relations derive from first
principles, which makes this approach model-independent.

In this analysis, the expectation value and the vari-
ance of the subtraction constant distribution at a kinematic
configuration (ξ, t, Q2) are estimated with the empirical
mean and the standard deviation of a replica subset of(
ReHNN

i , ImHNN
i

)
0≤i≤100 at the same kinematic configura-

tion:

μCH (ξ, t, Q2) = 1

|I |
∑
i∈I

CH,i (ξ, t, Q2), (76)

σCH (ξ, t, Q2)

=
√

1

|I |
∑
i∈I

[
CH,i (ξ, t, Q2) − μCH (ξ, t, Q2)

]2
, (77)

where |I | ≤ 101 is the number of replicas i in the subset
I of {0, 1, . . . , 100} used in the estimation. Using most of,
but not all, the available replicas is motivated by the pres-
ence of outliers: it happens sometimes that some replicas
give exceptional or “exotic” values widely separated from
those returned by the rest of the replica population. This typ-
ically signals problems with the supervised training of neural
networks, either because some kinematic regions are not suf-
ficiently covered by data, or e.g. when the involved training
algorithm exceptionally converges to a local minimum [52].
The procedure to remove the outliers is described in the next
paragraph.

It is assumed that at a given (ξ, t, Q2)-point the repli-
cas return normally distributed values, which in particular
allow for a straightforward assignment of 68% confidence
level to the range of μCH (ξ, t, Q2) ± σCH (ξ, t, Q2), and a
simple propagation of uncertainties since the probability dis-
tribution of replicas becomes unambiguously characterised
by the two parameters μCH (ξ, t, Q2) and σCH (ξ, t, Q2). This
assumption is in general fulfilled, however not in all cases,
because of the presence of outliers. Since these issues are
in general local in the 3D phase-space of kinematic con-
figurations (ξ, t, Q2), it is difficult to identify problematic

replicas and entirely remove them from the analysis. Such
procedure could also introduce a bias. Instead, the outliers
are locally detected and removed with the classical three-
sigma rule. This rule is known from big data analytics [53],
where it is successfully used to improve the quality of data
under consideration. The procedure is iterative. Starting from
I = {0, 1, . . . , 100} (hence |I | = 101), it consists of the fol-
lowing steps:

1. evaluate the mean μ, and standard deviation σ , of a given
sample

(
CH,i (ξ, t, Q2)

)
0≤i≤100 using Eqs. (76) and (77),

2. remove from that sample all replicas i for which
CH,i (ξ, t, Q2) does not lay in the (μ−3σ,μ+3σ) range,

3a. if no elements have been removed, stop the procedure
– the sample is free of outliers – and retrieve the sub-
set I, the mean μCH (ξ, t, Q2) and the standard deviation
σCH (ξ, t, Q2),

3b. if any element has been removed, go to 1. and proceed
with the next steps.

To some extent, the procedure is equivalent to a fit to a Gaus-
sian Ansatz and a removal of all elements populating the
exterior of the μ ± 3σ range.

We will now fit the multipole Ansatz, see Eq. (73), to
the subtraction constant replicas obtained in the neural net-
work analysis. We work with the kinematic configuration
(ξ j , t j , Q2

j )1≤ j≤Npts where DVCS measurements have been
published, with ξ = xBj/(2 − xBj) in the Bjorken regime
and Npts = 277. We will explore various fitting scenar-
ios where the extracted parameters constitute a subset Y
of {duds1 (μ2

F), duds3 (μ2
F), dg1 (μ2

F),Λ, α} for some hadronic
scale μ2

F > m2
c . For each subtraction constant replica CH,i

with i ∈ {0, 1, . . . , 100}, we define the χ2-function χ2
i (Y )

for the generated points in the following way:

χ2
i (Y )

=
Npts∑
j=1

(
CH,i (ξ j , t j , Q2

j ) − CαP
H,i (ξ j , t j , Q

2
j ,Y )

σCH (ξ j , t j , Q2
j )

)2

, (78)

where (ξ j , t j , Q2
j ) is the kinematic configuration generated

for the point j , CH,i (ξ j , t j , Q2
j ) and σCH (ξ j , t j , Q2

j ) are,
respectively, the neural network analysis values of the sub-
traction constant returned by replica i and its uncertainty at
point j , and CαP

