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Abstract In this work, we analyse the evolution of time-
dependent traversable wormhole geometries in a Friedmann–
Lemaître–Robertson–Walker background in the context of
the scalar–tensor representation of hybrid metric-Palatini
gravity. We deduce the energy–momentum profile of the
matter threading the wormhole spacetime in terms of the
background quantities, the scalar field, the scale factor and
the shape function, and find specific wormhole solutions by
considering a barotropic equation of state for the background
matter. We find that particular cases satisfy the null and weak
energy conditions for all times. In addition to the barotropic
equation of state, we also explore a specific evolving worm-
hole spacetime, by imposing a traceless energy–momentum
tensor for the matter threading the wormhole and find that this
geometry also satisfies the null and weak energy conditions
at all times.

1 Introduction

The explanation of the accelerated expansion of the Universe
is one of the most challenging problems in modern cosmol-
ogy [1,2]. From the mathematical point of view, the simplest
way to treat this problem is to consider the cosmological con-
stant term [3]. Nonetheless, this model faces some difficulties
such as the coincidence problem and the cosmological con-
stant problem. The latter dictates a huge discrepancy between
the observed values of the vacuum energy density and the
theoretical large value of the zero-point energy suggested by
quantum field theory [3]. There are some alternative models
proposed to overcome these problems such as modified grav-
ity [4–10], mysterious energy–momentum sources [11–13],
such as quintessence [14–17] and k-essence [18–20] fields,
and complex equations of state storing the missing energy of
the dark side of the Universe [21,22]. In general, models with
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varying dark energy candidates may be capable of overcom-
ing all the mathematical and theoretical difficulties, however,
the main underlying question is the origin of these terms. One
proposal is to relate this behavior to the energy of quantum
fields in vacuum through the holographic principle which
allows us to reconcile infrared (IR) and ultraviolet (UV) cut-
offs [23] (see Ref. [24] for a review on various attempts to
model the dark side of the Universe).

However, an alternative to these dark energy models, as
mentioned above, is modified gravity [4–10]. Here, one con-
siders generalizations of the Hilbert–Einstein Lagrangian
specific curvature invariants such as R2, RμνRμν ,

RαβμνRαβμν , εαβμνRαβγ δR
γ δ
μν , etc. A popular theory that

has attracted much attention is f (R) gravity, where one may
tackle the problem through several approaches, namely, the
metric formalism [4–10], which considers that the metric is
the fundamental field, or the Palatini formalism [25], where
here one varies the action with respect to the metric and an
independent connection. However, one may also consider
a hybrid combination of these approaches that has recently
been proposed, namely, the hybrid metric-Palatini gravita-
tional theory [26], where the metric Einstein-Hilbert action is
supplemented with a metric-affine (Palatini) correction term.
The hybrid metric-Palatini theory has the ability to avoid sev-
eral of the problematic issues that arise in the pure metric and
Palatini formalisms. For instance, metric f (R) gravity intro-
duces an additional scalar degree of freedom, which must
possess a low mass in order to be relevant for the large scale
cosmic dynamics. However, the presence of such a low mass
scalar field would influence the dynamics on smaller scales,
such as at the level of the Solar System, and since these small
scale effects remain undetected, one must resort to screening
mechanisms [27,28]. Relative to the Palatini formalism, no
additional degrees of freedom are introduced, as the scalar
field is an algebraic function of the trace of the energy–
momentum tensor. It has been shown that this fact entails
serious consequences for the theory, leading to the presence
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of infinite tidal forces on the surface of massive astrophysical
type objects [25].

In this context, the hybrid metric-Palatini gravity the-
ories were proposed initially in [26] in order to circum-
vent the above shortcomings in the metric and Palatini for-
malisms of f (R) gravity. One of the main advantages of
the hybrid metric-Palatini theory is that in its scalar–tensor
representation a long-range force is introduced that auto-
matically passes the Solar System tests, and thus no con-
tradiction between the theory and the local measurements
arise. In a cosmological context, it has also been shown
that hybrid metric-Palatini gravity may also explain the cos-
mological epochs [29,30] (we refer the reader to [31–33]
for more details). In fact, hybrid metric-Palatini gravity has
attracted much attention recently, and has a plethora of appli-
cations, namely, in the galactic context [34–36], in cosmol-
ogy [29,30,37–40], in braneworlds [41,42], black holes [43–
46], stellar solutions [47], cosmic strings [48,49], tests of
binary pulsars [50], and wormholes [51,52], amongst others.

Here, we explore the possibility that evolving wormhole
geometries may be supported by hybrid metric-Palatini grav-
ity. These compact objects, which are theoretical shortcuts
in spacetime, have been shown to be threaded by an exotic
fluid that violates the null energy condition (NEC), at least
for the static case [53,54]. However, it has been shown that
evolving wormholes are able to satisfy the energy condi-
tions in arbitrary but finite intervals of time [55,56], contrary
to their static counterparts [57,58]. One way to study this
subject is to embed a wormhole in a Friedmann–Lemaître–
Robertson–Walker (FLRW) metric, which permits the geom-
etry to evolve in a cosmological background [59–75]. Due
to the somewhat problematic nature of the energy condition
violations, an important issue is whether traversable worm-
holes can be constructed from normal matter throughout the
spacetime, or at least partially. Different wormhole struc-
tures have been explored from this point of view [74–79].
Indeed, it has been shown that in modified gravity, it is pos-
sible to impose that the matter threading the wormhole throat
satisfies the energy conditions [80,81], and it is the higher
order curvature terms that support these nonstandard worm-
hole geometries [82–87]. Furthermore, different wormhole
structures have been studied extensively in the context of
alternative theories of gravity [88–98] and also from differ-
ent aspects [99–111].

In this paper, we study the evolution of traversable worm-
holes in a FLRW universe background in the scalar–tensor
representation of hybrid metric-Palatini gravity. Further-
more, we explore the energy conditions for matter which
threads these wormhole geometries. The paper is organized
in the following manner: In Sect. 2, we briefly present the
action and field equations of hybrid metric-Palatini gravity,
we consider the spacetime metric and explore a barotropic
equation of state for the background fluid. In Sect. 3, we anal-

yse evolving traversable wormhole geometries for specific
values of the barotropic equation of state parameter, as well
as evolving wormholes with a traceless energy–momentum
tensor (EMT), and study the energy conditions for the solu-
tions obtained. Finally, in Sect. 4, we summary our results
and conclude.

2 Evolving wormholes in hybrid metric-Palatini gravity

2.1 Action and field equations

Here, we briefly present the hybrid metric-Palatini gravita-
tional theory. The action is given by

S = 1

2κ2

∫
d4x

√−g [R + f (R)] + Sm, (1)

where κ2 ≡ 8πG, R is the metric Ricci scalar, and the Pala-
tini curvature is R ≡ gμνRμν , with the Palatini Ricci tensor,
Rμν , defined in terms of an independent connection, 
̂α

μν ,
given by

Rμν ≡ 
̂α
μν,α − 
̂α

μα,ν + 
̂α
αλ
̂

λ
μν − 
̂α

μλ
̂
λ
αν, (2)

and Sm is the matter action.
However, the scalar–tensor representation of hybrid metric-

Palatini gravity provides a theoretical framework which is
easier to handle from a computational point of view [26],
where the equivalent action to (1) is provided by

S =
∫

d4x
√−g

2κ2

[
(1 + φ)R + 3

2φ
∂μφ∂μφ − V (φ)

]
+Sm .

(3)

Note a similarity with the action of the w = −3/2 Brans–
Dicke theory version of the Palatini approach to f (R)gravity.
However, the hybrid theory exhibits an important and subtle
difference appearing in the scalar field-curvature coupling,
which in the w = −3/2 Brans–Dicke theory is of the form
φR [26].

