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Abstract The main focus of this paper is to explore the pos-
sibility of providing a new family of exact solutions for suit-
able anisotropic spherically symmetric systems in the realm
of general relativity involving the embedding spherically
symmetric static metric into the five-dimensional pseudo-
Euclidean space. In this regard, we ansatz a new metric poten-
tial λ(r), and we obtained the other metric potential ν(r) by
mains of embedding class one approach. The unknown con-
stants are determined by the matching of interior space-time
with the Schwarzschild exterior space-time. The physical
acceptability of the generating celestial model for anisotropic
compact stars is approved via acting several physical tests
of the main salient features viz., energy density, radial and
tangential pressures, anisotropy effect, dynamical equilib-
rium, energy conditions, and dynamical stability, which are
well-compared with experimental statistics of four different
compact stars: PSR J1416-2230, PSR J1903+327, 4U 1820-
30 and Cen X-3. Conclusively, all the compact stars under
observations are realistic, stable, and are free from any phys-
ical or geometrical singularities. We find that the embedding
class one solution for anisotropic compact stars is viable and
stable, plus, it provides circumstantial evidence in favor of
super-massive pulsars.

1 Introduction

Einstein’s theory of general relativity (GR hereafter) was
tremendously successful in describing gravitational phenom-
ena on both astrophysical and cosmological scales. This the-
ory of gravity leads to significant breakthroughs through the
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intrinsic gravitational systems such as stellar and galactic
structures that make up a major part of our visible Universe.
The evolution investigation of these self-gravitating systems
assumes a fundamental role in uncovering different hidden
aspects viz., composition, evolution, and age of the Universe.
One of the main phases in the evolution of celestial structures
is the process of gravitational collapse near its death which
causes the formation of compact stellar objects. These com-
pact stellar objects are the end-points in the evolution of ordi-
nary celestial structures which prove to be ideal sources for
studying the properties and composition of high dense matter.
Recently, various compact stellar objects with high densities
were discovered [1], which are often seen as pulsars, rotating
stars with strong magnetic fields. In the present-day, our the-
oretical understanding of compact stellar configurations was
rooted in the Fermi-Dirac statistics due to their responsibil-
ity for the high degeneracy pressure in different astrophysical
issues, that prevent the stellar structures from gravitational
collapse and has been pointed out by Fowler in 1926 [2].
Hereafter, Chandrasekhar [3,4] exhibited that white dwarfs
are compact stellar structures, which are upheld exclusively
by a degenerate gas of electrons, to be stable if the greatest
size of a stable white dwarf is around 1.4 times the mass of the
Sun (approximately 3×1030 kg), utilizing Einstein’s special
theory of relativity and the principles of quantum physics.

Nowadays, there is no comprehensive characterization of
immensely dense matter in a strongly interacting system. A
likely theoretical characterization of such nuclear matter in
ultrahigh densities may consist not solely of nucleons and
leptons, but likewise many exotic constituents in their diverse
forms and stages like baryon resonances, mesons, hyperons,
as well as strange quark matter.

In many respects, the compact stellar structures have been
attracted a lot of interest amongst the researchers. Despite the
fact that there is significantly more to be examined and inves-
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tigated about the compact celestial bodies, nevertheless, they
are supposed with immense masses and having small radii,
which makes them ultra-high dense bodies. Exploring the
exact solutions in the celestial bodies situation up being a
huge evolution in gravitational physics. It was thought that
the isotropic fluid was used to form celestial structures, but,
recently the anisotropy fluid has been attracted much atten-
tion among researchers under several astrophysical systems
such as neutron stars [5], boson stars [6], and gravastars
[7] confirming that the anisotropy of spherically symmet-
ric compact stellar structures play an important role in both
phenomenon astrophysics and cosmology.

It was examined in Ref. [8] that, in spite of the spheri-
cally symmetric distribution of matter under a compact celes-
tial object, it can be portrayed by local pressure anisotropy.
A study of the more general hydrostatic equilibrium equa-
tions, considering pressure anisotropy, demonstrates that
anisotropy can have a fundamental effect on the maximum
equilibrium mass and gravitational surface red-shift [8–10].
At not very high densities, the effect of anisotropy can be ana-
lyzed in the context of Newtonian gravity [11,12]. At higher
densities i.e., when ρ ≥ 1015 g/cm3, both the GR effects and
the relativistic effects become more important [7,13–16]. It
is also worthwhile to mention here that for exploring the local
pressure anisotropy effect on the specific basis, it is obliga-
tory to recognize the substantial physical reasons liable for its
occurrence, such as, e.g., the existence of a strong astrophys-
ical core [15,16], appearance of spontaneous deformation
of Fermi surfaces [17,18], accessibility of super-fluid states
with the limited orbital momentum of Cooper pairs [19–22],
or limited super-fluid momentum [23,24], or the existence of
strong magnetic fields within a stellar configuration [25–33].

The astrophysical stellar spheres were also analyzed by
employing the equation of state (EoS) in the context of
anisotropic pressure [8]. The researchers were affected due
to the possible merging of the dark energy paradigm for the
exploration of compact stellar bodies. The exploration of the
physically stable systems leads us to an analytical mecha-
nism related to Einstein’s field equations (EFEs). One of the
fundamental mechanisms consists to match the embedding
class one space-time which converts a 4-dimensional vari-
ety into a higher dimensional Euclidean space. Substantial
new exact stellar models to evolve in the domain of astro-
physics have been obtained through this conversion of curved
embedding class space-time into space-time of higher dimen-
sion. The embedding class one condition drives to a differ-
ential equation in the background of spherically symmetric
space-time which linked both metric potentials viz., grr and
gtt . This class one embedding condition is also well-known
as the Karmarkar condition. This famous condition seems
to be powerful and highly prestigious in the study of new
stellar solutions for astrophysical systems. In fact, Schlai
[34] argues that a Riemannian variety with positive defined

and analytic metric can be locally and isometrically embed-
ded as a sub-variety of a Euclidean space. The first overall
embedding theorem based on the isometrics of the Rieman-
nian variety into Euclidean space has been shown by Nash
[35]. Recently, Maurya and his collaborators [36–43] were
the first explorers who applying the Karmarkar condition to
the anisotropic matter distributions. Other related works can
be found in Refs. [44–49].

In this paper, we are exploring a new family of embed-
ded class space-time solutions admitting field equations,
Karmarkar condition, and Pandey–Sharma criterion using
spherically symmetric space-time and compare with the
Schwarzschild model as an exterior space-time. The phys-
ical viability of the generating stellar model for anisotropic
compact stars is confirmed via performing several physical
tests of the main salient features such as energy density,
radial and tangential pressures, anisotropy effect, dynam-
ical equilibrium, energy conditions (ECs), and dynamical
stability, which can be compared with the abundant observa-
tional data from different compact star candidates like PSR
J1416-2230 with 1.667 ± 0.021 [61], PSR J1903+327 with
1.97 ± 0.04 [62], 4U 1820-30 with 1.58 ± 0.06 [63], Cen
X-3 with 1.49 ± 0.08 [64].