H,i (ξ j , t j , Q
2
j ,Y ) is the value of the subtrac-

tion constant from the multipole Ansatz also at point j . The
χ2-function χ2

i (Y ) allows one to constrain the free parame-
ters Y of the tripole or multipole Ansatz. In contrast to the
neural network analysis, those parameters possess a physical
interpretation, and in particular straightforwardly provide the
value of the subtraction constant at t = 0.
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Table 1 Values of duds1 , dc1 and dg1 for light, charm quarks and gluons
quoted atμ2

F = 2 GeV2. Those values are obtained with a tripole Ansatz,
where only duds1 (μ2

F) is directly fitted to experimental data parame-
terised with neural networks. In addition, given is the scale independent
sum over partons defined in Eq. (48)

Parameter Value

duds1 (μ2
F) − 0.5 ± 1.2

dc1(μ2
F) − 0.0020 ± 0.0053

dg1 (μ2
F) − 0.6 ± 1.6

d(t = 0) − 2.0 ± 5.1

7 Results

7.1 Nominal fitting scenario

In this analysis, we first consider a nominal fitting scenario
where only one parameter is directly fitted to data parame-
terised with neural networks, namely duds1 (μ2

F). The values
for gluons, dg1 (μ2

F), and charm quarks, dc1(μ2
F), are indirectly

fitted, i.e. they are generated “radiatively” by the LO evolu-
tion using the following boundary conditions:

dg1 (μ2
F,0) = 0, (79)

dc1(m2
c) = 0, (80)

where μ2
F,0 = 0.1 GeV2 is the initial factorisation scale

squared and where m2
c 	 1.64 GeV2 is the mass of charm

quark squared. For details see Sect. 5 above. The obtained
numerical values are summarised in Table 1, where the values
of duds1 , dg1 and dc1 are quoted at the typical hadronic scale
μ2

F = 2 GeV2. The scale independent sum over partons,
d(t = 0), is given as well.

Means and uncertainties of the extracted parameters are
estimated using Eqs. (76) and (77), respectively. The depen-
dence of the subtraction constant on ξ , t and Q2 is shown in
Fig. 1 for both the tripole Ansatz and neural network repli-
cas. One may notice that the uncertainties obtained with the
tripole Ansatz are typically smaller than those obtained in
the neural network analysis, which is expected and reflects
the internal consistency of our approach. This is particularly
visible in domains where the subtraction constant is strongly
driven by the assumed functional form of the Ansatz, like
in particular for large |t |. In Fig. 1 the difference between
the confidence levels indicates the model uncertainty of
the tripole Ansatz. The dependence of duds1 (μ2

F), dg1 (μ2
F)

and dc1(μ2
F) at μ2

F = 2 GeV2 on the choice of the initial
factorisation scale, μ2

F,0 is shown in Fig. 2. As one may
notice, the impact of this choice on the extracted value of
duds1 (μ2

F = 2 GeV2) is negligible compared to the estimated
statistical uncertainties.

Fig. 1 Subtraction constant for the CFF H as a function of ξ at t =
− 0.3 GeV2 and Q2 = 2 GeV2 (top), as a function of −t at ξ = 0.2
and Q2 = 2 GeV2 (middle) and as a function of Q2 at ξ = 0.2 and
t = − 0.3 GeV2 (bottom). The solid gray bands represent results of the
neural network analysis of Ref. [52] while the green punctured bands
represent the analysis based on a tripole Ansatz described in the text.
All bands correspond to a 68% confidence level

Although error bars are too large to make a firm claim, we
observe that a negative mean value of duds1 (μ2

F = 2 GeV2)

seems to be favoured by experimental data, as expected and
observed in all stable systems [11]. The results of other phe-
nomenological and theoretical analyses, including lattice-
QCD predictions, are collected in Table 2. Their comparison
to our results is summarised Fig. 3.

7.2 Relaxing constraints on the fitting Ansatz

We also tried to fit more than one parameter in the multipole
Ansatz, namely {duds3 (μ2

F), dg1 (μ2
F),Λ, α}. The attempts at

extracting two parameters at the same time are summarised

123



300 Page 10 of 14 Eur. Phys. J. C (2021) 81 :300

Fig. 2 Values of duds1 (μ2
F) for light quarks (blue backward-hatched

band – ��), dc1(μ2
F) for charm quarks (brown solid band) and dg1 (μ2

F)

for gluons (red forward-hatched band – ��) quoted at μ2
F = 2 GeV2

as a function of the initial factorisation scale squared μ2
F,0. The results

for charm quarks are multiplied by 100. All bands correspond to 68%
confidence level

in Table 3. We first observe that all five extracted values of
duds1 (μ2

F) (from Tables 1, 3) are consistent and compatible
with zero. The ratio of the extracted mean to standard devia-
tion vary over an order of magnitude, between 0.04 and 0.5 in
all five fitting scenarios, confirming the difficulty of extract-
ing a statistically significant value of duds1 (μ2

F) from existing
DVCS data.