By varying the action (3) with respect to the metric pro-
vides the following gravitational field equation

Gμν = κ2
(

1

1 + φ
Tμν + T (φ)

μν

)
, (4)

where Tμν is the standard matter energy–momentum tensor,
and

T (φ)
μν = 1

κ2

1

1 + φ

[
∇μ∇νφ − 3

2φ
∇μφ∇νφ

+
(

3

4φ
∇λφ∇λφ − �φ − 1

2
V

)
gμν

]
, (5)
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is the energy–momentum tensor of the scalar field of the
theory.

Varying the action with respect to the scalar field yields
the following second-order differential equation,

−�φ + 1

2φ
∂μφ∂μφ + φ[2V − (1 + φ)Vφ]

3
= φκ2

3
T . (6)

The above equation shows that in hybrid metric-Palatini grav-
ity the scalar field is dynamical. This represents an important
and interesting difference with respect to the standard Pala-
tini case [25].

2.2 Spacetime metric

The metric of a time-dependent wormhole geometry is given
by

ds2 = −e2�(r)dt2 + a2 (t)

[
dr2

1 − b (r) /r
+ r2d�2

]
, (7)

where �(r) and b (r), respectively, are the redshift and
shape functions, which are r -dependent, and a (t) is the time-
dependent scale factor, and d�2 = dθ2 + sin2 θdϕ2 is the
linear element of the unit sphere.

To correspond to a wormhole solution, the shape function
has the following restrictions [53]: (i) b(r0) = r0, where r0

is the wormhole throat, corresponding to a minimum radial
coordinate, (ii) b(r) ≤ r , and (iii) the flaring-out condition
given in the form rb′(r) − b (r) < 0. The latter condition is
the fundamental ingredient in wormhole physics, as taking
into account the Einstein field equation, one verifies that this
flaring-out condition imposes the violation of the NEC. In
fact, it violates all of the pointwise energy conditions [53,54,
57,58,112]. In order to avoid the presence of event horizons,
so that the wormhole is traversable, one also imposes that
the redshift function, �(r), be finite everywhere. However,
throughout this work, we consider a zero redshift function,
� = 0, which simplifies the calculations significantly.

2.3 Evolving embedding analysis

It is also interesting to explore how the time evolution of
the scale factor affects the wormhole itself. To this effect, in
the following analysis, we will follow closely the analysis
outlined in Refs. [53,59,75], and analyse how the (effective)
radius of the throat or length of the wormhole changes with
time. As mentioned above, throughout this paper, we con-
sider � = 0 for simplicity. Thus, in order to analyse the
time-dependent dynamic wormhole geometry, we need to
choose a specific b(r) to provide a reasonable wormhole at
t = 0, which is assumed to be the onset of the evolution.
Note that the radial proper length between any two points

A and B, through the wormhole, at any t = const is given
by l(t) = ± a(t)

∫ rB
rA

(1 − b/r)−1/2 dr , which is merely the
initial radial proper separation multiplied by the scale factor.

Now, to analyse how the “wormhole” form of the metric is
maintained throughout the evolution, we consider a t = const
and θ = π/2 slice of the spacetime (7). Thus, the metric
reduces to

ds2 = a2(t) dr2

1 − b(r)/r
+ a2(t) r2 dϕ2, (8)

and is embedded in a flat 3-dimensional Euclidean space
given by

ds2 = dz̄2 + dr̄2 + r̄2 dϕ2. (9)

Comparing the angular coefficients, yields

r̄ = a(t) r
∣∣
t=const, (10)

dr̄2 = a2(t) dr2
∣∣
t=const. (11)

Note, that when considering derivatives, these relations do
not represent a “coordinate transformation”, but a “rescaling”
of the radial coordinate r along each t = constant slice.

The “wormhole” form of the metric will be preserved,
with respect to the z̄, r̄ , ϕ coordinates, if the embedded slice
has the following metric

ds2 = dr̄2

1 − b̄(r̄)/r̄
+ r̄2dϕ2, (12)

and the shape functions b̄(r̄) has a minimum at a specific
b̄(r̄0) = r̄0. Now, the embedded slice (8) can be readily
rewritten in the form of Eq. (12) by using Eqs. (10) and (11),
and the following relation

b̄(r̄) = a(t) b(r). (13)

Thus, the evolving wormhole will have the same overall
shape and size and relative to the z̄, r̄ , ϕ coordinate sys-
tem, as the initial wormhole had relative to the initial z, r, ϕ
embedding space coordinate system. In addition to this, using
Eqs. (9) and (12), one deduces that

dz̄

dr̄
= ±

(
r̄

b̄(r̄)
− 1

)−1/2

= dz

dr
, (14)

which implies

z̄(r̄) = ±
∫

dr̄

(r̄/b̄(r̄) − 1)1/2

= ± a(t)
∫ (

r − b

b

)−1/2

dr

= ± a(t) z(r). (15)
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Thus, the relation between the initial embedding space at
t = 0 and the embedding space at any time t is, from Eqs. (11)
and (15)

ds2 = dz̄2+dr̄2+r̄2 dϕ2 = a2(t) [dz2+dr2+r2dϕ2]. (16)

The wormhole will always remain the same size, relative to
the z̄, r̄ , φ coordinate system, as the scaling of the embed-
ding space compensates for the evolution of the wormhole.
Nevertheless, the wormhole will change size relative to the
initial t = 0 embedding space.

We also note that the “flaring out condition” for the evolv-
ing wormhole is given by

d 2r̄(z̄)

dz̄2 > 0, (17)

at or near the throat, so that taking into account Eqs. (10),
(11), (13), and (14), it follows that

d 2r̄(z̄)

dz̄2 = 1

a(t)

b − b′r
2b2 = 1

a(t)

d 2r(z)

dz2 > 0, (18)

at or near the throat. Using Eqs. (10), (13), and

b̄′(r̄) = db̄

dr̄
= b′(r) = db

dr
, (19)

the right-hand side of Eq. (18), relative to the z̄, r̄ , φ coordi-
nate system, may be written as

d 2r̄(z̄)

dz̄2 =
(
b̄ − b̄′r̄

2b̄2

)
> 0, (20)

at or near the throat. Thus, we have verified that the flaring
out condition (20), using the barred coordinates, has the same
form as for the static wormhole.

2.4 Gravitational field equations

We also consider an anisotropic matter energy–momentum
tensor given by Tμ

ν = diag(−ρ,−τ, p, p), where ρ, τ and
p are the energy density, the radial tension (which is equiv-
alent to a negative radial pressure) and the tangential pres-
sure, respectively. Using the metric (7), the gravitational field
equations (4) provide the following energy–momentum pro-
file:

ρ(t, r) =
(

3H2 + b′

r2a2

)
(1 + φ) + 3φ̇H + 3φ̇2

4φ
− 1

2
V (φ),

(21)

τ (t, r) =
(
H2 + 2

ä

a
+ b

r3a2

)
(1 + φ)

+2φ̇H − 3φ̇2

4φ
+ φ̈ − 1

2
V (φ), (22)

p (t, r) =
(

−H2 − 2
ä

a
− rb′ − b

2r3a2

)
(1 + φ)

−2φ̇H + 3φ̇2

4φ
− φ̈ + 1

2
V (φ), (23)

respectively, where H = ȧ/a and φ = φ (t), the overdot and
prime denote derivatives with respect to t and r , respectively,
and for notational simplicity, we have considered κ = 1. One
recovers the standard field equations of the Morris–Thorne
wormhole [53], by fixing the scale factor a to unity and
excluding the background time-dependent evolution and the
scalar field φ contribution.