The present paper is organized as follows: After an exhaus-
tive introduction in Sect. 1, we briefly discuss the basic
principles of field equations for anisotropic matter in Ein-
steinian gravity in Sect. 2. In Sect. 3 we write down the
equations describing the general solutions of an anisotropic
star under class one space-time in Einsteinian gravity. The
Sect. 4 includes the discussion of matching conditions of
spherical symmetric space-time with Schwarzschild’s model
as an exterior space-time. The physical investigation was per-
formed comprehensively in Sects. 5 and 6. Then in Sect. 7,
we develop some expressions of the embedding class one
solution. Finally, in Sect. 8, conclusions and astrophysical
implications are reported.

2 Basic stellar equations for anisotropic matter in
Einsteinian gravity

We consider the interior space-time line element for a static
and spherically symmetric fluid in Schwarzschild coordi-
nates (xi = t, r, θ, φ) as

ds2 = eνdt2 − eλdr2 − r2
(
dθ2 + sin2 θdφ2

)
, (1)

where ν = ν(r) and λ = λ(r) are the metric potentials
which have functional dependence on the radial coordinate
r . For our astrophysical model, the stress-energy tensor for
the anisotropic matter distribution within the stellar structure
is taken to be
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T ν
μ = (ρ + pt )U

νUμ − ptδ
ν
μ − (pt + pr ) V

νVμ, (2)

where ρ, pr and pt are the proper energy density, the radial
pressure and the transverse pressure of the stellar fluid in
the orthogonal direction to pr , respectively. Here U ν stands
the four-velocity eν(r)/2Uα = δα

0 , while V α is a unit space-
like vector in the radial direction V α = e−λ/2δα

1 , which is
orthogonal to Uα . By considering this last comoving stellar
fluid velocity, specifically, eν(r)/2Uα = δα

0 , the EFEs for the
line element (1) and the stress-energy tensor (2) leads directly
to the following set of independent equations

8πρ = 1

r2 − e−λ

[
1

r2 − λ′

r

]
, (3)

8πpr = − 1

r2 + e−λ

[
1

r2 + ν′

r

]
, (4)

8πpt = 1

4
e−λ

[
2ν′′ + ν′2 − λ′ν′ + 2

ν′ − λ′

r

]
. (5)

Here the primes denotes differentiation with respect to the
radial coordinate r . Furthermore, we have considered units
such that the speed of light c and the constant G are set to
unity, i.e., c = G = 1.

So, by using Eqs. (4) and (5), the anisotropy parameter 


which measures the anisotropy inner the celestial body can
be expressed as


 ≡ pt − pr = e−λ

8π

[
ν′′

2
− λ′ν′

4
+ ν′2

4
+ ν′ − λ′

2r
+ eλ − 1

r2

]
.

(6)

3 The general solutions of an anisotropic star under
class one space-time in Einsteinian gravity

3.1 Basic formulation of embedding class one

It is notable that the embedding of p-dimensional space V p

in a pseudo-Euclidean space E p pulled in much thought as
construed by the authors [50,51]. For the situation where a
p-dimensional space V p can be isometrically inundated in
[p + q]-dimensional space, where q is a minimum number
of extra dimensions, at this stage V p is considered to be q-
class embedding. Usually, the static spherically symmetric
line element expressed in (1) gives the 4-dimensional rela-
tivistic space-time that can be incorporated in flat space-time
of class two i.e, when q = 2, which exhibits that it is incor-
porated in a 6-dimensional pseudo-Euclidean space. Then
again, it ought to be noticed that one can uncover a feasible
parametrization to consolidate the space-time given in (1)
into a 5-dimensional pseudo-Euclidean space which prompts
embedding class one [50–52] i.e, when q = 1. Moreover, in
the two cases: static or non-static for a spherically symmet-

rical space-time to be class-one, the stellar system must be
compatible with the accompanying important and appropri-
ate conditions. In this respect, the symmetric tensor bi j corre-
sponding to a stellar system must be satisfied and determined
under the related Gauss–Codazzi equations, respectively:

Ri jhk = ε
(
bihb jk − bikb jh

)
, (7)

∇hbi j − ∇i bh j = 0, (8)

where ε = ±1 is everywhere normal to the manifold is time-
like (+1) or space-like (−1). At this stage, the Riemann con-
stituents for the line element given (1) can be read explicitly
as follows,

R0101 =−eν

(
ν′′

2
− λ′ν′

4
+ ν′2

4

)
; R1313 = − r

2
λ′ sin2 θ;

R2323 = −r2 sin2 θ

eλ

(
eλ − 1

)
; R1202 = 0;

R0202 = − r

2
ν′eν−λ; R1303 = 0;

R0303 = − r

2
ν′eν−λ sin2 θ; R1212 = − r

2
λ′. (9)

Subbing these Riemann constituents into Gauss equations (7)
prompts directly to

b01b33 =R1303 =0; b01b22 =R1212 =0; b00b33 =R0303;
b00b22 = R0202; b11b33 = R1313; b22b33 = R2323;
b11b22 = R1212; b00b11 = R0101. (10)

These relationships expressed in (10) prompts directly to the
expressions which can be written explicitly as follows,

(b00)
2 = (R0202)

2

R2323
sin2 θ; (b11)

2 = (R1212)
2

R2323
sin2 θ;

(b22)
2 = R2323

sin2 θ
; (b33)

2 = sin2 θ R2323. (11)

In this respect, in order to find the relationship in terms of
the Riemann constituents, we combine the last term of the
expression (10) conjointly with the constituents of expression
(11) which leads to

R0202R1313 = R0101R2323, (12)

put through to R2323 �= 0 well-known as Pandey–Sharma
condition [53]. It should be seen that all the constituents are
yielded in (11) satisfy the Codazzi equations expressed in (8).
Then again, on account of an overall non-static spherically
symmetric space-time, the connection between constituents
for symmetric tensor bi j and Riemann tensor Ri jhk can be
read explicitly as follows,

b01b22 = R1212 and b00b11 − (b01)
2 = R0101. (13)

Here (b01)
2 = sin2 θ (R1202)

2 /R2323. In the present cir-
cumstance, the embedding class-one condition well-known
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as Karmarkar condition [51,52] take the accompanying
shape

R0202R1313 = R0101R2323 + R1202R1303. (14)

Albeit in our condition, the relationship (12) between Rie-
mann constituents through the static spherically symmetric
line element (1) will be comparable to expression (14). The
condition expressed in (14) assumes an essential role for rep-
resenting the space-time (1) to be class-one, which is also
well-known as a necessary and sufficient condition. In this
regards, we obtain the differential equation by embedding
the Riemann constituents expressed in (14) which takes the
following form,

2ν′′

ν′ + ν′ = λ′eλ

eλ − 1
, (15)

with eλ �= 1. Moreover, we find the relationship between
the gravitational potentials through integrating equation (14)
which lead to the following form

ν(r) = 2 ln

[
C + D

∫ √
eλ − 1 dr

]
, (16)

where C and D are an integration constants. Additionally,
the stellar solution established by the relationship (16) is
named an embedding class one solution for the line ele-
ment expressed in (1). It is worth mentioning that the above
approach has been used to model compact celestial bodies in
different astrophysical scenarios.