The extraction introducing duds3 (μ2
F) as a free parameter

has a somewhat different status from those proposing Λ or
α as their free parameters. While fixing Λ and α imposes a
parametric form to capture the t-dependence of experimen-
tal data, fitting only duds1 (μ2

F) represents a strong assump-
tion on the behavior of the (dqn )n odd series. As mentioned

Fig. 3 The sum
∑

q d
q
1 (μ2

F) as a function of μ2
F for this study (green

band) and other phenomenological and theoretical analyses. See Table 2
for the description of each data point, including the marker legend. For
the sake of legibility some markers are artificially shifted by a small
distance in the horizontal direction

in Sect. 5, this series has no expected reason to converge
quickly and even less to stop after its first term. If a reason-
able model can guide the choice of a specific t-dependence, a
contrario neglecting duds3 (μ2

F), duds5 (μ2
F), . . . in the extrac-

tion may leave a major uncontrolled source of systematic
uncertainties.

In this respect the four scenarios restricting the series
(36) to its first term provide us values of duds1 (μ2

F) in good
agreement. The multipole parameters Λ and α are still sub-
ject to large uncertainties. However, we observe a dramatic
change in the estimated mean values and standard devia-
tions between the fits extracting duds1 (μ2

F) only on the one
hand, and duds1 (μ2

F) and duds3 (μ2
F) simultaneously on the

other hand. This signals a possible influence of higher-order

Table 2 Compilation of results for
∑

q d
q
1 (μ2

F) over a given number
of quark flavours. Results (1) and (2) are originally only given for the
DVCS subtraction constant considering three light flavours, and here
are scaled by a factor 9/8 following Eq. (69). The dispersive evaluations
(3) differ by the input pion PDF. The lattice results (9) are originally
only given for the EMT form factor Cu(0, μ2

F) + Cd (0, μ2
F), and here

are scaled by a factor 5 following Eq. (46). Both differ by the extrapola-
tion of lattice data to the chiral limit. The scale associated to all results
coming from χQSM is assumed to be 0.6 GeV, which is the natural
scale for this type of models as argued in Ref. [54]. The same scale is
associated to the Skyrme model

No. Marker in Fig. 3
∑
q

dq1 (μ2
F) μ2

F in GeV2 # of flavours Type References

1 � − 2.30 ± 0.16 ± 0.37 2.0 3 From experimental data [13]

2 � 0.88 ± 1.69 2.2 2 From experimental data [14]

3 � − 1.59 4 2 t-Channel saturated model [55]

− 1.92 4 2 t-Channel saturated model [55]

4  − 4 0.36 3 χQSM [30]

5 � − 2.35 0.36 2 χQSM [10]

6 � − 4.48 0.36 2 Skyrme model [56]

7 � − 2.02 2 3 LFWF model [57]

8 ⊗ − 4.85 0.36 2 χQSM [58]

9 ⊕ −1.34 ± 0.31 4 2 lattice QCD (MS) [59]

− 2.11 ± 0.27 4 2 lattice QCD (MS) [59]
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Table 3 Results for four scenarios when duds1 (μ2
F) and one other

parameter in {duds3 (μ2
F), dg1 (μ2

F),Λ, α} are extracted from experimen-
tal data. This pair of parameters is noted Y . The values of are quoted at
μ2

F = 2 GeV2. The last column indicates ranges in which parameters
are allowed to vary in the fit procedure. If the range is not specified, the
corresponding parameter is allowed to vary between −∞ and ∞
No. Fitted

parameters Y
Value Allowed range

Min Max

1 duds1 (μ2
F) − 0.7 ± 1.2

dg1 (μ2
F) 51 ± 111

2 duds1 (μ2
F) 11 ± 25

duds3 (μ2
F) − 11 ± 26

3 duds1 (μ2
F) − 0.4 ± 2.4

Λ/GeV 1.17 ± 0.80 0 2

4 duds1 (μ2
F) 0.0 ± 3.8

α 3.3 ± 3.9 0 10

terms in the series (36) and raises the question of determining
the terms of the series (36) from the values of the subtraction
constant and the specific Q2-dependence of each term.