Furthermore, we will also analyse the null and weak
energy conditions for the solutions obtained below. The weak
energy condition (WEC) is defined as Tμνuμuν ≥ 0, where
uμ is a timelike vector, and is expressed in terms of the energy
density ρ, radial tension τ and tangential pressure p as ρ ≥ 0,
ρ −τ ≥ 0 and ρ + p ≥ 0, respectively. The last two inequal-
ities, i.e., ρ − τ ≥ 0 and ρ + p ≥ 0 correspond to the NEC,
which is defined as Tμνkμkν ≥ 0, where kμ is any null vector.

The scalar field equation of motion (6) yields

φ̈ + 3φ̇H − φ̇2

2φ
− 1

3
φ

[
T + (1 + φ)

dV

dφ
− 2V (φ)

]
= 0,

(24)

where the trace of the energy–momentum tensor T =
T (t, r) = Tμ

μ = −ρ − τ + 2p is given by

T (t, r) = −2

(
b′

a2r2 + 3H2 + 3
ä

a

)
(1 + φ)

−3φ̈ + 3φ̇2

2φ
− 9φ̇H + 2V (φ). (25)

In order to solve the differential equation (24) for φ (t), the
trace T (t, r), given by Eq. (25), should be independent of
r . This condition leads to b′/r2 = CH2

0 where H0 is the
present value of the Hubble parameter and C is an arbitrary
dimensionless constant. Thus, the shape function is given by
b(r) = r0 +CH2

0 (r3−r3
0 )/3, which satisfies b(r0) = r0, and

the flaring-out condition at the throat imposes CH2
0 r

2
0 < 1.

To solve Eq. (24) numerically for φ, it is useful to rewrite
it in terms of dimensionless functions of the scale factor a.
Thus, we consider the definitions:

φ̈ = äφ′(a) + ȧ2φ′′(a), φ̇ = ȧφ′(a),

ä = Hȧ + Ḣa, Ḣ = ȧH ′(a), ȧ = Ha.

Note that in the above definitions, the prime denotes a deriva-
tive with respect to the scale factor. In addition to this, we
consider U = V/3H2

0 and E = H/H0, so that Eq. (24)
finally takes the following form

φ′′(a) − φ′2

2φ(a)
+ 4(aφ′(a) + φ(a))

a2 + E ′(a)φ′(a)

E(a)
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+ 2Cφ(a)

3a4E(a)2 + 2φ(a)E ′(a)

aE(a)
− φ(a)

a2E(a)2

dU

dφ
= 0. (26)

2.5 Barotropic equation of state

To solve the differential equation (26) for φ (a), we need
to deduce E . To this effect, it is also useful to define the
following background quantities:

ρb (t) = 3H2, τb (t) = H2 + 2
ä

a
, (27)

and consider a background barotropic equation of state
given by τb = −ωbρb. From this condition, we find E =
a−3(ωb+1)/2. One could solve this equation of state for scale
factor as a function of the time coordinate t , which yields
a(t) ∝ t2/3(1+ωb). For ωb = −1, the scale factor takes the
exponential form in terms of t . Furthermore, we set C = 0
which satisfies the flaring-out condition at the throat (see
discussion below Eq. (25)), and in addition simplifies the
solution, so that b(r) = r0. Thus, taking into these condi-
tions and using the dimensionless definitions given above,
Eqs. (21)–(23) lead to the following relations

ρ

3H2
0

= 1 + φ(a)

a3(ωb+1)
+ φ′(a)

a3ωb+2 + φ′2(a)

4a3ωb+1φ(a)
− 1

2
U (φ), (28)

ρ − τ

3H2
0

=
(

ωb + 1

a3(ωb+1)
− r0

3a2H2
0 r

3

)
(1 + φ(a))

+ (ωb + 1) φ′(a)

2a3ωb+2 + φ′2(a)

2a3ωb+1φ(a)
− φ′′(a)

3a3ωb+1 , (29)

ρ + p

3H2
0

=
(

ωb + 1

a3(ωb+1)
+ r0

6a2H2
0 r

3

)
(1 + φ(a))

+ (ωb + 1) φ′(a)

2a3ωb+2 + φ′2(a)

2a3ωb+1φ(a)
− φ′′(a)

3a3ωb+1 , (30)

respectively. It is interesting to note that ρ is independent of
the radial coordinate r . To keep the terms dimensionless, we
will consider the wormhole throat as r0 = AH−1

0 , where A is
a dimensionless constant. In what follows, we set A to unity.

In the following, we shall consider specific solutions
for the parameters ωb = (−1, 1/3, 0), respectively. These
parameters range tentatively correspond to the inflationary,
radiation and matter epochs.

3 Specific evolving wormhole solutions and the energy
conditions

In this section, we analyse evolving traversable wormhole
geometries for the specific parameters ωb = (−1, 1/3, 0)

considered above, as well as evolving wormholes with a
traceless EMT, and study the NEC and WEC for the solutions
obtained.

Before going on further, we would like to comment on
the potential for the scalar field U (φ) and its effects on the
results. As Eqs. (29) and (30) (and (21)–(23)) show, the quan-
tities ρ − τ and ρ + p (and consequently the NEC) are inde-
pendent of the scalar field potential. However, it affects the
behavior of ρ. We will consider a power law potential for
scalar field U (φ) = φα . There are some reasonable choice
for α, such as α = 2 and α = 4, inspired by a mass term and
the Higgs potential, respectively. In fact, we emphasize that
all the results below hold qualitatively for potentials of the
form φ2 and φ4. For the sake of economy, we will present
the results for the quadratic case, U (φ) = φ2. In addition
to this, to verify that other choices for α could also present
reliable results, we consider the specific choice α = 0.5 in
one of the cases.

3.1 Specific case: ωb = −1

Here, we consider the specific case ωb = −τb/ρb = −1 with
U (φ) = V (φ) /3H2

0 = φ0.5. Figure 1a depicts the behav-
iors of φ and φ′ with respect to the redshift z (= 1/a − 1).
In Fig. 2, the behaviors of ρ, ρ − τ and ρ + p versus z for
different values of r are shown. As one can see, ρ − τ is neg-
ative throughout the entire evolution. We emphasize that we
have imposed different possible initial values and obtained
the same result. Note that one may justify this outcome in
the following manner. For this case with ωb = −1, Eq. (29)
reduces to

ρ − τ

3H2
0

= − (1 + φ(a)) r0

3a2H2
0 r

3
+ a2

(
φ′2(a)

2φ(a)
− φ′′(a)

3

)
. (31)

Since a ≤ 1, the term with a coefficient 1/a2 is dominant.
This term is therefore negative, rendering ρ − τ negative.
Thus, for this specific case, both the NEC and the WEC are
violated.

