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Abstract The problem of the cosmological constant is con-
sidered in the formalism of an extended space-time consist-
ing of the extended classical solution of Einstein equations.
The different regions of the extended manifold are proposed
to be related by the charge, parity, time and mass (CPTM)
reversal symmetry applied with respect to the metric fields of
the manifolds. There are interactions between the points of
the extended manifold provided by scalar fields present sep-
arately in the different patches of the extended solution. The
value of the constant is obtained equal to zero at the classical
level due the mutual contribution of the fields in the vacuum
energy, it’s non-zero value is due the quantum interactions
between the fields. There are few possible scenario for the
actions of the fields are discussed. Each from the obtained
variants is similar to the closed time path approach of non-
equilibrium condensed matter physics and among these pos-
sibilities for the closed paths, there is a variant of the action
equivalent to the formalism of Keldysh. Accordingly, we
consider and shortly discuss the application of the proposed
formalism to the problem of smallness of the cosmological
constant and singularities problem.

1 Introduction

Following to [1,2], we investigate the appearance of the cos-
mological constant in the formalism of an extended classi-
cal solution of Einstein equations as a consequence of the
quantum interaction between the parts of the extended mani-
fold. The metrics of the separated manifolds of the extended
solution are related by the discrete reversal charge, parity,
time and mass (CPTM) symmetry which preserves the form
of the metric g at the case of the zero cosmological constant.
The easiest way to clarify this construction is to consider as
an example the light cone coordinated u, v or corresponding
Kruskal–Szekeres coordinates [3,4] in the Schwarzschild’s
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spacetime defined for the whole space-time solution. In this
case, the extended CPTM transform inverses the sign of these
coordinates, see [1] for the Schwarzschild’s spacetime and
the similar description of the Reissner–Nordtröm space-time
in [5,6], for example. Namely, for the two manifolds, A-
manifold and B-manifold with coordinates x and x̃ , the sym-
metry gμν(x) = gμν(x̃) = g̃μν(x̃) must be preserved for a
solution of Einstein equations by the CPTM symmetry trans-
forms as following:

q → −q̃, r → −r̃ , t

→ −t̃,mgrav → −m̃grav ; q̃, r̃ , t̃, m̃grav > 0 ; (1)

CPT M(gμν(x)) = g̃μν(x̃) = gμν(x̃) . (2)

when the cosmological constant is zero. We underline, see
[1], that the usual radial coordinate is strictly positive and
there is a need for an additional B-manifold in order to per-
form the Eq. (1) discrete P transform, see also next section.
The transformation of the sign of the gravitational mass in
this case can be understood as a consequence of the request of
the preserving of the symmetry of metric. Similar construc-
tion in application of the quantum mechanics to the black
hole physics and to Big Bang and black hole singularities
crossing can be found in [7–10] for example.

The framework we consider consists of different mani-
folds with the gravitational masses of different signs in each
one, see details in [1]. The general motivation of the introduc-
tion of the negative mass in the different cosmological models
is very clear. In any scenario, see [11–21] for example, the
presence of some kind of the repulsive gravitation forces or
an additional gravitational field in our Universe helps with
an explanation of the existence of dark energy in the mod-
els, see also [22–40] and references therein. It is important,
that the gravitation properties of the matter of B-manifold is
also described by Einstein equations, see [11–15,37,38] or
[16–21,41] for examples of the application of the discrete
symmetries in the case of the quantum and classical systems.
The situations becomes more complicated when we notice
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the different directions of the time’s arrows in the different
manifolds. Introducing the ordinary scalar fields, we obtain
therefore a variant of the closed time path for the fields of the
general manifold related by the CPTM symmetry with dif-
ferent time directions for the fields. The interaction between
these fields leads to the quantum effective action calculated
with respect to the fluctuations above the classical solutions.
Effectively, this effective action provides the cosmological
constant in the classical Einsten’s action. Namely, the ver-
tices of the effective action “glues” the points of the same
manifolds as well as points of the different manifolds, allow-
ing the gravitational interactions between them that effec-
tively reproduce the cosmological constant influence. Once
arising, the constant’s value can be different for both man-
ifolds related as well by the introduced symmetry. We will
have then for the case of different cosmological constants for
A and B manifolds:

CPT M(�) = �̃, CPT M(gμν(x,�))

= g̃μν(x̃, �̃). (3)

This appearance of the cosmological constant satisfies the
naturalness criteria of ’t Hooft, see [42]. It’s zero value cor-
respondence to the precise symmetry between the metrics
Eq. (2) whereas it’s small non-zero value decreases the sym-
metry to Eq. (3) relation. In general, the constant in the for-
malism is not a constant anymore but it is a functional which
requires a renormalization depending on the form and prop-
erties of the interacting fields. It, therefore, can acquires dif-
ferent values due it’s evolution, the important question we
need to clarify in the formalism this is the present smallness
of the constant.

As we will see further, the mutual contribution of the scalar
fields of two manifolds to the vacuum energy is zero at the
classical level. Respectively, there are two different mech-
anisms responsible for the constant’s value which we will
discuss through the paper. The first one is a dependence of
the cosmological constant on many loops quantum contri-
bution to the vacuum energy. These contributions are pro-
vided by the ordinary framework of the quantum fields in
the flat space-time, we will not discuss these contributions
in the non-flat manifolds framework. In this case the small-
ness of the constant can be provided by the smallness of the
corresponding diagrams in the QFT effective action or, alter-
natively, we demonstrate that the vacuum contributions can
be totally eliminated by the proper definition of the parti-
tion function of the theory. An another contribution into the
constant is a correction to the values of the vertices of the
corresponding effective action due the non-flat corrections
to the propagators and vertices. In this case the value of the
constant is provided by the curvature corrections to the flat
propagator and vertices of the scalar fields, in the almost flat
space-time these correction are small. The additional sepa-

rated question we investigate is about the bare value of the
constant in the approach. The smallness of the bare cosmo-
logical constant, as we will demonstrate, can be provided
by the characteristics of the scalar fields, there are different
results for the massive and massless scalar fields for example.

We consider a connection between the manifolds estab-
lished through the effective action of the scalar fields defined
on different manifolds. This effective action “glues” the man-
ifolds, there is a kind of the foam of vertices that belongs to
the same manifold as well as to both depending on the form
and properties of the scalar fields. In this case, the frame-
work contains two or more manifolds which “talk” each with
other by the non-local correlators. These quantum vertices,
similar to some extend to the quantum wormholes, have also
been widely used in the investigation of the cosmological
constant problem, see [43–54] for example. The construc-
tion proposed here is a dynamical one, the classical dynam-
ics of metrics of separated manifolds can be affected by the
quantum interactions between the manifolds. In any case, the
cosmological constant arises in the equations as a result of
the mutual influence of the different parts of the extended
manifold, i.e. due the wormhole like interactions between
the points of the same manifold or interactions between the
points of the different manifolds. Solving the equations of
motion perturbatively, we begin from the case of the zero
cosmological constant value in the case of “bare” separated
manifolds and generate the constant at the next step of the
evolution, breaking Eq. (2) symmetry but preserving more
general Eq. (3) relations. An interesting possibility, which
we do not address in this paper, this is a possible large value
of the cosmological constant at the beginning of the evolu-
tion and it’s decreasing during the evolution. In this case, of
course, the proposed perturbative scheme will not work. Nev-
ertheless, at present the constant is small and we can perform
the calculations perturbatively.