Separating d1 from the higher-order terms d3, d5, . . . con-
sists in carefully identifying in the data their own logarithmic
Q2-dependence, driven by distinct anomalous dimensions.
This requires a large lever arm in Q2 and very accurate data,
making this study best adapted to collider settings like EIC or
EIcC. We observe that the joint fit of duds1 (μ2

F) and duds3 (μ2
F)

to existing measurements exhibits a large correlation between
these two parameters with a Pearson’s correlation coefficient
of − 0.997, as shown in Fig. 4. This plot summarises the
difference between fitting duds1 only, or duds1 , duds3 simul-
taneously and depicts the aforementioned change between
these two fitting scenarios. It also shows that the accuracy
of existing data cannot exclude the case where higher-order
terms in the series (36) decrease slowly.

7.3 Discussion

Even if our results tend to favour a negative mean value for the
first coefficient of the Gegenbauer expansion of the D-term∑

q d
q
1 at t = 0, we stress again that the estimated standard

deviation makes it statistically compatible with 0.
While we used a non-parametric global fit of almost all

existing DVCS experimental data to obtain this result, the
authors of Ref. [13] reported a value of the same coefficient
statistically incompatible with 0 (see Table 2) when using
only a subset of the existing DVCS measurements (beam-spin
asymmetries and cross sections published by CLAS in 2008
[60] and 2015 [61]) and a parametric fit of CFFs inspired by
the KM model, see Ref. [37] and references therein. Extract-
ing an apparently more accurate estimate of d1 from less

Fig. 4 Correlation between duds1 (μ2
F,0) and duds3 (μ2

F,0) obtained in
the fitting scenario where both parameters are released at the same
time. Each point corresponds to a single replica used in the extraction.
Confidence levels of 68% and 95% are denoted by dashed and dotted
curves, respectively. Pearson’s correlation coefficient is estimated to be
− 0.997. The result of the extraction where only duds1 (μ2

F,0) is fitted

(and where duds3 (μ2
F,0) = 0) is denoted by the green triangle

experimental data may come as a surprise, but it merely
reflects the impact of systematic assumptions made in this
type of studies and discussed in previous sections.

The conclusions of our nominal fitting scenario are in
both quantitative and qualitative agreement with those of
Ref. [14], which also rely on a neural network extraction
of CFFs:

∑
q d

q
1 is found compatible with 0, with a mean

to standard deviation ratio of about 0.5 (see Table 2). The
difference between the results reported here and in Ref. [14]
that is observed in Fig. 3 may be explained by a different
extrapolation to t = 0. We conducted here a careful study
to evaluate the systematic uncertainties introduced by some
classical assumptions, and we found no options allowing for
a more accurate determination of duds1 from the DVCS exper-
imental data that have been collected so far.

Our result being consistent with 0 within error bars, we
will not perform the extraction of a pressure anisotropy pro-
file from experimental data along the lines of Sect. 2. In the
same spirit, we do not attempt to evaluate the proton mechan-
ical radius, which, from Eq. (20), is essentially the second
moment of this pressure profile, and would come compatible
with 0 as well.

We nevertheless make a simple remark: if we had per-
formed such an extraction, the distribution of pressure forces
would be encoded in the t-dependence of d1, which in current
studies is described by the classical multipole Ansatz (73).
Stated differently, the qualitative shape of the pressure pro-
file is selected before any fitting is realised, since it is merely
the Fourier transform of a multipole. In this context the shape
of the pressure profile is a model assumption, and this shape
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Fig. 5 Profiles of pressure anisotropies for a single parton, see Eqs.
(49) and (50), using the multipole Ansatz of dq,g

1 (t), see Eq. (73), for
various values of the parameters α and Λ. The upper plot corresponds to
Λ = 0.8 GeV and various values of α, while the lower one assumes α =
3 and shows various values of Λ. In both cases the same normalisation
factor is used: d1(0) = −3

may vary with the choice of the multipole parameters Λ and
α, and the overall normalisation d1(t = 0).