3.2 Specific case: ωb = 1/3

Figure 1b illustrates the behavior of φ and φ′ versus z for the
specific case ωb = 1/3. For this case, E = a−2, a(t) ∝ t1/2

and we consider U (φ) = φ2. The behaviors of ρ, ρ − τ and
ρ + p with respect to the redshift z for different values of
r are displayed in Fig. 3, which shows explicitly that these
quantities decrease as time evolves. However, they remain
positive at all times and consequently the NEC and WEC
are always satisfied. This occurs for the wormhole throat as
well as for other wormhole radii. It is interesting to note
that at a specified time/redshift, the quantity ρ − τ increases
for increasing values of the radius, and the minimum value
corresponds to the throat, as depicted by Fig. 3b. On the other
hand, ρ+ p decreases for increasing values of the radius, and
has a maximum at the throat (Fig. 3c).
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(a) (b) (c)

Fig. 1 The behaviors of φ and φ′(a) vs z for the specific cases of ωb = −1, ωb = 1/3, and ωb = 0, respectively. Note that both horizontal and
vertical axes are logarithmic

(a) (b) (c)

Fig. 2 The behaviors of ρ, ρ − τ (which is negative) and ρ + p, respectively, versus z for different values of r for ωb = −1 with U (φ) = φ0.5.
Note that both horizontal and vertical axes are logarithmic, except for the vertical axis of Fig. 2a

(a) (b) (c)

Fig. 3 The behaviors of ρ, ρ − τ and ρ + p, respectively, versus z for different values of r in the specific case of ωb = 1/3 with U (φ) = φ2. Note
that both the horizontal and vertical axes are logarithmic

3.3 Specific case: ωb = 0

Here we intend to study the energy conditions for the case
ωb = 0, for which E = a−3/2 and a(t) ∝ t2/3. One can ver-
ify the behaviors of the scalar field φ and its derivative with
respect to a as functions of the redshift z in Fig. 1c, where
we consider the power law potential corresponding to scalar
field as U (φ) = φ2. The energy conditions are depicted
in Fig. 4, where one verifies that ρ, ρ − τ and ρ + p are
positive at all times and for different values of spatial coor-
dinate r . These quantities are also decreasing (increasing)
functions with respect to time (redshift). Thus, the NEC and
WEC are always satisfied for all wormhole radii including
the wormhole throat. The behaviors of ρ − τ and ρ + p at

a specified time/redshift are analogous to the previous case
with ωb = 1/3, namely, the quantity ρ − τ (ρ + p) increases
(decreases) for increasing values of the radius (see Fig. 4b, c).

3.4 Wormholes with traceless EMT

In this subsection, we consider the traceless energy–mom-
entum tensor, with T = −ρ −τ +2p = 0, which taking into
account the dimensionless quantities defined above, provides
the following differential equation

−3a2E(a)2
[
φ′′(a) − φ′(a)2

2φ(a)

]
− 3aE(a)

[
aE ′(a)

+4E(a)
]
φ′(a) − 6E(a)

[
aE ′(a) + 2E(a)

]

123



Eur. Phys. J. C (2021) 81 :285 Page 7 of 11 285

(a) (b) (c)

Fig. 4 The behaviors of ρ, ρ − τ and ρ + p, respectively, versus z for different values of r in the specific case of ωb = 0 with U (φ) = φ2. Both
horizontal and vertical axes are logarithmic

(a) (b) (c)

Fig. 5 The behaviors of φ, φ′(a) and E vs z for the traceless EMT case withU (φ) = φ2. Note that both horizontal and vertical axes are logarithmic,
except for the vertical axis of Fig. 5a. See the text for more details

(a) (b) (c)

Fig. 6 The behaviors of ρ, ρ − τ and ρ + p, respectively, versus z for different values of r for a wormhole with traceless EMT with U (φ) = φ2.
Both horizontal and vertical axes are logarithmic

× [1 + φ(a)] + 6U (φ) = 0. (32)

Here, we solve the system of coupled differential equations
(26) and (32), for φ and E , numerically. The behaviors of φ,
φ′ and E versus z, taking into account the choice U (φ) =
φ2, are shown in Fig. 5. Note that E tends to unity at the
present time (z → 0), as expected (Fig. 5c). In Fig. 6, the
behaviors of ρ, ρ−τ and ρ+ p, with respect to z for different
values of r are displayed. Note that ρ, ρ − τ and ρ + p are
decreasing (increasing) functions of time (redshift) and are
positive for all radii, as time evolves. Thus, the NEC and
WEC are satisfied at all times. Moreover, as shown in Fig. 6b,
c, the qualitative behaviors of ρ−τ and ρ+ p with respect to
r is analogous to the previous two cases, namely, ωb = 1/3
and ωb = 0, where the quantity ρ−τ (ρ+ p) has a minimum
(maximum) value at throat.

4 Discussion and conclusion

In the present paper, we have studied the evolution of
dynamic traversable wormhole geometries in a FLRW back-
ground in the context of hybrid metric-Palatini gravity. This
theory, which recently attracted much attention, consists of
a hybrid combination of metric and Palatini terms and is
capable of avoiding several of the problematic issues asso-
ciated to each of the metric or Palatini formalisms (for more
details, we refer the reader to Refs. [31–33]). For the evolv-
ing wormholes, we presented the components of the energy–
momentum tensor that supports these geometries in terms of
the model’s functions, namely, the scalar field, the scale factor
and the shape function (we considered a zero redshift func-
tion, for simplicity). Furthermore, we found specific worm-
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hole solutions by considering a barotropic equation of state
for the background matter, i.e., τb = −ωbρb, and considered
particular equation of state parameters.

More specifically, we showed that for the specific cases of
ωb = 1/3 and ωb = 0, the entire wormhole matter satisfies
the NEC and WEC for all times. The latter cases are simi-
lar to the wormhole geometries analysed in the presence of
pole dark energy [75], however, there the WEC is violated at
late times, i.e., the energy density becomes negative. Thus,
the present results outlined in this work strengthen the vary-
ing dark energy models and may suggest that hybrid metric-
Palatini gravity is a rather more promising model to explore.
In addition to the barotropic equation of state, we also studied
evolving wormhole geometries supported by the matter with
a traceless EMT. For this specific geometry, we discovered
that both the NEC and the WEC are satisfied at all times as
well. These results are extremely promising as they build on
previous work that consider that the energy conditions may
be satisfied in specific flashes of time [55,56].

An interesting astrophysical observational aspect on how
to detect these wormholes would be to analyse the physical
properties and characteristics of matter forming thin accre-
tion disks around the wormhole geometries analysed in this
work, much in the spirit of the analysis carried out in Refs.
[113–116]. In fact, specific signatures could appear in the
electromagnetic spectrum, thus leading to the possibility of
distinguishing these wormhole geometries by using astro-
physical observations of the emission spectra from accretion
disks. This would be an interesting avenue of research to
explore.

Acknowledgements We thank the referees for the constructive com-
ments that helped us to significantly improve the paper. MKZ would
like to thank Shahid Chamran University of Ahvaz, Iran for support-
ing this work. FSNL acknowledges support from the Fundação para
a Ciência e a Tecnologia (FCT) Scientific Employment Stimulus con-
tract with reference CEECIND/04057/2017, and thanks funding from
the research Grants no. PTDC/FIS-OUT/29048/2017, no. CERN/FIS-
PAR/0037/2019 and no. UID/FIS/04434/2020.

DataAvailability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: This is a theoretical
study and no experimental data has been listed.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

References

1. S. Perlmutter et al. (Supernova Cosmology Project), Measure-
ments of � and � from 42 high redshift supernovae. Astrophys.
J. 517, 565-586 (1999). arXiv:astro-ph/9812133

2. A.G. Riess et al. (Supernova Search Team), Observational
evidence from supernovae for an accelerating universe and
a cosmological constant. Astron. J. 116, 1009-1038 (1998).
arXiv:astro-ph/9805201

3. S.M. Carroll, The cosmological constant. Living Rev. Relativ. 4,
1 (2001). arXiv:astro-ph/0004075

4. S. Nojiri, S.D. Odintsov, Unified cosmic history in modified grav-
ity: from F(R) theory to Lorentz non-invariant models. Phys. Rep.
505, 59–144 (2011). arXiv:1011.0544 [gr-qc]

5. T.P. Sotiriou, V. Faraoni, f(R) theories of gravity. Rev. Mod. Phys.
82, 451–497 (2010). arXiv:0805.1726 [gr-qc]

6. S. Capozziello, M. De Laurentis, Extended theories of gravity.
Phys. Rep. 509, 167–321 (2011). arXiv:1108.6266 [gr-qc]