The appearance of the closed time path formalism in the
framework and main properties of the CPTM transform are
discussed in the Sect. 2. Sections 3 and 4 are dedicated to the
formulation of the two different realization of CPTM sym-
metrical scalar fields in A and B manifolds with overall zero
classical contribution to the vacuum energy. In the Sects. 5
and 6 we describe the mechanism of the appearance of the
cosmological constant in the form of the interaction between
the manifolds for the case of free fields. In the next section
we discuss the consequence of the symmetry on the form of
the possible interactions terms between the fields of A and
B manifolds. Sections 8 and 9 are about the inclusion of the
interactions between the fields, in Sect. 9 we investigate an
inclusion of the potentials of interaction and self-interacting
of the fields considering as example usual φ4 scalar theory.
In Sect. 10 we consider the ways of the realization of the
smallness of the constant in the formalism and Sect. 12 sum-
marizes the obtained results.
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2 CPTM symmetry for scalar field

In order to clarify the consequences of the CPTM symme-
try, we will borrow some results from [1,2]. As example
of the symmetry application, we consider the Eddington–
Finkelstein coordinates for the Schwarzschild spacetime

v = t + r∗ = t + r + 2 M ln
∣
∣
∣

r

2 M
− 1

∣
∣
∣ (4)

and

u = t − r∗. (5)

In correspondence, we define also the Kruskal–Szekeres
coordinates U, V , which covers the whole extended space-
time, are defined in the different parts of the extended
solution. For example, when considering the region I with
r > 2M in terms of [6] where U < 0, V > 0 we have:

U = − e−u/4M , V = ev/4M . (6)

As demonstrated in [1], see also [6], the transition to the sep-
arated regions of the solutions can by done by the analytical
continuation of the coordinates provided by the correspond-
ing change of its signs and reversing of the sign of the gravi-
tational mass. When considering the region III in definitions
of [6], we obtain:

U = − e−u/4M → Ũ = e−ũ/4M̃ = −U, (7)

V = ev/4M → Ṽ = − e−ṽ/4M̃ = − V . (8)

This inversion of the signs of the (U, V ) coordinate axes will
hold correspondingly in the all regions of (U, V ) plane after
analytical continuation introduced in [1]. Formally, from the
point of view of the discrete transform performed in (U, V )

plane, the transformations Eq. (7) are equivalent to the full
reversion of the Kruskal–Szekeres “time”

T = 1

2
( V + U ) → −T (9)

and radial “coordinate”

R = 1

2
( V −U ) → −R (10)

in the complete Schwarzschild space-time. Therefore, the
introduced T, R coordinates and some transverse coordinates
X⊥, all denoted simply as x , can be considered as the correct
coordinates in definition of the quantum fields. The corre-
sponding change of the coordinates in the expressions of
the functions after the Fourier transform, which relates the
fields from the different manifolds, being formally similar to
the conjugation is not the conjugation. Namely, the analytical
continuation of the functions from A-manifold to B-manifold
(CPTM transform) means the change of the sign of x in cor-
responding Fourier expressions without its conjugation as
whole.

Coming back to the usual coordinates in the each A or B
manifolds separately, we will obtain for the radial coordinate:

∫ ∞

0
dR →

∫ ∞

0
r, R → r (11)

∫ 0

−∞
dR →

∫ ∞

0
r̃ , r → −r̃ , (12)

and time:

∫ ∞

−∞
dT →

∫ ∞

−∞
t, T → t (13)

∫ ∞

−∞
dT →

∫ ∞

−∞
t̃, t → −t̃ . (14)

There are, therefore, two possibilities to determine the
time’s arrows in both manifolds depending on the determi-
nation of in and out states for the second manifold, see Fig. 1,
correspondingly there are two possibilities for the definition
of the form of the scalar field of B manifold. Namely, for
the application of the introduced symmetry, we consider A
and B manifolds (two Minkowski spaces) as separated parts
of the extended solution with non-interacting branches of the
scalar quantum field defined in each region and related by the
CPTM discrete transform. Now consider the usual quantum
scalar field defined in our part (A-manifold) of the extended
solution:

φ(x) =
∫

d3 k

(2π)3/2
√

2 ωk

(

φ−(k) e−ı k x + φ+(k) eı k x
)

= φ∗(x), [φ−(k), φ+(k
′
)] = δ3

k k′ . (15)

The conjugation of the scalar field does not change the
expressions, we have simply (φ−)∗ = φ+. In contrast to the
conjugation, the CPTM discrete transform acts differently.
We have for the second field:

CPT M(φ(x)) = CPT M

( ∫
d3 k

(2π)3/2
√

2 ωk

×
(

φ−(k) e−ı k x + φ+(k)(k) eı k x
) )

= φ̃(x̃) =
∫

d3 k

(2π)3/2
√

2 ω̃k

×
(

φ−(k) eı k x̃ + φ+(k)(k) e−ı k x̃
)

.

(16)

Depending on the commutation relations between the com-
ponents of the field of B manifold, we will obtain two differ-
ent types of the scalar field in correspondence to Fig. (1). This
issue we discuss in the following two sections considering
the fields in flat A, B manifolds.
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Fig. 1 The diagram represents
two different possibilities of the
construction of the closed time
paths

(a) (b)

t̃ t̃

t tT T

R R

in

in in inout

out out out

3 Scalar field of B-manifold: first possibility

As mentioned above, there are two possibilities for the defini-
tion of the B-scalar fields which we consider. We begin from

the obvious one, defining the B-field similarly to the defini-
tion of the usual scalar field with the vacuum state mutual for
both manifolds:

CPT M(φ(x)) = CPT M

( ∫
d3 k

(2π)3/2
√

2 ωk

×
(

φ−(k) e−ı k x + φ+(k) eı k x
) )

= φ̃(x̃) =
∫

d3 k

(2π)3/2
√

2 ω̃k

×
(

φ̃+(k) eı k x̃ + φ̃−(k) e−ı k x̃
)

(17)

with the following properties of the annihilation and creation
operators of B-scalar field:
{

φ−(k) ↔ φ̃+(k)
φ+(k) ↔ φ̃−(k)

→
{ [ φ̃−(k) φ̃+(k

′
) ] = − δ3

k k′
< φ̃−(k) φ̃+(k

′
) >= − δ3

k k′

(18)

and

ω(k) =
√

m2 + k2 → ω̃(k) =
√

m2 + k2. (19)

Still, the definitions above are meaningless if we do not
define the vacuum states for the A and B scalar fields. There
is a mutual vacuum state in our problem with the following
properties:

{

< 0| φ+ = 0
φ+ |0 >	= 0

CPT M↔
{

φ̃− |0 >= 0
< 0| φ̃− 	= 0

;
{

< 0| φ− 	= 0
φ− |0 >= 0

CPT M↔
{

φ̃+ |0 > 	= 0
< 0| φ̃+ = 0

. (20)