Using the Karmarkar condition [51,52] in the expression
for anisotropy (6), we obtain


 = ν′

32π eλ

[
2

r
− λ′

eλ − 1

][
ν′eν

2 r D2 − 1

]
. (17)

At this stage, we ought emphasize that when 
 =
0, the only limited solution simultaneously fulfilling the
Karmarkar condition and pressure isotropy is the inte-
rior Schwarzschild solution. This solution endures different
shortcomings including superluminal speeds under the inte-
rior of the stellar fluid. To this end we consider a solution por-
traying an anisotropic fluid distribution which will be taken
up in the following section.

3.2 Relativistic embedding class one solution

Now, we have a heavenly system of equations comprising of
4-equations, specifically, the EFEs (3)–(6) and 5-unknowns
viz., the matter content {ρ, pr , pt } and the geometry {ν, λ}.
Consequently, in order to obtain the established solution of
the stellar system, we have needed two specific conditions
which are as per the following:

• The first condition is focused on choosing a specific grav-
itational mass expression m(r) by that determining the
EoS should take the particular shape: p = p(ρ).

• The second condition is focused on building up a relation-
ship between the gravitational potentials ν and λ. Subse-
quently, to get a well-comported stellar solution, the two
gravitational potentials should meet some physical and
mathematical precondition attainable that metric poten-
tials can not be assembled arbitrarily.

In this regard, Lake [54] has carried out that the metric
potential ν should to be regular, finite, monotonic increasing
function and free from any physical and mathematical singu-
larities interior the celestial structure, which gives a physi-
cally admissible fluid celestial body solution of EFEs. In any
case, eλ = 1 + O(r2) is inevitable for a physically plausi-
ble celestial configuration to be regular at the center. In this
paper, we are going to characteristic a physically attainable
form of the gravitational potential λ that satisfies the above
requirements, at that point we use embedding class one con-
dition to set up another gravitational potential ν in order to
solve completely the EFEs. Accordingly, we won’t consider
any system EoS in our study. For this purpose, we suggest
a new gravitational potential in order to discover a new shut
structure of solutions of EFEs for anisotropic fluid celestial
bodies,

λ = ln[αr2 + (1 + βr4)2] − 2 ln[(1 + βr4)], (18)

whereα andβ are constants having the dimensions [length]−2

and [length]−4, respectively.
By combining (18) in (15) we obtain

ν = 2 ln

[
C + D

2

√
α

β

cos(
√

βr2)

sin(
√

βr2)

]
(19)

where C and D are constant parameters.
Consequently, the class one space-time reads explicitly as

ds2 =
[
C + D

2

√
α

β

cos(
√

βr2)

sin(
√

βr2)

]2

dt2

−
[

1 + 2βr4 + (βr4)2

1 + αr2 + 2βr4 + (βr4)2

]
dr2 − r2d2, (20)

where d2 ≡ sin2 θ dφ2 + dθ2 is the usual metric on two-
sphere S2. On using (18) and (19), we can recast the mat-
ter content viz., density ρ, radial pressure pr and transverse
pressure pt as

8πρ =
[

3α + α2r2 − 2αβr4 − 5α(βr4)2
]

×
[ (

1 + αr2 + 2βr4 + (βr4)2)2
]−1

, (21)
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8πpr =
[

− 2α
√

βC + 4
√

αβD
(
1 + βr4) − Dα

cos(
√

βr2)

sin(
√

βr2)

]

×
[ (

2
√

βC + D
√

α
cos(

√
βr2)

sin(
√

βr2)

)

×
((

1 + αr2 + 2βr4 + (βr4)2)2
) ]−1

, (22)

8πpt =
[√

α + β
√

αr4
]

×
[

4
√

βD + 2α
√

βr2 − 4
√

β5Dr8

+ 2
√

αβC

(
(3βr4 − 1)

(
1 + Dβ

cos(
√

βr2)

sin(
√

βr2)

)) ]

×
[ (

2
√

βC + D
√

α
cos (

√
βr2)

sin(
√

βr2)

)

×
((

1 + αr2 + 2βr4 + (βr4)2)2
) ]−1

, (23)

Using Eqs. (22) and (23) we get the anisotropy factor 
 =
pt − pr as


 =
[ (√

α + β
√

αr4)
{

4
√

βD + 2α
√

βr2 − 4
√

β5Dr8 + 2
√

αβC

×
(

(3βr4 − 1)(1 + βD
cos(

√
βr2)

sin(
√

βr2)

) }

+
{

2α
√

βC − 4
√

αβD
(
1 − βr4) + αβ

cos(
√

βr2)

sin(
√

βr2)

}]

×
[

8π

(
2
√

βC + √
αD

cos(
√

βr2)

sin(
√

βr2)

)

×
((

1 + αr2 + 2βr4 + (βr4)2)2
) ]−1

. (24)

Differentiating Eqs. (21)–(23) respectively, we obtain the
density, radial pressure and transverse gradients as

8π
dρ

dr
= 2αr

[
5α + (α2 + 28β)r2 + 6αβr4 + 56β2r5

− 20β2r6 + 17αβ2r8 − 40β3r9

+ 28β3r10 − 20β4r14
]

×
[ (

1 + αr2 + 2βr4 + β2r8
)3

×
(

1 + αr2 + 2βr4 + β2r8
)3

]−1

, (25)

8π
dpr
dr

= 2
√

αr

[
− 4

√
αβD2

(
αr2 + (1 + βr4)2

)

− 4
√

βD
(
α(1 − βr4) + 2β(r + βr5)2

)

×
(

2
√

βC + √
αD × cos(

√
βr2)

sin(
√

βr2)

)

+
(√

α3 + 4
√

αβr2 + 4
√

αβ2r6
)

×
(

2
√

βC + √
αD

cos(
√

βr2)

sin(
√

βr2)

)2 ]

×
[ (

1 + αr2 + 2βr4 + β2r8
)2

×
(

2
√

βC + √
αD

cos(
√

βr2)

sin(
√

βr2)

)2 ]−1

, (26)

8π
dpt
dr

=
[

4
√

αr

]

×
[√

αβD2
(

2+αr2 − 2β4r8
) (

αr2 + (1 + βr2
)

− √
βD

(
2
√

βC + √
αD

cos(
√

βr2)

sin(
√

βr2)

)

×
(
α2r2(−1 + βr4) + 4βr2(−3 + βr4)(1 + βr4)3

−α(1 + βr4)(3 + 13β2r8)
)

+
(

6
√

αβr2(1−βr4)(1+βr4)2+
√

α3(1+3β2r8)
)

×
(

2
√

βC + √
αD

cos(
√

βr2)

sin(
√

βr2)

)2 ]

×
[ (

1 + αr2 + 2βr4 + β2r8
)3

×
(

2
√

βC + √
αD

cos(
√

βr2)

sin(
√

βr2)