We use Eq. (49) to point out the dependence of this pro-
file on the assumed values of the tripole Ansatz parameters
considering the results of Table 3. Since we did not estimate
Λ and α simultaneously from the data, we do not know the
correlation matrix of these parameters. Thus we performed
an impact study by varying only one parameter and keeping
the other fixed. This may allow us to explore a larger para-
metric space than otherwise permitted by DVCS data, but
the exercise reported in Fig. 5 demonstrates variations in the
pressure profile over orders of magnitude. As a consequence,
all phenomenological information about the distribution of
pressure forces extracted to this day from current experi-
mental data should be taken with great care. As emphasised
above, future data from EIC or EIcC should improve these
phenomenological results and clarify the situation.

The improvement of the theoretical description of DVCS
through the inclusion of NLO corrections [41,62] may be
needed for a reliable extraction of the EMT form factors.
These corrections will change the relation between the sub-
traction constant and the D-term, which for LO is expressed
by Eq. (35). A full NLO analysis is beyond the scope of
this paper, but should be considered when more precise data

becomes available. In addition, the higher twist corrections
[63] may influence the extraction of the subtraction constant
from experimental data. In the present analysis, the kinematic
domain where these corrections are expected to be significant
is rejected at the level of data selection [52]. The inclusion
of higher-twist corrections may allow us to incorporate more
data and extend the available range of t = −Δ2, which would
be valuable since Δ is Fourier-conjugated to the distance to
the center of the nucleon. It is also beyond the scope of this
paper, but should be considered as a possible improvement
of this type of analyses.

8 Summary

This article summarises our analysis of the d1(μ
2
F) coef-

ficient extracted from the world experimental data for the
DVCS process. This coefficient is of utmost importance for
the understanding of the QCD energy–momentum tensor.
It carries information on mechanical properties of partonic
media, like shear stress and pressure.

We carefully detailed the extraction procedure, and plainly
exhibited a set of assumptions that we made and that have
been used in other analyses of similar type until now. The
underlying motivation is the assessment of what can quanti-
tatively be said to this day about the proton mechanical prop-
erties using DVCS measurements. We hope it will be a useful
starting point for future studies when new data become avail-
able. We tried to make this document as self-contained as pos-
sible, including all equations with consistent notations, cov-
ering the whole reasoning leading to the extraction of pres-
sure distributions, from proton structure to DVCS measure-
ments. In particular, the evolution equations of the dq,g

n (μ2
F)

coefficients are presented in a complete form and are used
to estimate the contributions coming from gluons and charm
quarks.

The comparison between analyses where either artificial
neural networks or parametric functional forms are used to
describe CFFs clearly demonstrates the model dependence
of the latter approach, which results in considerably smaller
uncertainty for the extracted duds1 (μ2

F) coefficient, making it
no longer compatible with 0. In such a case the systematic
uncertainty associated to the choice of a specific functional
form is difficult to evaluate and is left as an unknown. The
extraction of duds1 (μ2

F) independently from elements propor-
tional to higher terms in the D-term Gegenbauer expansion,
like duds3 (μ2

F), cannot be performed at this moment. Remov-
ing the assumption regarding the symmetry of the quark coef-
ficients dudsn (μ2

F) most probably requires a multi-channel
analysis.

Even if the link between the distribution of pressure forces
in the proton and the DVCS subtraction constant is well-
defined, and even if this link is subject to approximations that
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can be checked systematically, DVCS data do not allow yet
a statistically significant extraction of these pressure forces.
Moreover the present need of a prior knowledge of the t-
dependence of the D-term drives the pressure profile. All
phenomenological information about the distribution of pres-
sure forces extracted to this day from current experimental
data should be taken with great care. Our analysis establishes
the need for more precise data and for an extension of the
covered kinematic domain. This can be achieved by future
experiments to be conducted at JLab, CERN, EIC and EIcC
facilities.
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for valuable discussions. This project was supported by the Euro-
pean Union’s Horizon 2020 research and innovation programme under
Grant agreement no. 824093, and with the support of the French
Government scholarships programme. The work of J.W. was sup-
ported by the Grant 2017/26/M/ST2/01074 of the National Science
Center in Poland, whereas the work of P. S. was supported by the
Grant 2019/35/D/ST2/00272 of the National Science Center in Poland.
The project is co-financed by the Polish National Agency for Aca-
demic Exchange and by the COPIN-IN2P3 Agreement. The com-
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