A general energy-momentum vector Pμ written for the
both regions of the extended manifold and averaged with
respect to the mutual vacuum state now acquires the follow-
ing form:

< Pμ > = 1

2

∫

d3 k k μ
(

<
(

φ+(k) φ−(k)

+φ−(k) φ+(k)
)

>

+ <
(

φ̃+(k) φ̃−(k)

+ φ̃−(k) φ̃+(k)
)

| >
)

=
∫

d3 k k μ
(

< φ+(k) φ−(k) >

+ < φ̃+(k) φ̃−(k) >
)

= < Pμ
A > + < Pμ

B >= 0. (21)

Here Pμ
A,B are the energy-momentum vectors of A or B man-

ifolds separately, we also note that

CPT M(< Pμ
A >) =< Pμ

B > (22)

as expected. So, as a consequence of CPTM symmetry, we
obtained the precise cancellation of the vacuum zero modes
contributions.
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The next issue we discuss in connection to the B-field
is a definition of the propagators of the field. For the easier
references we presented the forms of the Feynman and Dyson
propagators we used in the Appendixes A. In general we need
to determine the change of the propagators in respect to the
CPTM transform and form of the propagator of the B-field
which we will use in the calculations. Therefore, we consider
the usual G̃F (x̃ − ỹ) propagator for the B-field, it has the
following form:

G̃F (x̃, ỹ) = −ı
(

θ(x̃0 − ỹ0) < φ̃(x̃) φ̃(ỹ) >

+ θ(ỹ0 − x̃0) < φ̃(ỹ) φ̃(x̃) >
)

= −GF (x̃, ỹ), (23)

see Eq. (18) definitions. Alternatively we can calculate

CPT M(GF (x, y)) = −ı
(

θ(ỹ0 − x̃0)CPT M(< φ(x) φ(y) >)

+θ(x̃0 − ỹ0)CPT M(< φ(y) φ(x) >)
)

= ı
(

θ(ỹ0 − x̃0) < φ(ỹ) φ(x̃) >

+θ(x̃0 − ỹ0) < φ(x̃) φ(ỹ) >
)

= −GF (x̃, ỹ), (24)

that coincides with Eq. (23) answer. In Eq. (24) the following
property of Wightman function under the CPTM transform
is clarified:

CPT M(D(x − y)) ∝ CPT M

(

< ϕ−(k) ϕ+(k
′
) > e−ı k x + ı k

′
y
)

=< ϕ̃−(k
′
) ϕ̃+(k) > eı k x̃−ı k

′
ỹ (25)

that provides

CPT M(D(x − y)) = − D(ỹ − x̃) = − < φ(ỹ) φ(x̃) >

(26)

in accordance to Eq. (24).

4 Scalar field of B-manifold: second possibility

An another way do define the B-field is to consider it as an
antimatter field of A-field in respect to the sign of the mass.
We define therefore:

CPT M(φ(x)) = CPT M

( ∫
d3 k

(2π)3/2
√

2 ωk

×
(

φ−(k) e−ı k x + φ+(k) eı k x
) )

= φ̃(x̃) =
∫

d3 k

(2π)3/2
√

2 ω̃k

×
(

φ̃−(k) eı k x̃ + φ̃+(k) e−ı k x̃
)

(27)

with the following properties of the operators:

{

φ−(k) ↔ φ̃−(k)
φ+(k) ↔ φ̃+(k)

→
{ [ φ̃−(k) φ̃+(k

′
) ] = δ3

k k′
< φ̃+(k) φ̃−(k

′
) >= − δ3

k k′
.

(28)

Correspondingly we define the action of these operators on
the vacuum state as following:

{

< 0| φ+ = 0
φ+ |0 > 	= 0

CPT M↔
{

φ̃+ |0 >= 0
< 0| φ̃+ 	= 0

;
{

< 0| φ− 	= 0
φ− |0 >= 0

CPT M↔
{

φ̃− |0 > 	= 0
< 0| φ̃− = 0

. (29)

In this case the general energy-momentum vector Pμ written
for the both regions of the extended manifold again is defined
as usual and we obtain:

< Pμ > = 1

2

∫

d3 k k μ
(

<
(

φ+(k) φ−(k) + φ−(k) φ+(k)
)

>

+ <
(

φ̃+(k) φ̃−(k) + φ̃−(k) φ̃+(k)
)

>
)

=
∫

d3 k k μ
(

< φ+(k) φ−(k) > + < φ̃−(k) φ̃+(k) >
)

= < Pμ
A > + < Pμ

B >= 0 (30)

with

CPT M(< Pμ
A >) =< Pμ

B > . (31)

as above.
Now we once more define the G̃F (x̃ − ỹ) propagator for

the B-field, it has the following form:

G̃F (x̃, ỹ) = −ı
(

θ(x̃0 − ỹ0) < φ̃(x̃) φ̃(ỹ) >

+ θ(ỹ0 − x̃0) < φ̃(ỹ) φ̃(x̃) >
)

= −GD(x̃, ỹ) (32)

which is different from the Eq. (23) expression due the
Eq. (28) properties of the operators. Checking the CPTM
symmetry connection of the A and B fields we have:

CPT M(GF (x, y)) = −ı
(

θ(ỹ0 − x̃0)CPT M(< φ(x) φ(y) >)

+θ(x̃0 − ỹ0)CPT M(< φ(y) φ(x) >)
)

=
= ı

(

θ(ỹ0 − x̃0) < φ(x̃) φ(ỹ) >

+θ(x̃0 − ỹ0) < φ(ỹ) φ(x̃) >
)

= −GD(x̃, ỹ) (33)
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as expected.1 Again, we can understand this transform as
consequence of the transformation of the Wightman function
under the CPTM transform:

CPT M(D(x − y)) ∝ CPT M

(

< ϕ+(k) ϕ−(k
′
) > eı k x−ı k

′
y
)

=< ϕ̃+(k) ϕ̃−(k
′
) > e−ı k x̃+ ı k

′
ỹ (34)

that provides

CPT M(D(x − y))= − D(x̃−ỹ) = − < φ(x̃) φ(ỹ) > .

(35)

in correspondence to Eqs. (32)–(33) result.

5 Action of the formalism: free fields with single source

Introducing the action for the scalar fields, we use the for-
malism proposed in [2] with the full action defined at the
absence of the matter as

S = Sgrav(x, x̃) + Sint (x, x̃), (36)

where

Sgrav(x, x̃) = −m2
p

∫ ∞

−∞
dt

∫

d3x
√−g(x) R(x)

− m2
p

∫ ∞

−∞
dt̃

∫

d3 x̃
√−g̃(x̃) R(x̃) (37)

are separated Einstein actions defined in each A–B manifolds
separately and

Sint = −
∑

i, j=A,B

m2
p

∫

d4xi
√−gi (xi )

×
∫

d4x j
√

−g(x j ) ξi j (xi , x j ) (38)

is a simplest terms which describes the gravitational inter-
actions between the manifolds through some bi-scalar func-
tions ξi j (xi , x j ), here xA = x and xB = x̃ are defined and
m2

p = 1 / 16 π G with c = h̄ = 1 notations are introduced
for simplicity. Without this term the system is a system for
non-coupled Einstein equations for each manifold separately,
whereas the interaction term in the equations determines the
mutual influence of the manifolds in the form of the cosmo-
logical constant.