)2 ]−1

. (27)

The central density ρc and central pressure pc are obtained
as

ρc = ρ(r = 0) = 3α

8π
> 0, (28)

pc = pr (r = 0) = pt (r = 0) = +2
√

αD − αC

8πC
> 0. (29)

Now, as suggested by Zeldovich and Navikov [55], the
inequalities ρ − pr > 0, ρ − pt > 0 must be satisfied in the
interior of a compact stellar system which is well-known as
dominant energy condition. This dominant energy condition
proportionally gives ωr = pr/ρ < 1, ωt = pt/ρ < 1. Cur-
rently, at the center of the celestial body, the above inequali-
ties give ωc = pc/ρc < 1, which infers

+2D − √
αC

3
√

αC
≤ 1. (30)

From expressions (29) and (30) we obtain a range of ratio
C/D as

1

2
√

α
≤ C

D
<

2√
α

. (31)
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4 Exterior space-time: junction conditions

In this section, we matched our interior space-time smoothly
with the exterior space-time at the pressure-free boundary �

( f = r − R = 0, where R is a radius) in order to depict the
full configuration of the self-gravitating anisotropic compact
celestial body. For this purpose, the outer space-time is con-
sidered to be vacuum space-time i.e., outer Schwarzschild
solution which is written explicitly as,

ds2 =
[

1 − 2M

r

]
dt2 −

[
1 − 2M

r

]−1

dr2 − r2d2, (32)

where, M is the total gravitational mass. Along these lines,
matching the internal and outside space-time demands the
conformity of the first and second fundamental forms. So,
these joining conditions are well-known as Darmois–Isarel
junction conditions [56,57]. The first fundamental form com-
prises in the continuity of the gravitational potential and its
derivative across the boundary �, which can be read explic-
itly as,

[ds2−]� = [ds2+]�, (33)

eλ−|r=R = eλ+|r=R and eν−|r=R = eν+|r=R, (34)

and
(∂eν−

∂r

)
|r=R

=
(∂eν+

∂r

)
|r=R

. (35)

Here, as usual − and + represent the inner and outer space-
times, respectively. However, by employing the continuity
of the first fundamental form viz., [ds2]� = 0, we shall
constantly obtain

[F]� ≡ F(r −→ R+) − F(r −→ R−) ≡ F+(R)−F−(R)

(36)

for any function F(r). This condition supplies us

g−
rr (R) = g+

rr (R) and g−
t t (R) = g+

t t (R). (37)

Then again, the space-time (1) should fulfill the second
fundamental form at the surface � which is equivalent to
the O’Brien and Synge [58,59] junction condition which is
defined as

[Ki j−]� = [Ki j+]� (38)

while Ki j describes the curvature. This last condition leads
directly to

[Gi jr
j ]� = 0, (39)

where r j symbolizes a unit radial vector. The EFEs conjointly
with the condition expressed in (39) provides

[Ti j r j ]� = 0 
⇒ pr (R) = 0. (40)

This condition establishes the celestial body size. This is
so due to the pressure diminishes as we proceed toward to
the surface and the pressure at the outside of the celestial
body should vanish, at that point, this will correspond to
the stellar structure boundary. On the other hand, the second
fundamental form proposes that the matter distribution is
bound in a limited spacetime arena, as a result, the stellar
object doesn’t extend indefinitely beyond �. Therefore, from
the first fundamental form, we can obtain

(
C + D

2

√
α

β

cos(
√

βR2)

sin(
√

βR2)

)2

= 1 − 2M

R
, (41)

1 + αR2 + 2βR4 + (βR4)2

1 + 2βR4 + (βR4)2 = 1 − 2M

R
, (42)

DR
(

2C +
√

α
β
D cos(

√
βR2)

sin(
√

βR2)

)

1 + βR4 = 2M

R2 , (43)

−2αR + 6αβR5

(
1 + βR4

)3 = 2M

R2
(

1 − 2M
R2

)2 , (44)

and from the second fundamental form i.e. pr (R) = 0, we
obtain

α
√

βC + 4
√

αβD
(

1 + βR4
)

− αD
cos(

√
βR2)

sin(
√

βR2)
= 0,

(45)

but here there is a discontinuous transverse pressure. Con-
sequently, in order to avoid this discontinuity, we estab-
lish the surface stresses i.e., the surface energy density and
surface pressure at the junction boundary by employing
the Darmois–Israel [56,57] condition. The intrinsic surface
energy-momentum tensor Si j is defined by Lanczos equa-
tions in the explicit form:

Sij = − 1

8π

(
κ i
j − δijκ

k
k

)
, (46)

where the term κ i
j represent the extrinsic curvatures disconti-

nuity, Ki
j beyond the hypersurface, i.e., κ i

j = K+
i j −K−

i j . The
extrinsic curvature of this boundary � can be reads explicitly
as,

K±
i j = −m±

k

∂2yk±
∂ni n j

− m±
k �k

μ l
∂yμ

±
∂ni

∂yl±
∂n j

. (47)

Here ni denotes the coordinates in the boundary �, while
m±

k represents the 4-velocity normal to �. The constituents
of this 4-velocity is defined in the coordinates (yν±) of τ± as

m±
k = ± d f

dyk
∣∣gμ l d f

dyμ

d f

dyl
∣∣− 1

2 with mkm
k = 1. (48)

For this purpose, since the nature of our space-time is spher-
ically symmetric, the surface energy-momentum tensor can
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Table 1 Constant parameters calculated for radii and mass for some compact star candidates

Compact star candidates Observed mass (M�) Radius (km) α (×10−2 km−2) β (×10−6 km−4) C (×10−1) D (×10−2)

PSR J1416-2230 [61] 1.97 ± 0.04 9.690 ± 0.200 3.03914632 8.58945632 9.58565482 0.84301245

PSR J1903+327 [62] 1.667 ± 0.021 9.438 ± 0.030 3.03917004 8.37687024 9.47010951 0.78323559

4U 1820-30 [63] 1.58 ± 0.06 9.316 ± 0.086 3.03906123 8.28578209 9.36998995 0.74215871

Cen X-3 [64] 1.49 ± 0.08 9.178 ± 0.013 3.03904052 8.19012421 9.259877651 0.70198892

be defined as

Sij = diag (−σ,P) , (49)

while σ and P represent the surface energy density and sur-
face pressure, respectively. The surface energy density σ and
the surface pressureP at the junction surface � are explicitly
expressed by the following formulas:

σ = − 1

4πR

[√
e−λ

]+

−
= − 1

4πR

√
1 − 2M

R

+ 1 + βR4

4πR
√

1 + αR2 + 2βR4 + (βR4)2
, (50)

and

P = 1

8πR

[ {
1 +

√
α

2

∂ν

∂R

}√
e−λ

]+

−
= 1 − M

R

8πR
√

1 − 2M
R

−
2
√

αβDR2 + (1 + βR4)(2
√

βC + √
αD cos(

√
βR2)

sin(
√

βR2)

8πR

√
αR2 + (1 + βR4)(2

√
βC + √

αD cos(
√

βR2)

sin(
√

βR2)

.