7. P. Avelino, T. Barreiro, C.S. Carvalho, A. da Silva, F.S.N. Lobo,
P. Martin-Moruno, J.P. Mimoso, N.J. Nunes, D. Rubiera-Garcia,
D. Saez-Gomez et al., Unveiling the dynamics of the Universe.
Symmetry 8(8), 70 (2016). arXiv:1607.02979 [astro-ph.CO]

8. F. S. N. Lobo, The dark side of gravity: Modifed theories of grav-
ity, Dark Energy-Current Advances and Ideas, 173–204 (2009),
Research Signpost. arXiv:0807.1640 [gr-qc]

9. K. Bamba, S.D. Odintsov, Inflationary cosmology in mod-
ified gravity theories. Symmetry 7(1), 220–240 (2015).
arXiv:1503.00442 [hep-th]

10. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Modified gravity theo-
ries on a nutshell: inflation, bounce and late-time evolution. Phys.
Rep. 692, 1–104 (2017). arXiv:1705.11098 [gr-qc]

11. E.J. Copeland, M. Sami, S. Tsujikawa, Dynamics of dark energy.
Int. J. Mod. Phys. D 15, 1753–1936 (2006). arXiv:hep-th/0603057

12. G.W. Horndeski, Second-order scalar-tensor field equations in a
four-dimensional space. Int. J. Theor. Phys. 10, 363–384 (1974)

13. C. Deffayet, X. Gao, D.A. Steer, G. Zahariade, From k-essence
to generalised Galileons. Phys. Rev. D 84, 064039 (2011).
arXiv:1103.3260 [hep-th]

14. C. Wetterich, Cosmology and the fate of dilatation symmetry.
Nucl. Phys. B 302, 668–696 (1988). arXiv:1711.03844 [hep-th]

15. B. Ratra, P.J.E. Peebles, Cosmological consequences of a rolling
homogeneous scalar field. Phys. Rev. D 37, 3406 (1988)

16. R.R. Caldwell, R. Dave, P.J. Steinhardt, Cosmological imprint of
an energy component with general equation of state. Phys. Rev.
Lett. 80, 1582–1585 (1998). arXiv:astro-ph/9708069

17. I. Zlatev, L.M. Wang, P.J. Steinhardt, Quintessence, cosmic coin-
cidence, and the cosmological constant. Phys. Rev. Lett. 82, 896–
899 (1999). arXiv:astro-ph/9807002

18. C. Armendariz-Picon, T. Damour, V.F. Mukhanov, k-inflation.
Phys. Lett. B 458, 209–218 (1999). arXiv:hep-th/9904075

19. C. Armendariz-Picon, V.F. Mukhanov, P.J. Steinhardt, A dynam-
ical solution to the problem of a small cosmological constant and
late time cosmic acceleration. Phys. Rev. Lett. 85, 4438–4441
(2000). arXiv:astro-ph/0004134

20. C. Armendariz-Picon, V.F. Mukhanov, P.J. Steinhardt, Essen-
tials of k essence. Phys. Rev. D 63, 103510 (2001).
arXiv:astro-ph/0006373

21. M.C. Bento, O. Bertolami, A.A. Sen, Generalized Chaplygin gas,
accelerated expansion and dark energy matter unification. Phys.
Rev. D 66, 043507 (2002). arXiv:gr-qc/0202064

22. K. Arun, S.B. Gudennavar, C. Sivaram, Dark matter, dark energy,
and alternate models: a review. Adv. Space Res. 60, 166–186
(2017). arXiv:1704.06155 [physics.gen-ph]

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/astro-ph/9812133
http://arxiv.org/abs/astro-ph/9805201
http://arxiv.org/abs/astro-ph/0004075
http://arxiv.org/abs/1011.0544
http://arxiv.org/abs/0805.1726
http://arxiv.org/abs/1108.6266
http://arxiv.org/abs/1607.02979
http://arxiv.org/abs/0807.1640
http://arxiv.org/abs/1503.00442
http://arxiv.org/abs/1705.11098
http://arxiv.org/abs/hep-th/0603057
http://arxiv.org/abs/1103.3260
http://arxiv.org/abs/1711.03844
http://arxiv.org/abs/astro-ph/9708069
http://arxiv.org/abs/astro-ph/9807002
http://arxiv.org/abs/hep-th/9904075
http://arxiv.org/abs/astro-ph/0004134
http://arxiv.org/abs/astro-ph/0006373
http://arxiv.org/abs/gr-qc/0202064
http://arxiv.org/abs/1704.06155


Eur. Phys. J. C (2021) 81 :285 Page 9 of 11 285

23. A.G. Cohen, D.B. Kaplan, A.E. Nelson, Effective field theory,
black holes, and the cosmological constant. Phys. Rev. Lett. 82,
4971–4974 (1999). arXiv:hep-th/9803132

24. A.N. Tawfik, E.A. El Dahab, Review on dark energy models.
Gravit. Cosmol. 25(2), 103–115 (2019)

25. G.J. Olmo, Palatini approach to modified gravity: f(R) theo-
ries and beyond. Int. J. Mod. Phys. D 20, 413–462 (2011).
arXiv:1101.3864 [gr-qc]

26. T. Harko, T.S. Koivisto, F.S.N. Lobo, G.J. Olmo, Metric-Palatini
gravity unifying local constraints and late-time cosmic accelera-
tion. Phys. Rev. D 85, 084016 (2012). arXiv:1110.1049 [gr-qc]

27. S. Capozziello, S. Tsujikawa, Solar system and equivalence prin-
ciple constraints on f(R) gravity by chameleon approach. Phys.
Rev. D 77, 107501 (2008). arXiv:0712.2268 [gr-qc]

28. J. Khoury, A. Weltman, Chameleon cosmology. Phys. Rev. D 69,
044026 (2004). arXiv:astro-ph/0309411

29. N.A. Lima, Dynamics of linear perturbations in the hybrid
metric-Palatini gravity. Phys. Rev. D 89(8), 083527 (2014).
arXiv:1402.4458 [astro-ph.CO]

30. N.A. Lima, V.S. Barreto, Constraints on hybrid metric-Palatini
gravity from background evolution. Astrophys. J. 818(2), 186
(2016). arXiv:1501.05786 [astro-ph.CO]

31. S. Capozziello, T. Harko, T.S. Koivisto, F.S.N. Lobo, G.J. Olmo,
Hybrid metric-Palatini gravity. Universe 1(2), 199–238 (2015).
arXiv:1508.04641 [gr-qc]

32. T. Harko, F.S.N. Lobo, Extensions of f (R) Gravity: Curvature-
Matter Couplings andHybridMetric-Palatini Theory. Cambridge
Monographs on Mathematical Physics (Cambridge University
Press, Cambridge, 2018)

33. T. Harko, F.S.N. Lobo, Beyond Einstein’s general relativity:
Hybrid metric-Palatini gravity and curvature-matter couplings.
Int. J. Mod. Phys. D 29(13), 2030008(2020). arXiv:2007.15345
[gr-qc]

34. S. Capozziello, T. Harko, T.S. Koivisto, F.S.N. Lobo, G.J. Olmo,
The virial theorem and the dark matter problem in hybrid
metric-Palatini gravity. JCAP 07, 024 (2013). arXiv:1212.5817
[physics.gen-ph]

35. S. Capozziello, T. Harko, T.S. Koivisto, F.S.N. Lobo, G.J.
Olmo, Galactic rotation curves in hybrid metric-Palatini gravity.
Astropart. Phys. 50–52, 65–75 (2013). arXiv:1307.0752 [gr-qc]