In order to understand the appearance of the interaction
term in Eq. (36) we, following to [2], consider the discussed
above scalar fields in A-B manifolds with some physical

1 We notice, that in both cases the kinetic term for the B scalar field
is negative. Nevertheless, these fields are not ghost fields widely used
in the theories of dark matter. Our A and B fields are present on the
separated manifolds and negative sign of the B field is due a choice of
the positive direction for the time and radial coordinates, we juxtapose
everything with the directions in our chosen A manifold.

sources of them introduced. Now, instead Eq. (38), we con-
sider the action for the free non-interacting scalar fields in a
curved space-time:

Sint =
∫

d4x
√−g

(
1

2
φ G−1 φ − m3

p f (x) φ

)

+
∫

d4 x̃
√−g̃

(
1

2
φ̃ G̃−1 x̃ φ̃ ∓ m3

p f̃ (x̃) φ̃

)

.

(39)

Here we use the notations for the propagators in the curved
space-time, see Appendix B. We also do not know a priori
the sign for the second source in the Lagrangian,2 namely it
is possible that CPT M( f ) = ± f̃ , and further, where it will
be need in that, will consider the two cases separately. Now
the both fields can be expanded around their classical values:

φ = m3
p G(x, y,�) f (y)

√−g(y,�) + ε,

φ̃ = ±m3
p G̃(x̃, ỹ, �̃) f̃ (ỹ)

√

−g̃(ỹ, �̃) + ε̃ (40)

that provides for the action in both cases:

Sint = 1

2

∫

d4x
√−g ε G−1 ε − m6

p

2

∫

d4x

×
∫

d4y
√−g(x) f (x)G(x, y) f (y)

√−g(y)

+ 1

2

∫

d4 x̃
√−g ε̃ G̃−1 ε̃ − m6

p

2
∫

d4 x̃
∫

d4 ỹ
√−g̃(x̃) f̃ (x̃) G̃(x̃, ỹ) f̃ (ỹ)

√−g̃(ỹ), (41)

for simplicity we did not write here and further an implicit
dependence of the metric on the manifold’s cosmological
constants. We obtain, therefore, that the first and third terms in
the expression can be integrated out, whereas the second and
fourth terms in the action determine the cosmological con-
stant in the expressions through the GF (x, y) and G̃F (x̃, ỹ)
propagators after the integration over y and ỹ coordinates for
the A and B manifolds correspondingly.

The cosmological constant in this case contributes to the
usual equations of motion:

δ S� �̃ = m6
p

2

∫

d4x
∫

d4y
√−g(x) f (x)

× (

gμνδg
μν

)

G(x, y) f (y)
√−g(y)

−m6
p

2

∫

d4x
∫

d4y
√−g(x) f (x)

× (δ G(x, y) f (y) )
√−g(y) + m6

p

2

∫

d4 x̃

×
∫

d4 ỹ
√−g̃(x̃) f̃ (x̃)

2 We introduced in Eq. (39) the undefined function f (x) = f̃ (x̃) as a
source of the scalar field. Further, where the form of the function does
not matter, we will take it equal to 1.
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× (

g̃μνδg̃
μν

)

G̃(x̃, ỹ) f̃ (ỹ)
√−g̃(ỹ)

−m6
p

2

∫

d4 x̃
∫

d4 ỹ
√−g̃(x̃) f̃ (x̃)

×
(

δ G̃(x̃, ỹ)
)

f̃ (ỹ)
√−g̃(ỹ)

= m2
p

∫

d4x
√−g(x)

(

gμνδg
μν

)

�(x)

− 2m2
p

∫

d4x
√−g(x) δ �(x)

+ m2
p

∫

d4 x̃
√−g̃(x̃)

(

g̃μνδg̃
μν

)

�̃(x̃)

− 2m2
p

∫

d4 x̃
√−g̃(x̃) δ �̃(x̃) (42)

which is correct when we take zero cosmological constant
in the metrics in r.h.s. of Eq. (41), see Appendix B. Here, in
Eq. (42), the propagators must be understood as the full ones
in the curved space-time, again see Appendix B definitions.
In general, if we want a precise equation for the cosmological
constants, then we have also to account a presence of them in
the metric and or to resolve the equations as whole, obtaining
a non-perturbative solution, or use Eq. (B.15) prescription
obtaining perturbative solution for the constants. To the first
approximation, we obtain:

�(x) + �̃(x̃) = m4
p

4

(

f (x)
∫

d4y G(x, y, �) f (y)
√−g(y, �)

+ f̃ (x̃)
∫

d4 ỹ G̃(x̃, ỹ, �̃) f̃ (ỹ)
√

−g̃(ỹ, �̃)

)

= m4
p

4

(

f (x)
∫

d4y G(x, y) f (y)
√−g(y)

+ f̃ (x̃)
∫

d4 ỹ G̃(x̃, ỹ) f̃ (ỹ)
√−g̃(ỹ)

)

(43)

where as propagators we take Eq. (B.6) expression for the full
propagators with corresponding definition of “bare” propa-
gators for A and B manifolds.

For the case of the first type of scalar fields, preserving in
Eq. (43) the leading terms from Eq. (B.6) with respect to the
flat propagators, we obtain:

�(x) = m4
p

4
f (x)

∫

d4y
√−g(y)G(x, y) f (y)

= m4
p

4
f (x)

∫

d4y
√−g(y)GF (x, y) f (y)

�̃(x) = m4
p

4
f̃ (x)

∫

d4y
√−g(y) G̃(x, y) f̃ (y)

= −m4
p

4
f̃ (x)

∫

d4y
√−g(y)GF (x, y) f̃ (y). (44)

We have therefore to this order of precision

� = − �̃. (45)

Nevertheless, effectively, in the Lagrangian, we have for
these terms

� + �̃ = 0 (46)

and the constants do not appear in the action in this perturba-
tive order. The first non-trivial contribution in the Lagrangian,
therefore, will be given by the quadratic with respect to the
flat propagators terms in Eq. (B.6) expression.

In the case of the second type of the fields, also keeping in
the Eq. (43) only the first non-vanishing terms from Eq. (B.6),
we obtain:

�(x) = m4
p

4
f (x)

∫

d4y
√−g(y)GF (x, y) f (y)

�̃(x) = −m4
p

4
f̃ (x̃)

∫

d4y
√−g(y)GD(x, y) f̃ (ỹ) (47)

that provides

�(x) = �̃∗(x), (48)

see again Appendix A for the definitions of the propagators
in the flat space-time.