(51)

5 Physical acceptability conditions for the anisotropic
stellar models

Now, we need to carry out more physical tests for the
anisotropic celestial structure of embedding class one. For
this purpose, we want to fix the constants α, β, C and D, in
order to draw the graphs of the celestial model parameters
first. In this respect, from Eqs. (41)–(44) we can observe that
there are four equations with six parameters, viz., α, β,C , D,
M and R. So to determine the numeric values of the parame-
ters, we use a datum set for different compact celestial bodies
which are studied by Rawls et al. [64] for Cen X-3, Güver et
al. [63] for 4U 1820-30, Demorest et al. [61] for PSR J1416-
2230, Freire et al. [62] for PSR J1903+327. Employing the
observational data of these compact stars, we can solve the
four equations simultaneously and obtain the values for the
constants α, β, C and D of each celestial body as given in

Table 1. Now we will discuss the conditions which are gen-
erally well-known to be crucial for anisotropic fluid stellar
systems.

5.1 Regularity

• Metric functions at the center, r = 0: From the gravita-
tional potentials expressed in (18) and (19), we found that
their central expressions can be written as eλ(r)|r=0 = 1
and eν(r)|r=0 = C2 respectively. This obviously indi-
cates that the gravitational potentials are positive and
finite at the center, which validates that our stellar system
is free from any physical and geometrical singularities. In
addition, Fig. 1 (left panel) asserts that the stellar system
has finely increasing functions.

• Density at the center, r = 0: The energy density as
a function as the radial coordinate r is represented in
Fig. 1 (right panel). It is easy to observe that the matter
density takes a finite value at the center and decreases
monotonically towards the celestial body boundary.

• Pressure at the center, r = 0: From Fig. 2 (left panel),
we can show that both the radial and transverse pres-
sures are regular at the center of the celestial structure and
decrease gradually towards the stellar surface. The disap-
pearance of the radial pressure (pr ) at such a finite value,
r = r� = R defines the boundary of the fluid spheri-
cal body. It is widely believed that if the radial pressure
disappears at the stellar object boundary, the transverse
pressure is not necessary. A phenomenological justifica-
tion was discussed by Boonserm et al. [78]. They argued
that if the transverse pressure does not disappear at the
boundary of the celestial configuration, then correspond-
ing to the Schwarzschild outside would imply that the
electric field is discontinuous at the star’s surface.

• Anisotropy parameter : The anisotropy parameter is
shown in Fig. 2 (right panel), and it is easy to see that

 > 0 at each inside point of the celestial structure.
The anisotropy parameter disappears at the center of the
stellar object and increases to a maximum for such a
finite radius, r < r� where � represents the boundary
of the stellar body. A positive incentive for 
 (pt > pr )
implies a repulsive force due to anisotropy. This repul-
sive anisotropic force is necessary to hold the compact
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Fig. 1 The variation of metric potentials (left panel) and energy den-
sity (right panel) with the radial coordinate r for experimental statis-
tics of four different compact stars. For plotting these graphs, the

numerical values for the constant parameters are α = 0.030390 /km2,
β = 0.000075 /km4, C = 0.9985 and D = 0.00991

Fig. 2 The variation of radial and tangential pressures (left panel) and
anisotropic factor (right panel) with the radial coordinate r for exper-
imental statistics of four different compact stars. For plotting these

graphs, the numerical values for the constant parameters are α =
0.030390 /km2, β = 0.000075 /km4, C = 0.9985 and D = 0.00991

celestial body from collapsing. It is worth mentioning
here that the increase in the anisotropy parameter partic-
ularly towards the surface layers leads to greater stability
in these zones (Fig. 3).

With respect to the EoS parameters, namely, ωr = pr/ρ
and ωt = pt/ρ they must have their maximum values less
than 1, signifying that the matter content is non-exotic and
proves that Zeldovich’s condition is satisfied at each point
interior the stellar structure. With the help of a graphical rep-
resentation of EoS parameters in Fig. 4 (left panel), we have
shown that our celestial model confirms that the matter con-
tent is non-exotic and Zeldovich’s condition is well-satisfies.

Furthermore, Table 2 shows the predicted values of the
physical salients of different compact star candidates corre-
sponding to central and surface density which is according
to the expected ranges for a stellar configuration formed by

a non-exotic matter, also the radial pressure is shown at the
center of the stellar structure.

5.2 Energy conditions

For the physical acceptability of our celestial model, the solu-
tion must be able to describe a physical/non-exotic fluid that
should satisfy the following ECs, namely, null energy condi-
tion (NEC), weak energy condition (WEC) and strong energy
condition (SEC). To fulfill these ECs, the accompanying
inequalities should be hold simultaneously at each interior
point of the anisotropic matter distribution:

NEC: ρ ≥ 0, (52)

WEC: ρ + pt ≥ 0, ρ + pr ≥ 0, (53)

SEC: ρ + 2pt + pr ≥ 0, (54)

DEC: ρ − |pr | ≥ 0, ρ − |pt | ≥ 0. (55)
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Fig. 3 The variation of ingredients of energy density, radial pressure
(left panel) and tangential pressure (right panel) with the radial coor-
dinate r for experimental statistics of four different compact stars. For

plotting these graphs, the numerical values for the constant parame-
ters are α = 0.030390 /km2, β = 0.000075 /km4, C = 0.9985 and
D = 0.00991

Fig. 4 The variation of equations of states viz. pr/ρ and pt/ρ (left
panel) and energy conditions (right panel) with the radial coordinate r
for experimental statistics of four different compact stars. For plot-

ting these graphs, the numerical values for the constant parameters
are α = 0.030390 /km2, β = 0.000075 /km4, C = 0.9985 and
D = 0.00991

Table 2 Some physical parameters calculated for radii and mass for some compact star candidates

Compact star candidates ρc (km−2) ρs (km−2) pc (km−2) M
R Zs

PSR J1416-2230 (Demorest et al.) [61] 0.003627713697 0.0004974632596 0.01236762534 0.2033023736 0.2981592319

PSR J1903+327 (Freire et al.) [62] 0.003627742010 0.0005229564481 0.01233332451 0.1766264039 0.2434625904

4U 1820-30 (Güver et al.) [63] 0.003627612128 0.003627612128 0.01271735929 0.1696006870 0.2301708572

Cen X-3 (Rawls et al.) [64] 0.003627587407 0.0005511681401 0.01240898398 0.1623447374 0.2168813657

It is obvious from Fig. 4 (right panel) that all four ECs
expressed in inequalities (52)–(55) are fulfilled at each inte-
rior point of the stellar body. In this way, we have concluded
that our stress-energy tensor is well-behaved.