36. S. Capozziello, T. Harko, F.S.N. Lobo, G.J. Olmo, Hybrid modi-
fied gravity unifying local tests, galactic dynamics and late-time
cosmic acceleration. Int. J. Mod. Phys. D 22, 1342006 (2013).
arXiv:1305.3756 [gr-qc]

37. S. Capozziello, T. Harko, T.S. Koivisto, F.S.N. Lobo, G.J. Olmo,
Cosmology of hybrid metric-Palatini f(X)-gravity. JCAP 04, 011
(2013). arXiv:1209.2895 [gr-qc]

38. S. Carloni, T. Koivisto, F.S.N. Lobo, Dynamical system analy-
sis of hybrid metric-Palatini cosmologies. Phys. Rev. D 92(6),
064035 (2015). arXiv:1507.04306 [gr-qc]

39. S. Capozziello, T. Harko, T.S. Koivisto, F.S.N. Lobo, G.J. Olmo,
Hybrid f (R) theories, local constraints, and cosmic speedup.
arXiv:1301.2209 [gr-qc]

40. C.G. Böhmer, F.S.N. Lobo, N. Tamanini, Einstein static Universe
in hybrid metric-Palatini gravity. Phys. Rev. D 88(10), 104019
(2013). arXiv:1305.0025 [gr-qc]

41. Q.M. Fu, L. Zhao, B.M. Gu, K. Yang, Y.X. Liu, Hybrid metric-
Palatini brane system. Phys. Rev. D 94(2), 024020 (2016).
arXiv:1601.06546 [gr-qc]

42. J.L. Rosa, D.A. Ferreira, D. Bazeia, F.S.N. Lobo, Thick brane
structures in generalized hybrid metric-Palatini gravity. Eur. Phys.
J. C 81(1), 20 (2021). arXiv:2010.10074 [gr-qc]

43. K.A. Bronnikov, Spherically symmetric black holes and worm-
holes in hybrid metric-Palatini gravity. Gravit. Cosmol. 25, 331–
341 (2019). arXiv:1908.02012 [gr-qc]

44. C.Y. Chen, Y.H. Kung, P. Chen, Black hole perturbations and
quasinormal modes in hybrid metric-palatini gravity. Phys. Rev.
D 102, 124033 (2020). arXiv:2010.07202 [gr-qc]

45. J.L. Rosa, J.P.S. Lemos, F.S.N. Lobo, Stability of Kerr black holes
in generalized hybrid metric-Palatini gravity. Phys. Rev. D 101,
044055 (2020). arXiv:2003.00090 [gr-qc]

46. K.A. Bronnikov, S.V. Bolokhov, M.V. Skvortsova, Hybrid
metric-Palatini gravity: black holes, wormholes, singulari-
ties and instabilities. Gravit. Cosmol. 26(3), 212–227 (2020).
arXiv:2006.00559 [gr-qc]

47. B. Danila, T. Harko, F.S.N. Lobo, M.K. Mak, Hybrid
metric-Palatini stars. Phys. Rev. D 95(4), 044031 (2017).
arXiv:1608.02783 [gr-qc]

48. K.A. Bronnikov, S.V. Bolokhov, M.V. Skvortsova, Hybrid metric-
Palatini gravity: regular stringlike configurations. Universe 6, 172
(2020). arXiv:2009.03952 [gr-qc]

49. T. Harko, F.S.N. Lobo, H .M .R . da Silva, Cosmic stringlike
objects in hybrid metric-Palatini gravity. Phys. Rev. D 101(12),
124050 (2020). arXiv:2003.09751 [gr-qc]

50. N. Avdeev, P. Dyadina, S. Labazova, Test of hybrid metric-Palatini
f (R)-gravity in binary pulsars. J. Exp. Theor. Phys. 131(4), 537–
547 (2020). arXiv:2009.11156 [gr-qc]

51. J.L. Rosa, J.P.S. Lemos, F.S.N. Lobo, Wormholes in gener-
alized hybrid metric-Palatini gravity obeying the matter null
energy condition everywhere. Phys. Rev. D 98(6), 064054 (2018).
arXiv:1808.08975 [gr-qc]

52. S. Capozziello, T. Harko, T.S. Koivisto, F.S.N. Lobo, G.J. Olmo,
Wormholes supported by hybrid metric-Palatini gravity. Phys.
Rev. D 86, 127504 (2012). arXiv:1209.5862 [gr-qc]

53. M.S. Morris, K.S. Thorne, Wormholes in space-time and their use
for interstellar travel: a tool for teaching general relativity. Am. J.
Phys. 56, 395–412 (1988)

54. M.S. Morris, K.S. Thorne, U. Yurtsever, Wormholes, time
machines, and the weak energy condition. Phys. Rev. Lett. 61,
1446–1449 (1988)

55. S. Kar, Evolving wormholes and the weak energy condition. Phys.
Rev. D 49, 862–865 (1994)

56. S. Kar, D. Sahdev, Evolving Lorentzian wormholes. Phys. Rev. D
53, 722 (1996). arXiv:gr-qc/9506094

57. M. Visser, Lorentzian wormholes: from Einstein to Hawking (AIP
Press, New York, 1995)

58. F.S.N. Lobo, Wormholes, warp drives and energy conditions. Fun-
dam. Theor. Phys. 189 (Springer, Switzerland, 2017)

59. T.A. Roman, Inflating Lorentzian wormholes. Phys. Rev. D 47,
1370–1379 (1993). arXiv:gr-qc/9211012

60. L.A. Anchordoqui, D.F. Torres, M.L. Trobo, S.E. Perez Bergliaffa,
Evolving wormhole geometries. Phys. Rev. D57, 829–833 (1998).
arXiv:gr-qc/9710026

61. A.V.B. Arellano, F.S.N. Lobo, Evolving wormhole geometries
within nonlinear electrodynamics. Class. Quantum Gravity 23,
5811–5824 (2006). arXiv:gr-qc/0608003

62. E. Ebrahimi, N. Riazi, (n + 1)-Dimensional Lorentzian wormholes
in an expanding cosmological background. Astrophys. Space Sci.
321, 217–223 (2009). arXiv:0905.3882 [hep-th]

63. E. Ebrahimi, N. Riazi, Expanding (n + 1)-dimensional wormhole
solutions in Brans–Dicke cosmology. Phys. Rev. D 81, 024036
(2010). arXiv:0905.4116 [hep-th]

64. M.R. Bordbar, N. Riazi, Time-dependent wormhole in an inho-
mogeneous spherically symmetric space time with a cosmological
constant. Astrophys. Space Sci. 331, 315–320 (2011)

65. S.N. Sajadi, N. Riazi, Expanding Lorentzian wormholes in R2

gravity. Prog. Theor. Phys. 126, 753–760 (2011)
66. M. Cataldo, F. Aróstica, S. Bahamonde, (N + 1)-dimensional

Lorentzian evolving wormholes supported by polytropic matter.
Eur. Phys. J. C 73(8), 2517 (2013). arXiv:1307.4122 [gr-qc]