6 Action of the formalism: free fields with double
sources

In the previous section we consider the simplest Lagrangian
of the free scalar fields, there is no interacting between them
in the Lagrangian. Further, due the closed time path intro-
duced in the action, such term will arise correspondingly
to the Keldysh formalism prescription. Nevertheless, in the
Keldysh approach, the contribution of this kinetic term in the
effective action begins from one loop of the corresponding
propagator and, therefore, it’s contribution is small in gen-
eral. So, as we obtained in the previous section, see Eq. (41),
in the previous case there are no interactions between the A
and B manifolds but only self-interactions between the points
of the same manifolds. In order to introduce the interactions,
in this section we consider a more complicated version of
Eq. (39) with two sources for the scalar fields present as fol-
lowing:

Sint =
∫

d4x
√−g

(
1

2
φ G−1 φ m3

p f (x) φ − ξ m3
p f (x) φ̃

)

+
∫

d4 x̃
√−g̃

(
1

2
φ̃ G̃−1 x̃ φ̃

− ξ̃ m3
p f̃ (x̃) φ̃ − ξ ξ̃ m3

p f̃ (x̃) φ
)

, (49)

the parameters ξ = ± 1 and ξ̃ = ± 1 are defined here inde-
pendently and the sign of f is undefined, it can be positive or
negative, whereas the sign of f̃ is strictly positive. We solve
the equations of motion and obtain the classical solutions for
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the fields:

φ = m3
p G(x, y,�)

(

f (y)
√−g(y,�)

+ξ ξ̃ f̃ (y))
√

−g̃(y, �̃)

)

+ ε = φcl + ε, (50)

φ̃ = m3
p G̃(x̃, ỹ, �̃)

(

ξ̃ f̃ (ỹ)
√

−g̃(ỹ, �̃)

+ξ f (ỹ)
√−g(ỹ,�)

)

+ ε̃ = φ̃cl + ε̃. (51)

Performing the usual calculations we will obtain for the
Eq. (49) expression:

Sint = 1

2

∫

d4x
√−g ε G−1 ε − m6

p

2

∫

d4x

×
∫

d4y
√−g(x) f (x)G(x, y) f (y)

√−g(y)

− m6
p

2

∫

d4x
∫

d4y
√−g̃(x)

× f̃ (x)G(x, y) f̃ (y)
√−g̃(y)

+ 1

2

∫

d4 x̃
√−g ε̃ G̃−1 ε̃ − m6

p

2

∫

d4 x̃

×
∫

d4 ỹ
√−g̃(x̃) f̃ (x̃) G̃(x̃, ỹ) f̃ (ỹ)

×√−g̃(ỹ) − m6
p

2

∫

d4 x̃
∫

d4 ỹ
√−g(x̃) f (x̃)

×G̃(x̃, ỹ) f (ỹ)
√−g(ỹ)

−m6
p ξ ξ̃

∫

d4x
∫

d4 ỹ
√−g(x) f (x)G(x, ỹ) f̃ (ỹ)

×√−g̃(ỹ) − m6
p ξ ξ̃

∫

d4x
∫

d4 ỹ

×√−g(x) f (x) G̃(x, ỹ) f̃ (ỹ)
√−g̃(ỹ), (52)

for the simplicity we omit a dependence on the constants
inside the r.h.s. of the expression. Now we see that there is
an interaction term between the manifolds in correspondence
to Eq. (38) definition. There are two cases we consider sep-
arately. For ξ = − ξ̃ = ± 1 values of the parameters, we
have:

φcl = m3
p G(x, y,�)

(

f (y)
√−g(y,�)

− f̃ (y)
√

−g̃(y, �̃)

)

, (53)

φ̃cl = ±m3
p G̃(x̃, ỹ, �̃)

×
(

f (ỹ)
√−g(ỹ,�) − f̃ (ỹ)

√

−g̃(ỹ, �̃)

)

. (54)

We see, that when f (y)
√−g(y,�) = f̃ (y)

√

−g̃(y, �̃) the
expressions are trivial, but this equality is not requested in
general and especially when the constants in

√−g are non-

zero and different, the Eq. (1) symmetry is precise only for
the zero cosmological constants. Now, in order to define the
cosmological constants from Eq. (49) interaction term to the
first perturbative order of precision, we will make the follow-
ing. We will keep in Eq. (52) first order propagators, i.e. the
flat ones, and will perform variation with respect to g and g̃
separately. Only after the variation will be taken we will set
in the r.h.s. of the equations zero cosmological constants and
will consider remaining integrals without their connection to
x and x̃ variables using Eq. (1) symmetry. We will obtain
then:

�(x) = −m4
p

4
f (x)

∫

d4y
√−g(y) (G(x, y)

+G̃(x, y)
) (

f̃ (y) − f (y)
)

�̃(x) = m4
p

4
f̃ (x)

∫

d4y
√−g(y) (G(x, y)

+G̃(x, y)
) (

f̃ (y) − f (y)
)

. (55)

As we see, in flat manifold for the first kind of the scalar
fields, Eq. (24) � = �̃ = 0 whereas for second type of the
fields we will obtain here � = − �̃ with relative sign depend
on the sign of f̃ − f difference.

Correspondingly, when ξ = ξ̃ = ± 1, we obtain then:

φcl = m3
p G(x, y,�)

(

f (y)
√−g(y,�)

+ f̃ (y)
√

−g̃(y, �̃)

)

, (56)

φ̃cl = ±m3
p G̃(x̃, ỹ, �̃)

×
(

f (ỹ)
√−g(ỹ,�) + f̃ (ỹ)

√

−g̃(ỹ, �̃)

)

(57)

and for the cosmological constants

�(x) = −m4
p

4
f (x)

∫

d4y
√−g(y) (G(x, y)

+G̃(x, y)
) (

f̃ (y) + f (y)
)

�̃(x) = −m4
p

4
f̃ (x)

∫

d4y
√−g(y) (G(x, y)

+G̃(x, y)
) (

f̃ (y) + f (y)
)

. (58)

For the first kind of the scalar fields, Eq. (24), for the flat case
again � = �̃ = 0, whereas for second type of the fields we
obtain � = �̃ with the relative sign depend on sign of f .

7 Possible forms of the interactions of the fields in the
Lagrangian

With the hekp of the introduced CPTM symmetry we can
unambiguously determine the possible forms of the interac-
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tions between the scalar fields in the Lagrangian. Namely,
there is a request that the symmetry between the classical
fields must be preserved in the general Lagrangian at the
case of zero cosmological constants. Therefore we can con-
sider the connection of the possible interactions terms in the
Lagrangian basing on the properties of classical fields and
propagators of two flat manifolds. Consider for example the
first type of the scalar fields

φ̃cl = −φcl (59)

and connection between the propagators given by Eq. (24)
which we suppose to be correct in the case of the flat man-
ifold or in the case of the metric without the cosmological
constant. Therefore, the request of CPTM symmetry leads
to the following connection between the possible interaction
terms in the Lagrangians of A and B manifolds:

{

λ 2n+1 φ 2n+1
cl (x) → −λ 2n+1 φ̃ 2n+1

cl (x̃)

λ 2(n+1) φ
2(n+1)
cl (x) → λ 2(n+1) φ̃

2(n+1)
cl (x̃)

; n = 1, 2, . . . , (60)

in correspondence to the form of Eq. (59) transformation.
Now we consider the second possibility of the connection
between the classical fields:

φ̃cl = φcl . (61)

The consequence of that relation between the classical fields
solutions is that now we have instead Eq. (60):

λ n φ n
cl(x) → λ n φ̃ n

cl(x̃), n = 3, 4, . . . . (62)

for the possible interacting terms of the fields in the
Lagrangian of the approach.