5.3 Mass function and compactness factor

Let us now turn our consideration towards the viable mass-
to-radius relationship. In this way, for a static spherically
symmetric perfect fluid stellar structure, Buchdahl [60] has

suggested an outright limitation on the maximally suitable
mass-to-radius ratio for isotropic fluid celestial configura-
tions as M/R ≤ 4/9 (in the units c = G = 1). This funda-
mentally expresses that for a given radius a static isotropic
fluid stellar structure can’t be arbitrarily huge. Moreover, for
a more generalized formula for the mass-to-radius ratio, one
refers to the work studied by Mak and Harko [66]. In this
regard, for the current compact celestial model, we can obtain
the mass-to-radius ratio from the relationship between eλ and
the mass function m(r), i.e.
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Fig. 5 The variation of mass function (left panel) and compactness
parameter and surface red-shift (right panel) with the radial coordi-
nate r for experimental statistics of four different compact stars. For

plotting these graphs, the numerical values for the constant parame-
ters are α = 0.030390 /km2, β = 0.000075 /km4, C = 0.9985 and
D = 0.00991

e−λ = 1 − 2m(r)

r
. (56)

Thereby, from this expression, we get the relationship of the
mass function for the compact stellar structure as follows

m(r) = 1

2
αr3

[
1 + αr2 + 2βr4 + (βr4)2

]−1

. (57)

The compactness parameter u of the celestial body is there-
fore given as

u(r) = αr2
[

1 + αr2 + 2βr4 + (βr4)2
]−1

. (58)

Now from the relationship (58), we can note that the com-
pactness parameter u of the stellar object depends upon the
mass function. The compactness parameter increases with
the increase of mass, as well as their corresponding value
u satisfies the Buchdahl maximal allowable mass-to-radius
ratio i.e., cannot be more than 4/9. In this connection, we
have shown graphically the variation of the physical quanti-
ties related to Buchdahl’s mass-to-radius ratio for isotropic
fluid stellar configurations, and also mass function are plotted
in Fig. 5.

5.4 Surface and central red-shift

Consequently, the surface red-shift Zs , corresponding to the
compactness parameter u expressed in Eq. (58) can be deter-
mined as follows,

zs = eλ(R)/2 − 1 = 1 − √
1 − 2us√

1 − 2us
, (59)

explicitly it reads

zs =
√

1 + αR2 + 2βR4 + (βR4)]2
√

1 − αR2 + 2βR4 + (βR4)]2
− 1. (60)

Now, the gravitational red-shift of the compact celestial body
is given explicitly by

z = eν(r)/2 − 1 =
[
C + D

2

√
α

β

cos(
√

βr2)

sin(
√

βr2)

]−1

− 1, (61)

and the central gravitational red-shift can be obtained as

zc =
√
e−ν(0) − 1 = 1

C
− 1, (62)

which must be non-negative interior the compact astrophys-
ical configuration, i.e., 1

C − 1 > 0 implies C < 1.
Now,

dz

dr
=−√

αCr

[
1+βr4

]−1[
C + 1

2

√
α

β
D

cos(
√

βr2)

sin(
√

βr2)

]−2

,

(63)

at r = 0

dz

dr
= 0 with

d2z

dr2 = −√
α
D

C2 < 0. (64)

More importantly, a positive anisotropy parameter 
 > 0 (as
in our case) does not impose an upper limit on the red-shift
surface zs , different is the case with isotropic distributions,
where the most maximum value that the red-shift surface zs
can hold out as zs = 4.77 [67]. Consequently, the surface
red-shift for anisotropic matter distributions is greater than
its isotropic partner. Figures 5 (right panel) and 6 (left panel)
are shown that both the gravitational red-shift z and surface
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Fig. 6 The variation of gravitational red-shift function (left panel) and
relativistic adiabatic index (right panel) with the radial coordinate r
for experimental statistics of four different compact stars. For plot-

ting these graphs, the numerical values for the constant parameters
are α = 0.030390 /km2, β = 0.000075 /km4, C = 0.9985 and
D = 0.00991

red-shift zs are positive and bounded within the stellar struc-
ture. On the other hand, it is well-known that the maximum
surface red-shift can’t surpass 3.842 if an anisotropic fluid
distribution is taken into account as pointed out by Ivanov
[68]. In this way, from our stellar solution, we can remark
that throughout the astrophysical distribution, the resulting
surface red-shift is zs = 0.2981592319, and therefore our
celestial model is well-consistent with Ivanov’s findings.

6 Equilibrium conditions and stability for the
anisotropic stellar models

For completeness, we would also like to explore the stability
as well as the equilibrium conditions in the interior of the
fluid sphere.

6.1 Equilibrium under three different forces

It is well known that the study of the compact celestial bodies
equilibrium depends strongly on the Tolman–Oppenheimer–
Volkoff (TOV) equation [69,70]. In light of the TOV equa-
tion, we want to explore whether our current celestial model is
in a stable equilibrium state under the three following forces:

1. The gravitational force Fg ,
2. The hydrostatic force Fh ,
3. The anisotropic repulsive force Fa described by the exis-

tence of a positive anisotropy factor 
.

As shown previously, the existence of a positive anisotropy
factor counterbalances the gravitational gradient. Conse-
quently, this deduces that the sum of three different forces
becomes zero

+ 2

r



︸︷︷︸
Fa

− dpr
dr︸︷︷︸
Fh

− ν′

2
(ρ + pr )

︸ ︷︷ ︸
Fg

= 0. (65)

The explicit formulas of these three forces are given as

Fa = 2

8πr f1(r)
((

1 + αr2 + 2βr4 + (βr4)2
)2

)

×
[ (√

α + β
√

αr4
){

4
√

βD + 2α
√

βr2 − 4
√

β5Dr8

+ 2
√

αβC

(
(3βr4 − 1)(1 + βD

cos(
√

βr2)

sin(
√

βr2)
)

)}

+
{

2α
√

βC − 4
√

αβD
(

1 − βr4
)

+ αβ
cos(

√
βr2)

sin(
√

βr2)

}]
.

(66)

Fh(r) = 2
√

αr

8π
(
1 + αr2 + 2βr4 + β2r8

)2
( f1(r))2

×
[

− 4
√

αβD2
(
αr2 + (1 + βr4)2

)
− 4

√
βD

×
(
α(1 − βr4) + 2β(r + βr5)2

)
f1(r)

+
(√

α3 + 4
√

αβr2 + 4
√

αβ2r6
)

( f1(r))
2
]
, (67)

Fg(r) = − 4α
√

βDr f2(r)

( f1(r))2 (
1 + αr2 + 2βr4 + (βr4)2

)2 , (68)

where,

f1(r) =
[

2
√

βC + √
αD

cos(
√

βr2)

sin(
√

βr2)

]
,

f2(r) = 2
√

β

×
[
αDr2 + D

(
1 + 2βr4 + (βr4)2

)
+ √

αC
(

1 − 3βr4
) ]
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Fig. 7 The variation of radial (v2
r ) and transverse (v2

t ) velocity of
sound and stability factor (|v2

r − v2
t |) (left panel) and different forces

in TOV equation for a static configuration (right panel) with the radial
coordinate r for experimental statistics of four different compact stars.