123

http://arxiv.org/abs/hep-th/9803132
http://arxiv.org/abs/1101.3864
http://arxiv.org/abs/1110.1049
http://arxiv.org/abs/0712.2268
http://arxiv.org/abs/astro-ph/0309411
http://arxiv.org/abs/1402.4458
http://arxiv.org/abs/1501.05786
http://arxiv.org/abs/1508.04641
http://arxiv.org/abs/2007.15345
http://arxiv.org/abs/1212.5817
http://arxiv.org/abs/1307.0752
http://arxiv.org/abs/1305.3756
http://arxiv.org/abs/1209.2895
http://arxiv.org/abs/1507.04306
http://arxiv.org/abs/1301.2209
http://arxiv.org/abs/1305.0025
http://arxiv.org/abs/1601.06546
http://arxiv.org/abs/2010.10074
http://arxiv.org/abs/1908.02012
http://arxiv.org/abs/2010.07202
http://arxiv.org/abs/2003.00090
http://arxiv.org/abs/2006.00559
http://arxiv.org/abs/1608.02783
http://arxiv.org/abs/2009.03952
http://arxiv.org/abs/2003.09751
http://arxiv.org/abs/2009.11156
http://arxiv.org/abs/1808.08975
http://arxiv.org/abs/1209.5862
http://arxiv.org/abs/gr-qc/9506094
http://arxiv.org/abs/gr-qc/9211012
http://arxiv.org/abs/gr-qc/9710026
http://arxiv.org/abs/gr-qc/0608003
http://arxiv.org/abs/0905.3882
http://arxiv.org/abs/0905.4116
http://arxiv.org/abs/1307.4122


285 Page 10 of 11 Eur. Phys. J. C (2021) 81 :285

67. M.R. Setare, A. Sepehri, Role of higher-dimensional evolving
wormholes in the formation of a big rip singularity. Phys. Rev. D
91(6), 063523 (2015). arXiv:1612.05077 [gr-qc]

68. S. Bhattacharya, S. Chakraborty, f (R) gravity solutions for
evolving wormholes. Eur. Phys. J. C 77(8), 558 (2017).
arXiv:1506.03968 [gr-qc]

69. A. Ovgün, Hawking’s universe as an evolving dark wormhole.
arXiv:1803.04256 [physics.gen-ph]

70. M. Cataldo, P. Labrana, S. del Campo, J. Crisostomo, P. Salgado,
Evolving Lorentzian wormholes supported by phantom matter
with constant state parameters. Phys. Rev. D 78, 104006 (2008).
arXiv:0810.2715 [gr-qc]

71. M. Cataldo, S. del Campo, P. Minning, P. Salgado, Evolv-
ing Lorentzian wormholes supported by phantom matter and
cosmological constant. Phys. Rev. D 79, 024005 (2009).
arXiv:0812.4436 [gr-qc]

72. M. Cataldo, S. del Campo, Two-fluid evolving Lorentzian worm-
holes. Phys. Rev. D 85, 104010 (2012). arXiv:1204.0753 [gr-qc]

73. H. Maeda, T. Harada, B.J. Carr, Cosmological wormholes. Phys.
Rev. D 79, 044034 (2009). arXiv:0901.1153 [gr-qc]

74. M.K. Zangeneh, F .S .N. Lobo, N. Riazi, Higher-dimensional
evolving wormholes satisfying the null energy condition. Phys.
Rev. D 90(2), 024072 (2014). arXiv:1406.5703 [gr-qc]

75. M. Kord Zangeneh, F.S.N. Lobo, H. Moradpour, Evolving
traversable wormholes satisfying the energy conditions in the
presence of pole dark energy. Phys. Dark Univ. 31, 100779 (2021).
arXiv:2008.04013 [gr-qc]

76. M.R. Mehdizadeh, M. Kord Zangeneh, F.S.N. Lobo, Einstein–
Gauss–Bonnet traversable wormholes satisfying the weak energy
condition. Phys. Rev. D 91(8), 084004 (2015). arXiv:1501.04773
[gr-qc]

77. M.R. Mehdizadeh, M. Kord Zangeneh, F.S.N. Lobo, Higher-
dimensional thin-shell wormholes in third-order Lovelock gravity.
Phys. Rev. D 92(4), 044022 (2015). arXiv:1506.03427 [gr-qc]

78. M. Kord Zangeneh, F.S.N. Lobo, M.H. Dehghani, Traversable
wormholes satisfying the weak energy condition in third-
order Lovelock gravity. Phys. Rev. D 92(12), 124049 (2015).
arXiv:1510.07089 [gr-qc]

79. F. Parsaei, S. Rastgoo, Wormhole solutions with a polynomial
equation-of-state and minimal violation of the null energy condi-
tion. Eur. Phys. J. C 80(5), 366 (2020). arXiv:1909.09899 [gr-qc]

80. S. Capozziello, F.S.N. Lobo, J.P. Mimoso, Energy condi-
tions in modified gravity. Phys. Lett. B 730, 280–283 (2014).
arXiv:1312.0784 [gr-qc]

81. S. Capozziello, F.S.N. Lobo, J.P. Mimoso, Generalized energy
conditions in extended theories of gravity. Phys. Rev. D 91(12),
124019 (2015). arXiv:1407.7293 [gr-qc]

82. F.S.N. Lobo, A general class of braneworld wormholes. Phys.
Rev. D 75, 064027 (2007). arXiv:gr-qc/0701133

83. F.S.N. Lobo, M.A. Oliveira, Wormhole geometries in f (R)

modified theories of gravity. Phys. Rev. D 80, 104012 (2009).
arXiv:0909.5539 [gr-qc]

84. N.M. Garcia, F.S.N. Lobo, Wormhole geometries supported by a
nonminimal curvature-matter coupling. Phys. Rev. D 82, 104018
(2010). arXiv:1007.3040 [gr-qc]

85. N. Montelongo Garcia, F.S.N. Lobo, Nonminimal curvature-
matter coupled wormholes with matter satisfying the null
energy condition. Class. Quantum Gravity 28, 085018 (2011).
arXiv:1012.2443 [gr-qc]

86. T. Harko, F.S.N. Lobo, M.K. Mak, S.V. Sushkov, Modified-gravity
wormholes without exotic matter. Phys. Rev. D 87(6), 067504
(2013). arXiv:1301.6878 [gr-qc]

87. R. Korolev, F.S.N. Lobo, S.V. Sushkov, General constraints on
Horndeski wormhole throats. Phys. Rev. D 101(12), 124057
(2020). arXiv:2004.12382 [gr-qc]

88. G. Antoniou, A. Bakopoulos, P. Kanti, B. Kleihaus, J. Kunz, Novel
Einstein-scalar-Gauss–Bonnet wormholes without exotic matter.
Phys. Rev. D 101(2), 024033 (2020). arXiv:1904.13091 [hep-th]

89. T. Tangphati, A. Chatrabhuti, D. Samart, P. Channuie, Thin-shell
wormholes in de Rham–Gabadadze–Tolley massive gravity. Eur.
Phys. J. C 80(8), 722 (2020). arXiv:1912.12208 [gr-qc]

90. E. Papantonopoulos, C. Vlachos, Wormhole solutions in modi-
fied Brans–Dicke theory. Phys. Rev. D 101(6), 064025 (2020).
arXiv:1912.04005 [gr-qc]

91. A. Restuccia, F. Tello-Ortiz, A new class of f(R)-gravity model
with wormhole solutions and cosmological properties. Eur. Phys.
J. C 80(6), 580 (2020)

92. N. Godani, G.C. Samanta, Traversable wormholes in R + αRn

gravity. Eur. Phys. J. C 80(1), 30 (2020). arXiv:2001.00010 [gr-
qc]

93. K.N. Singh, A. Banerjee, F. Rahaman, M.K. Jasim, Conformally
symmetric traversable wormholes in modified teleparallel gravity.
Phys. Rev. D 101(8), 084012 (2020). arXiv:2001.00816 [gr-qc]

94. A. Banerjee, M.K. Jasim, S.G. Ghosh, Traversable wormholes in
f (R, T )gravity satisfying the null energy condition with isotropic
pressure. arXiv:2003.01545 [gr-qc]

95. T. Tangphati, A. Chatrabhuti, D. Samart, P. Channuie, Traversable
wormholes in f (R)-massive gravity. Phys. Rev. D 102(8), 084026
(2020). arXiv:2003.01544 [gr-qc]