For the second choice of the scalar field in the problem,
we have to put attention that in momentum space

(−GD) = G ∗
F , (63)

see Appendix A definitions. Therefore we have to the first
approximation:

φ̃cl = φ ∗
cl . (64)

The Eq. (64) transformation rule, in turn, dictates the transfor-
mations of the possible interaction terms in the Lagrangians.
We obtain:

ıλ n φ n
cl(x) → −ıλ n φ̃ n

cl(x̃), n = 3, 4, . . . , (65)

in full correspondence to the closed time path (Keldysh) for-
malism of non-equilibrium condensed matter physics, [54–
60] for example. For the second case when

φ̃cl = −φ ∗
cl (66)

we have to define

ıλ n φ n
cl(x) → ı (−1 )n+1 λ n φ̃ n

cl(x̃), n = 3, 4, . . . , (67)

in correspondence to Eq. (66).

For the further applications we denote the Lagrangians
considered here as cases 1 − a, 1 − b and 2 − a, 2 − b cor-
respondingly to the order of their appearance in the section.

8 Action of the formalism: interacting free fields

Following the analogy with Keldysh formalism, now we
introduce an interaction between the free fields of different
manifolds. Again, introducing in the Lagrangian correspond-
ing interaction terms between the fields of different manifolds
we consider separately the cases of two different types of
scalar fields. Also, here we do not include in the Lagrangian
the source terms, they are not important for the further results.

First of all consider 1 − a and 1 − b Lagrangians in the
case of flat A, B manifolds. As usual we define the following
Wightman functions:

>(x, y) = −ı D(x − y), ̃>(x̃, ỹ) = ı D(ỹ − x̃) = −<(x̃, ỹ),

(68)

see Eq. (35) definition. We, therefore, define the interaction
part of the action Sint as:

Sint = 1

2

∫

d4x
√−g (φ φ̃)

(

G−1
F −1

>

̃−1
> G̃−1

F

) (
φ

φ̃

)

−
∫

d4x
√−g (φ φ̃)

(

m3
p + J1

±
(

m3
p + J2

)

)

. (69)

Here we introduced the auxiliary currents J1 and J2 in order
to check the appearance of the additional Green’s functions
in the problem. After the integration we obtain:

Sint = −m6
p

2

∫

d4x
∫

d4y
√−g GF (x, y)

√−g

− m6
p

2

∫

d4 x̃
∫

d4 ỹ
√−g G̃F (x̃, ỹ)

√−g

−m3
p

2

∫

d4x
∫

d4y
√−g J1 GF (x, y) J1

√−g

−m3
p

2

∫

d4 x̃
∫

d4 ỹ
√−gJ2 G̃F (x̃, ỹ) J2

√−g

−m6
p

2

∫

d4x
∫

d4y
√−g (>(x, y)

+̃>(y, x)
) √−g ∓

∓1

2

∫

d4x
∫

d4y
√−gJ2 (>(x, y)

+̃>(y, x)
)

J1
√−g ∓

∓m3
p

2

∫

d4x
∫

d4y
√−g (>(x, y)

+̃>(y, x)
)

J1
√−g ∓
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∓m3
p

2

∫

d4x
∫

d4y
√−g (>(x, y)

+̃>(y, x)
)

J2
√−g. (70)

Taking into account that

>(x, y) + ̃>(y, x) = >(x, y) − <(y, x) = 0, (71)

see Eq. (68), we obtain:

Sint = −m6
p

2

∫

d4x
∫

d4y
√−g GF (x, y)

√−g

− m6
p

2

∫

d4 x̃
∫

d4 ỹ
√−g G̃F (x̃, ỹ)

√−g −

−m3
p

2

∫

d4x
∫

d4y
√−g J1 GF (x, y) J1

√−g

−m3
p

2

∫

d4 x̃
∫

d4 ỹ
√−gJ2 G̃F (x̃, ỹ) J2

√−g.

(72)

The answer demonstrate that there is no Keldysh like interac-
tions between the flat A and B manifolds in the case of 1 − a
and 1 − b Lagrangians. If we will not introduce the inter-
action potential between the scalar fields we will stay with
two non-interacting scalar fields which provide the cancella-
tion of mutual classical zero modes but not interact anymore.
The situation can be different if we will account generated
non-zero cosmological constants. In this case, thee quality
Eq. (71) can be not correct anymore, instead will have:

>(x, y,�) + ̃>(y, x, �̃)

= (∂�>(x, y,))�=0 �

− (∂�̃<(y, x, �̃))�̃=0 �̃ 	= 0, (73)

and some interaction between the manifolds will arise.
Now we consider 2 − a and 2 − b Lagrangians. Again we

define the Wightman functions:

>(x, y) = −ı D(x − y), ̃>(x̃, ỹ) = ı D(x̃ − ỹ) = − >(x̃, ỹ),

(74)

see Eq. (35). Repeating the same calculations as above we
will obtain:

Sint = −m6
p

2

∫

d4x
∫

d4y
√−g GF (x, y)

√−g

− m6
p

2

∫

d4 x̃
∫

d4 ỹ
√−g G̃F (x̃, ỹ)

√−g

−m3
p

2

∫

d4x
∫

d4y
√−g J1 GF (x, y) J1

√−g

−m3
p

2

∫

d4 x̃
∫

d4 ỹ
√−gJ2 G̃F (x̃, ỹ) J2

√−g

−m6
p

2

∫

d4x
∫

d4y
√−g (>(x, y)

+̃>(y, x)
) √−g ∓

∓1

2

∫

d4x
∫

d4y
√−gJ2 (>(x, y)

+̃>(y, x)
)

J1
√−g ∓

∓m3
p

2

∫

d4x
∫

d4y
√−g (>(x, y)

+̃>(y, x)
)

J1
√−g ∓

∓m3
p

2

∫

d4x
∫

d4y
√−g (>(x, y)

+̃>(y, x)
)

J2
√−g. (75)

Due the Eq. (74) identity now we have:

(x, y) = >(x, y)

+̃>(y, x) = >(x, y) − >(y, x)

= >(x, y) − <(x, y) 	= 0 (76)

already in case of zero cosmological constant. Therefore, we
see, in full analogy with Keldysh formalism, that there is a
new term of direct interaction between the A and B manifolds
arises at the case of zero auxiliary currents:

Sint = −m6
p

2

∫

d4x
∫

d4y
√−g GF (x, y)

√−g

− m6
p

2

∫

d4 x̃
∫

d4 ỹ
√−g G̃F (x̃, ỹ)

√−g −

−m6
p

2

∫

d4x
∫

d4 ỹ
√−g(x) (x, ỹ)

√−g(ỹ).

(77)

This interaction between the A and B manifolds takes place at
quantum level with non-zero Keldysh propagator appearance
in the calculations.