For plotting these graphs, the numerical values for the constant param-
eters are α = 0.030390 /km2, β = 0.000075 /km4, C = 0.9985 and
D = 0.00991

+ αD
(

1 − 3βr4
) cos(

√
βr2)

sin(
√

βr2)
.

The Fig. 7 (right panel) demonstrates that gravitational
force dominates both hydrostatic and anisotropic forces, and
therefore the celestial model is in an equilibrium state as the
gravitational force counterbalances joined impact of hydro-
static and anisotropic forces.

6.2 Causality condition and Abreu’s criterion

The speed of sound interior the compact celestial bodies can
be established by employing

vr (r) =
√
dpr (r)

dρ(r)
, vt (r) =

√
dpt (r)

dρ(r)
. (69)

Both the radial and transverse subliminal sound speed interior
of the celestial structure ought to be less than the light speed,
this phenomenon is well-known as a causality condition. As
we can easily see that both these quantities indicate that our
stellar model is totally stable, in light of the fact that the
subliminal sound speed is less than the light speed (taking
c = 1 in relativistic geometrized units) wherever within the
celestial configuration.

We use another important criterion for the static spheri-
cally symmetric celestial structure dubbed the cracking cri-
terion of stellar configuration suggested by Herrera [71], for
which we can check whether the local anisotropic matter dis-
tribution is stable or unstable. Then, Abreu and co-workers
[72] have suggested another choice for taken into account
the stability of a self-gravitating anisotropic fluid sphere.
More interesting, this methodology demonstrates whether
the region is potentially stable where the radial sound veloc-

ity is greater than the tangential sound velocity. As per Abreu
et al. [72], the region for stability compact celestial bodies
can be determined via the following criterion,

−1 ≤ v2
t − v2

r ≤ 1

≡
{−1 ≤ v2

t − v2
r ≤ 0 Potentially stable

0 < v2
t − v2

r ≤ 1 Potentially unstable

}
. (70)

It is easy to observe from Fig. 7 (left panel) that the sta-
bility factor viz., (v2

t − v2
r ) for our stellar model satisfies

the cracking criterion proposed by Herrera and Abreu and
co-workers [71,72] everywhere within the compact celes-
tial body. Hence, we can come to the conclusion that our
anisotropic stellar model is well-behaved and provides a sta-
ble configuration.

6.3 Relativistic adiabatic index

For a relativistic anisotropic stellar structure, the stability is
also depends upon the adiabatic index �, the ratio of two
specific heats, established by the following relation as [74]

� = ρ + pr
pr

dpr
dρ

. (71)

From this point of view, the relativistic adiabatic index
corresponding to the case � > 4/3 leads to the condi-
tion for the stability of a Newtonian stellar configuration
and for � = 0 being the condition for a neutral equi-
librium as suggested by Bondi [75]. It is worth mention-
ing that this condition modifies for a relativistic isotropic
stellar structure due to the regenerative impact of pressure,
which delivers the stellar structure more unstable. For a rel-
ativistic anisotropic fluid stellar structure, the situation turns
out to be more complicated due to the stability will rely
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upon the kind of anisotropy. In this respect, the stability
condition via an anisotropic fluid stellar structure is given
by

� >
4

3

[
1 + 3π

ρ0 pr0

|p′
r0|

r + (pt0 − pr0)

|p′
r0|r

]

max

, (72)

while ρ0, pr0 and pt0 represent the initial energy density,
initial radial pressure and initial transverse pressure, respec-
tively, in the static equilibrium state which fulfills the TOV
equation expressed in (65). Noting that the second and last
terms in the square brackets represent the relativistic and
anisotropic corrections, which increase the instability range
of the adiabatic index. In conclusion, our outcomes have
appeared in Fig. 6 (right panel), where we plot � as a func-
tion of radial coordinate, r . From this graph, the resulting
� > 4/3 ≈ 1.33 exhibits that our celestial model is sta-
ble versus the radial adiabatic infinitesimal pulsations and
increasing values of adiabatic index (�) mean the pressure
development for a given increase in energy density, i.e., a
stiffer EoS.

6.4 Harrison–Zeldovich–Novikov static stability criterion

In light of the above considerations, any solution describing
stable astrophysical celestial structures should satisfy the sta-
bility criterion. This stability criterion determines whether
the solution is static and stable under radial infinitesimal
perturbations. It is worthwhile to mention here that accord-
ing to the stability criterion of hydrostatic equilibrium con-
figuration of the celestial structure, the equilibrium mass
M of such structure varies with respect to its central den-
sity ρc, which implies that the equilibrium celestial config-
uration with ∂M(ρc)/∂ρc > 0 are stable, but those with
∂M(ρc)/∂ρc < 0 are unstable [76,77]. For our solution, the
expression for equilibrium mass M against central density
ρc is formulated via the following relation

M(ρc) = 4πρc R3

3 + 8πρc R2 + 6βR4 + 3(βR4)2 , (73)

and

∂M

∂ρc
=

4πρc R3
[
3+8πR2(ρc−1)+6βR4+3(βR4)2

]

[
3 + 8πρc R2 + 6βR4 + 3(βR4)2

]2 > 0.

(74)

Importantly, we can easily see from Fig. 8 that the mass of
the stellar structure grows with the increment of the cen-
tral energy density. This outcome confirm the static stability
criterion of the celestial model versus radial infinitesimal
perturbations, and also we conclude that the compact stellar

Fig. 8 Variation of total mass with central density for experimental
statistics of four different compact stars. For plotting these graphs, the
numerical values for the constant parameters are α = 0.030390 /km2,
β = 0.000075 /km4, C = 0.9985 and D = 0.00991

configuration turns out to be more massive with respect to
increasing central density.

7 Herrera–Ospino–Di Prisco generators of the present
embedding class one solution

The algorithm for all possible spherically symmetric static
anisotropic solutions through two generating functions ζ(r)
and �(r) for the EFEs has been established by Herrera
and collaborators [73]. Both generators ζ(r) and �(r) are
linked with the gravitational potential eν and the pressure
anisotropy, respectively. These both generators are formu-
lated via the following relations,

exp

[ ∫ (
2ζ(r) − 2

r

)
dr

]
= exp

[
ν(r)

]
, (75)

�(r) = 8π(pr (r) − pt (r)). (76)

Then, for our case, the solution of these generating functions
are explicitly determined as

ζ(r) = 1

r
−

[ (
D

√
α

(
1 + cos(

√
βr2)

sin(
√

βr2)

))
r

]

×
[(

C + D

2

√
α

β

cos(
√

βr2)

sin(
√

βr2)

) (
sin(

√
βr2)

cos(
√

βr2)

)2 ]−1

(77)

�(r) = − 1

f1(r)
((

1 + αr2 + 2βr4 + (βr4)2
)2

)

×
[ (√

α + β
√

αr4
) {

4
√

βD + 2α
√

βr2 − 4
√

β5Dr8

+ 2
√

αβC

(
(3βr4 − 1)(1 + βD

cos(
√

βr2)

sin(
√

βr2)
)

)}

+
{

2α
√

βC − 4
√

αβD
(

1 − βr4
)

+ αβ
cos(

√
βr2)

sin(
√

βr2)

}]
,

(78)
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where f1(r) is defined above. It is worth mentioning here
that the relevance of the present system from an astrophysi-
cal point of view, can be completely determined by one gen-
erating function via eν and an additional ansatz in the form
of embedding class one.