96. I. Fayyaz, M.F. Shamir, Wormhole structures in logarithmic-
corrected R2 gravity. Eur. Phys. J. C 80(5), 430 (2020).
arXiv:2005.10023 [gr-qc]

97. M.G. Richarte, C. Simeone, Wormholes in Einstein–Born–Infeld
theory. Phys. Rev. D80, 104033 (2009). arXiv:2006.12272 [gr-qc]
[Erratum: Phys. Rev. D 81, 109903 (2010)]

98. R. Ibadov, B. Kleihaus, J. Kunz, S. Murodov, Wormholes
in Einstein-scalar-Gauss–Bonnet theories with a scalar self-
interaction potential. Phys. Rev. D 102(6), 064010 (2020).
arXiv:2006.13008 [gr-qc]

99. B. Lazov, P. Nedkova, S. Yazadjiev, Uniqueness theorem for static
phantom wormholes in Einstein–Maxwell-dilaton theory. Phys.
Lett. B 778, 408 (2018). arXiv:1711.00290 [gr-qc]

100. A.A. Kirillov, E.P. Savelova, Wormhole as a possible accelerator
of high-energy cosmic-ray particles. Eur. Phys. J. C 80, 45 (2020).
arXiv:1902.05742 [gr-qc]

101. D. Bak, C. Kim, S.H. Yi, Experimental probes of traversable
wormholes. JHEP 12, 005 (2019). arXiv:1907.13465 [hep-th]

102. Z. Xu, M. Tang, G. Cao, S.N. Zhang, Possibility of traversable
wormhole formation in the dark matter halo with istropic pressure.
Eur. Phys. J. C 80, 70 (2020)

103. K. Jusufi, P. Channuie, M. Jamil, Traversable wormholes sup-
ported by GUP corrected Casimir energy. Eur. Phys. J. C 80, 127
(2020). arXiv:2002.01341 [gr-qc]

104. F.S.N. Lobo, A. Simpson, M. Visser, Dynamic thin-shell black-
bounce traversable wormholes. Phys. Rev. D 101(12), 124035
(2020). arXiv:2003.09419 [gr-qc]

105. F. Parsaei, N. Riazi, Evolving wormhole in the braneworld sce-
nario. Phys. Rev. D 102(4), 044003 (2020). arXiv:2004.01750
[gr-qc]

106. V. De Falco, E. Battista, S. Capozziello, M. De Laurentis, Gen-
eral relativistic Poynting–Robertson effect to diagnose wormholes
existence: static and spherically symmetric case. Phys. Rev. D
101(10), 104037 (2020). arXiv:2004.14849 [gr-qc]

107. R. Moti, A. Shojai, Traversability of quantum improved wormhole
solution. Phys. Rev. D 101(12), 124042 (2020). arXiv:2006.06190
[gr-qc]

108. T. Berry, F.S.N. Lobo, A. Simpson, M. Visser, Thin-shell
traversable wormhole crafted from a regular black hole with
asymptotically Minkowski core. Phys. Rev. D 102, 064054
(2020). arXiv:2008.07046 [gr-qc]

123

http://arxiv.org/abs/1612.05077
http://arxiv.org/abs/1506.03968
http://arxiv.org/abs/1803.04256
http://arxiv.org/abs/0810.2715
http://arxiv.org/abs/0812.4436
http://arxiv.org/abs/1204.0753
http://arxiv.org/abs/0901.1153
http://arxiv.org/abs/1406.5703
http://arxiv.org/abs/2008.04013
http://arxiv.org/abs/1501.04773
http://arxiv.org/abs/1506.03427
http://arxiv.org/abs/1510.07089
http://arxiv.org/abs/1909.09899
http://arxiv.org/abs/1312.0784
http://arxiv.org/abs/1407.7293
http://arxiv.org/abs/gr-qc/0701133
http://arxiv.org/abs/0909.5539
http://arxiv.org/abs/1007.3040
http://arxiv.org/abs/1012.2443
http://arxiv.org/abs/1301.6878
http://arxiv.org/abs/2004.12382
http://arxiv.org/abs/1904.13091
http://arxiv.org/abs/1912.12208
http://arxiv.org/abs/1912.04005
http://arxiv.org/abs/2001.00010
http://arxiv.org/abs/2001.00816
http://arxiv.org/abs/2003.01545
http://arxiv.org/abs/2003.01544
http://arxiv.org/abs/2005.10023
http://arxiv.org/abs/2006.12272
http://arxiv.org/abs/2006.13008
http://arxiv.org/abs/1711.00290
http://arxiv.org/abs/1902.05742
http://arxiv.org/abs/1907.13465
http://arxiv.org/abs/2002.01341
http://arxiv.org/abs/2003.09419
http://arxiv.org/abs/2004.01750
http://arxiv.org/abs/2004.14849
http://arxiv.org/abs/2006.06190
http://arxiv.org/abs/2008.07046


Eur. Phys. J. C (2021) 81 :285 Page 11 of 11 285

109. M. Wielgus, J. Horak, F. Vincent, M. Abramowicz, Reflection-
asymmetric wormholes and their double shadows. Phys. Rev. D
102(8), 084044 (2020). arXiv:2008.10130 [gr-qc]

110. S. Fallows, S.F. Ross, Making near-extremal wormholes
traversable. JHEP 12, 044 (2020). arXiv:2008.07946 [hep-th]

111. J. Maldacena, A. Milekhin, Humanly traversable wormholes.
Phys. Rev. D 103(6), 066007 (2021). arXiv:2008.06618 [hep-th]

112. F.S.N. Lobo, M. Visser, Fundamental limitations on ‘warp drive’
spacetimes. Class. Quantum Gravity 21, 5871–5892 (2004).
arXiv:gr-qc/0406083

113. T. Harko, Z. Kovacs, F.S.N. Lobo, Electromagnetic signatures of
thin accretion disks in wormhole geometries. Phys. Rev. D 78,
084005 (2008). arXiv:0808.3306 [gr-qc]

114. T. Harko, Z. Kovacs, F.S.N. Lobo, Thin accretion disks in station-
ary axisymmetric wormhole spacetimes. Phys. Rev. D 79, 064001
(2009). arXiv:0901.3926 [gr-qc]

115. T. Harko, Z. Kovacs, F.S.N. Lobo, Can accretion disk properties
distinguish gravastars from black holes? Class. Quantum Gravity
26, 215006 (2009). arXiv:0905.1355 [gr-qc]

116. T. Harko, Z. Kovács, F.S.N. Lobo, Astrophysical signatures of thin
accretion disks in wormhole spacetimes. Fundam. Theor. Phys.
189, 63–88 (2017)

123

http://arxiv.org/abs/2008.10130
http://arxiv.org/abs/2008.07946
http://arxiv.org/abs/2008.06618
http://arxiv.org/abs/gr-qc/0406083
http://arxiv.org/abs/0808.3306
http://arxiv.org/abs/0901.3926
http://arxiv.org/abs/0905.1355

	Dynamic wormhole geometries in hybrid metric-Palatini gravity
	Abstract 
	1 Introduction
	2 Evolving wormholes in hybrid metric-Palatini gravity
	2.1 Action and field equations
	2.2 Spacetime metric
	2.3 Evolving embedding analysis
	2.4 Gravitational field equations
	2.5 Barotropic equation of state

	3 Specific evolving wormhole solutions and the energy conditions
	3.1 Specific case: ωb=-1
	3.2 Specific case: ωb=1/3
	3.3 Specific case: ωb=0
	3.4 Wormholes with traceless EMT

	4 Discussion and conclusion
	Acknowledgements
	References