9 Action of the formalism: self-interacting fields

Our next step is an introduction of self-interactions of the
fields. The connection between the corresponding parts of the
two Lagrangians are given by Eqs. (60), (62), (65), and (67).
Correspondingly to that we will obtain quantum corrections
to the classical values of the fields given by Eq. (40). As a
result of integration around the classical solutions Eq. (40)
we will obtain an effective action of the following general
form:

�int =
∞
∑

m,n=1

∫

d4x1
√−g

· · ·
∫

d4xn
√−g

∫

d4 x̃1

√−g̃
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· · ·
∫

d4 x̃m
√−g̃ (V0(x1,

· · · , xn; x̃1, · · · , x̃m)

+ V1 ··· n;1 ···m(x1,

· · · , xn; x̃1, · · · , x̃m) φcl 1

· · · φcl n φ̃cl 1

· · · φ̃cl m

)

. (78)

In this case the cosmological constant can be defined mostly
general as

�(x) = 1

m2
p

∞
∑

m,n=1

∫

d4x1
√−g

· · ·
∫

d4xn
√−g

∫

d4 x̃1

√−g̃

· · ·
∫

d4 x̃m
√−g̃ (V0

+V1 ... n;1 ...m(x, x1, . . . , xn; x̃1,

· · · , x̃m) φcl 1 . . . φcl n φ̃cl 1

· · · φ̃cl m

)

. (79)

with V0 as vacuum contributions to the constant (no-legs
diagrams). Similarly to the previous expressions, the r.h.s. of
Eq. (78) and Eq. (79) also depend on the constants through
the vertices and

√−g, the Eq. (79) is a non-linear equation
for the constant.

In the effective action, beginning from n = 2 external legs,
the introduced vertices will contribute to the renormalization
of the theory determining renormalized mass and vertices of
the scalar field. The mostly unpleasant contributions there are
the vacuum ones and quantum contributions to the φcl (dia-
grams with one external leg present3). As we mentioned in
the Introduction, the contributions to the cosmological con-
stant in the formalism can be divided on the two parts. The
first type of the contributions is due the quantum vacuum
zero modes, i.e. related to V0 or quantum corrections to φcl ,
the separated contributions are due the non-zero curvature
of the A, B manifolds. There are also quantum contribu-
tions in non-flat manifolds, we do not consider these effects.
Namely, further in the Section, we will neglect the curvature
corrections to the propagators in the calculations of Eq. (78)
one-loop effective action and will consider the theory in the
flat space-time.

9.1 Self-interacting scalar fields of the first kind

We again begin from 1−a, b Lagrangians adding to Eq. (41)
the self-interaction terms accordingly to Eq. (60) prescrip-
tion. We will consider only renormalizable theories, for

3 Further we will consider φ4 theory without the quantum contribution
to φcl .

the simplicity limiting ourselves by the consideration of φ4

power of interaction in D = 4 dimensions and by the one-
source Lagrangian. We will obtain for the action:

Sint =
∫

d4x
√−g

(
1

2
φ G−1

F φ − m3
p φ

)

+
∫

d4 x̃
√−g

×
(

1

2
φ̃ G̃−1

F x̃ φ̃ ∓ m3
p φ̃

)

−
∫

d4x
√−g λ4

φ4(x)

4 !
−

∫

d4 x̃
√−g λ4

φ̃4(x̃)

4 ! . (80)

Now we expand the potential of the self-interaction around
the classical values of the fields and preserving in the expres-
sions terms till quadratic with respect to fluctuations obtain:

Sint = −
∫

d4x λ4
φ4
cl (x)

4 ! −
∫

d4 x̃ λ4
φ̃4
cl (x̃)

4 !

+ 1

2

∫

d4x ε G−1
F ε − m6

p

2

∫

d4x

×
∫

d4y
√−g(x)GF (x, y)

√−g(y)

+ 1

2

∫

d4 x̃ ε̃ G̃−1
F ε̃ − m6

p

2

∫

d4 x̃
∫

d4 ỹ
√−g(x̃)

×G̃F (x̃, ỹ)
√−g(ỹ) −

∫

d4x

(

λ4
φ3
cl ε

3 !

+ λ4
φ2
cl ε2

4

)

−
∫

d4 x̃

(

λ4
φ̃3
cl (x̃) ε̃

3 !

+ λ4
φ̃2
cl (x̃) ε̃2

4

)

. (81)

Without the contribution of classical fields and cosmological
constant terms, we obtain after the integration with respect
to the fluctuations:

Sint = − λ2
4

2 (3 !)2

∫

d4x
∫

d4y (φ3
cl (x))GF (x, y) (φ3

cl (y)) −

− λ2
4

2 (3 !)2

∫

d4 x̃
∫

d4 ỹ (φ̃3
cl (x̃)) G̃F (x̃, ỹ) (φ̃3

cl (ỹ))

+ ı

2
Tr ln

(

1 + λ4

4
GF φ2

cl

)

+ ı

2
Tr ln

(

1 + λ4

4
G̃F φ̃2

cl

)

. (82)

Due the Eq. (23) relation between the Green’s function, the
two first terms in Eq. (82) cancel each another4 and we remain

4 In the case of the non-flat manifold, when we distinguish between g
and g̃ metrics, these two terms will provide corrections to the value of
cosmological constant in A, B manifolds.
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with the following expression to one-loop order precision:

Sint = ı

2
Tr ln

(

1 + λ4

4
GF φ2

cl

)

+ ı

2
Tr ln (1

+ λ4

4
G̃F φ̃2

cl

)

. (83)

We see, therefore, that the relative sign of the classical solu-
tion does not matter in the case of flat manifolds, we can take
further φcl = φ̃cl . The only difference in the contributions
of the terms are due the different sign of Green’s functions
that affect only on diagrams with odd number of propaga-
tors which will be canceled in the answer. The same rules
are applicable in the case of many-loops diagrams. We are
interesting mostly in the two-loops vacuum diagram without
external legs provided by λ4 ε4 terms in the potential. This
diagram is not zero without the regularization and doubled
in the final answer.

The situation is more interesting if instead potential with
separate self-interacting fields we will consider a potential
similar to the φ4 potential of the scalar doublet:

V (φ, φ̃) = λ4

4 !
(

φ2 + φ̃2
)2

= VAA(φ) + VAB(φ, φ̃) + VBB(φ̃). (84)

The consequence of the appearance of the λ4
3 φcl φ̃cl ε ε̃

quadratic term in the potential is that there is now a mix-
ing of the propagators of the problem

Gμν = GF μν − GF μρ V
′′
ρσ (φ φ̃)Gσν, μ = A, B, (85)

with V
′′
ρσ (φ φ̃) as coefficients of the quadratic with respect

to ε and ε̃ terms. The answer for the one-loop action term in
this case we can write as

Sint = ı

2
Tr ln

(

1 + λ4

3
GF μν φν cl φρ cl

)

. (86)

This mixing of the propagators in the diagrams is arising
beginning from the diagrams of the λ2

4 and higher orders,
independently on the number of loops. As a result there is
no quantum corrections in the problem, in this formulation
of the formalism the quantum corrections in two flat mani-
folds are odd with respect to the CPTM symmetry transform
giving an overall zero in the final answer. The mostly inter-
esting consequence of that for us it is zero contribution of
the vacuum diagrams into the cosmological constant in the
flat space-time. Namely, it can be clarified as following. For
these kind of the diagrams at λN

4 , N = 1, · · · order there
are N pairs of propagators over all. Each pair of propagators
in turn gives zero contribution in the diagram because there
are two positive and two negative expressions for each pair
of propagators.