8 Conclusions and astrophysical implications

This work is devoted to exploring the possibility of provid-
ing a new family of exact solutions for viable anisotropic
spherically symmetric systems in the background of gen-
eral relativity. For this purpose, we emphasize the embed-
ding class approach as a ground-breaking tool, for obtaining
anisotropic solutions for matter sources through EFEs. To
be precise, our study proceeds in the realm of class one of
the embeddings, by approaches for embedding spherically
symmetric static metric into the five-dimensional pseudo-
Euclidean space, to determine a more general stellar solution
to the EFEs. For the present analysis, we chose an appropri-
ate forms for gravitational metric coefficient viz., grr ≡ λ(r)
expressed in (18) that satisfies all the requirements carried out
by Lake [54], and we have obtained the second gravitational
metric coefficient gtt ≡ ν(r) given in (19) by means of the
embedding class one approach via Karmarkar condition and
Pandey–Sharma criterion. Further, we impose the boundary
conditions, by choosing the Schwarzschild model i.e., vac-
uum space-time to describe as an exterior space-time, which
helps us to find the unknown constraints. A brief qualitative
analysis of all the obtained results is itemized below:

• Foremost, it is well-known that the aspects of gravita-
tional metric potentials play an important role in obtain-
ing a well-behaved celestial solution. For this purpose,
we have shown both gravitational metric coefficients
versus radial coordinate r as illustrated in Fig. 1 (left
panel), which shows that the fundamental conditions:
eλ(r)|r=0 = 1 and eν(r)|r=0 = C2 �= 0, were surrounded
by the metric potentials. Increasing monotonic attributes
of gravitational metric potentials are also observed every-
where within the stellar configuration.

• The evolution of energy density, radial and transverse
pressures viz., ρ, pr and pt , can be observed in Fig. 1
(right panel) and Fig. 2 (left panel), respectively. The
energy density along with radial and transverse pres-
sures exhibit decreasing behavior i.e., behave realistically
and are positive throughout the stellar configuration. The
maximum value is achieved at the center while decreas-
ing development has been observed with the increment in
radii and it tends to zero towards the stellar surface. From
the Figs. 1 and 2, we corroborate also that our stellar con-
figuration is fully free from any physical or geometrical
singularities.

• The anisotropy behavior and the gradients of energy
density, radial and transverse pressures according to the
radial coordinate, r are represented in Figs. 2 (right panel)
and 3, respectively. On the one hand, we observe that the
pr �= pt and pt > pr , consequently, 
 > 0, so the
anisotropy is positive and implies that the celestial sys-
tem encounters a repulsive force counteracts the gravita-
tional gradient progressing the stability and equilibrium
state. On the other hand, we noticed that all the deriva-
tives of energy density, radial and transverse pressures are
non-positive and show decreasing behavior i.e., dρ

dr < 0,
dpr
dr < 0, dpt

dr < 0 . The negativity in gradients exhibits
that our acquired solutions are physically agreeable.

• We have argued the EoS parameters viz., ωr ≡ pr/ρ and
ωt ≡ pt/ρ as well as four-types of energy bounds NEC,
WEC, SEC, DEC in our study. It is obvious from Fig. 4
that both EoS parameters have their maximum values less
than 1, which means that the matter content is non-exotic
and proves that Zeldovich’s condition is well-satisfied
throughout the stellar configuration. In the same graph,
we noted that all the ECs are well-fulfilled in our case. In
the same graph, we noticed that all the ECs are decreasing
monotonic functions with increasing radii, which is even
more satisfactory in our case.

• We have also argued the compactness factor, mass func-
tion along with gravitational red-shift. The interesting
behaviors of these physical quantities i.e., u(r), m(r), z
have been shown in Figs. 5 and 6 (left panel) respectively.
It can be seen that both u(r) and m(r) show increasing
behavior as well as u(r) increases with the increase of
m(r), and their corresponding value satisfies the Buch-
dahl maximal allowable mass-to-radius ratio i.e., cannot
be more than 4/9. Apart from this, gravitational red-shift
exhibits the decreasing attribute and the resulting surface
red-shift is zs = 0.30 < 3.482, which is in alliance with
Ivanov’s findings affirming the stability of our stellar sys-
tem.

• The equilibrium conditions via TOV equation for the
present stellar configuration study have also been dis-
cussed. The balancing nature of the hydrostatic Fh , grav-
itational Fg and anisotropic Fa forces is described in the
right of Fig. 7. As all these forces i.e., Fh , Fg , Fa add up to
zero and balance the impact of each other, demonstrates
that our obtained anisotropic solutions for the compact
stellar structures are stable and physically viable.

• The stability analysis of a compact stellar configura-
tion study is additionally a fundamental attribute. In our
study, we analyzed the stability through relativistic adi-
abatic index, causality condition and Abreu’s criteria,
and Harrison-Zeldovich-Novikov static stability crite-
rion. The evolution of these fundamental criteria is pre-
sented in Figs. 6 (right panel), 7 (left panel) and 8 respec-
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tively. From the point of view of the causal condition
and Abreu’s criterion, the stellar model of the anisotropic
configuration is totally stable, due to the subliminal sound
speed is less than 1 throughout the celestial configuration,
as well as there is no change in sign v2

t − v2
r and stability

factor (v2
t − v2

r ) lies among −1 and 0 for stable stel-
lar configuration or otherwise unstable if it is between 0
and 1. Moreover, the relativistic adiabatic index � show-
ing that all the curves involved remain in a zone > 4/3.
The resulting � > 4/3 ≈ 1.33 exhibits that our stel-
lar model is stable against the radial adiabatic infinites-
imal pulsations and increasing values of adiabatic index
(�) mean the pressure evolution for a given increase in
energy density, i.e., a stiffer EoS. Finally, the Harrison-
Zeldovich-Novikov static stability criterion or M − ρc
function plays a crucial role in ensuring the stability of
spherically symmetric static stellar systems under radial
pulsation has been well-satisfied. We can also notice from
the data drawn in M − ρc curve that the stellar config-
urations become more massive according to increasing
central density.

Finally, it would be interesting to mention here that all
anisotropic spherically symmetric solutions demonstrate in
the present paper satisfying obtained well-behaved celestial
interiors by employing the embedding class one approach
via Karmarkar condition and Pandey–Sharma criterion. It is
also admitting and sharing all the physical and mathemati-
cal attributes necessary in the study of compact stars, which
provide circumstantial evidence in favor of the evolution of
realistic compact stars. In effect, our anisotropic stellar model
supports the existence of realistic super-massive pulsars like
PSR J1416-2230, PSR J1903+327, 4U 1820-30 and Cen X-3.
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