9.2 Self-interacting scalar fields of the second kind

We will not consider here the well-known general closed time
path formalism for the scalar fields in the flat manifolds, the
different applications of the framework can be found in [57–
60] for example. Instead we will discuss only two-loop no-
legs vacuum diagram which contribute into the cosmological
constant value in the case of interacting doublet fields. We
have for the potential of the problem:

V (φ, φ̃) = λ4

4 !
(

φ2 − φ̃2
)2

= VAA(φ) − VAB(φ, φ̃) + VBB(φ̃), (87)

see Eqs. (65) and (67) identities. There are two separated con-
tributions we can write on the base of corresponding Feyn-
man rules:

V0,1,2−loops ∝ (GF (x, x) − G̃F (x, x))2

= (GF (x, x) + GD(x, x))2 ∝
∝ 1

p2 − m2 − ıε
− 1

p2 − m2 + ıε

= 2ıε

(p2 − m2)2 + ε2
ε→0−→ 0 (88)

and

V0,2,2−loops ∝ 2(x, x) = (>(x, x) − <(x, x))2 = 0

(89)

see Eq. (76) definition. We will not discuss here the diagrams
of λ2

4 or higher orders where mix of the G and  propaga-
tors will happen as well, see [57–60] and references therein
for example. So we see that the contribution of the vacuum
diagrams to the cosmological constant in the flat manifolds
is zero up to the two loops precision at least.

10 Smallness of the cosmological constant

Now we consider, first of all, the possible quantum contribu-
tions to the cosmological constant value. In the formalism the
constant is evolving with time, therefore we will discuss the
value of the constant in an almost flat space-time and will not
consider the possibilities of the large value of the constant for
the manifolds with large curvature. It was demonstrated in
the previous Sections that the vacuum contributions into the
cosmological constant value are depend on the form of the
scalar fields and interactions between them introduced. In the
formalism, nevertheless, there is a possibility to eliminate all
types of the vacuum diagrams in general. Let’s consider the
partition function for the scalar field in the curved space-time
defining it as following:

Z [ f ] = Z−1[ f = 0]
∫

Dφ Dφ̃ eı Sint (φ,φ̃, f ), (90)
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with Sint given by Eq. (39) for example or by any another
action with interaction between the fields introduced. In this
definition we used the fact that the currents f are physical
ones and we can define the normalization factor for the fields
without the currents also in the curved manifold. Clearly, this
definition eliminates the all vacuum diagrams from the con-
sideration without the relation to the curvature of the mani-
folds.

Therefore we stay with the smallness of the bare value of
the constants given by Eqs. (44) or (47) expressions for the
case of the one-source Lagrangian or by Eqs. (55) and (58) in
the case of two-source Lagrangian. We assume, that the most
natural scenario we can propose is that the bare value of the
cosmological constant is zero for the cases of flat A and B
manifolds. In this case the simplest way to provide the result
is to consider the massless scalar fields with the f = f̃ =
1 sources. The proper regularization of the corresponding
propagators gives
∫

d4 y G0(x, y) = 0 (91)

result for any bare propagator of the fields. The non-zero
value for the cosmological constant in this set-up will be
exclusively due curvature corrections to the propagators and
some quantum corrections in the form of the effective ver-
tices, all of them will be small in the almost flat space-time.
Still, for the case of Eqs. (55) and (58) the zero bare con-
stants can be provided by the opposite values of the f and f̃
sources.

In the case of massive field, without special correspon-
dence between the f and f̃ sources, we again can begin the
consideration from the flat space-time and f = 1. We will
obtain then:

� = m4
p

4m2 (92)

that means

m2 >> m2
p, (93)

the sign of the constant here corresponds to it’s final sign
in the l.h.s. of the Einstein equations with Einstein-Hilbert
action given by Eq. (37):

Gμν + gμν � = 0. (94)

We see that for the one-source Lagrangian the constant has
wrong sign. It must be noted, nevertheless, that in the case
of the first type of scalar field, the bare values of the con-
stants cancels each another in the action. The contribution
in the equation of motion will come only from the second
order contribution to the constants, which is squared with
respect to the Appendix C integrals. Therefore, in this case,
the relative sign of the cosmological constant will be correct.
Nevertheless, in order to reproduce the known absolute value

of the constant, we can define the mass of the scalar fields in
terms of the m2

p and some characteristic length λ:

m2 = m2
p e

λ2 m2
p , λ2 = 1

m2
p

ln(
m2

p

4 �
). (95)

we see that the mass is super-heavy at least at the present of
the space-time.

An another possibility to provide the smallness of the bare
constants for the massive fields is through a smallness of the
sources of the particles. Taking the mass of the fieldsm = mp

for simplicity, we assume:

f ∝ R

m2
p

(96)

with R as curvature of the manifold. In this case we obtain:

� ∝ R2

m2
p

(97)

and this value is small simply because the flatness of the
manifold. The correct sign of the cosmological constant we
obtain in the case of the interaction Lagrangian with two
types of the sources for the same field. First of all, consider
the case of positive f in Eq. (49). Requiring

f̃ − f ∝ R̃ − R = δ > 0 (98)

in Eq. (55) and taking δ without loss of generality as some
constant, we will obtain for the second type of the scalar
fields:

�(x) = R δ

2m2
p

(99)

with correct Einstein equations:

Gμν − gμν � = 0. (100)

The same result we can achieve when the source f is negative.
In this case we take Eq. (56)–(58) solution and assume that

f̃ + f ∝ δ < 0 (101)

that again provide the correct sign of the constant. These
two possible mechanisms of the constant’s smallness can be
applied in this case as well. At the case of the first field,
the bare value of the constants is precisely zero and some
corrections to it must be calculated basing on the expansion
of the propagators and metric’s determinant with respect to
the curvature.

Concerning the possible origin of the field with the large
mass, we can speculate about the following. Let’s suppose
that there are quantum fluctuations of the scalar curvature
which are not accounted by the classical Einstein equations:

R → R + δ R = R + mp φ f = R + φ
R

mp
. (102)
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These fluctuations indeed reproduce term similar to the
source terms in Eqs. (39) and (96). After that, considering the
fluctuation as a regular scalar field, we can write Lagrangian
Eq. (39) for the field with one understandable restriction. The
field can not propagate far and that is what required for the
extremely heavy mass in the Lagrangian.

11 Some conjectures about possible solution of
singularity problem

In general relativity there are a few possible types of singu-
larities arise at classical and quantum levels. Perhaps, the full
solution of the problem is impossible without the quantum
gravity theory, which so far is not known. Therefore we will
operate with classical gravity theory, there is nothing else
we have, assuming that some main ideas of the approach
will remain when the full gravity theory will be constructed.
Further we present some oversimplified consideration of the
consequences of the approach to the problems of black hole’s
and Big Bang singularities.

The first singularity we discuss it is the singularity of the
metric of isolated Schwarzschild black hole. We can assume,
that the mass parameter, which arises in the solution at vicin-
ity of r → 0 singularity, is a function of the radial coordi-
nate5:

m = m(r) = m0 + m1 r

+m2 r
2 + m3 r

3 + · · · , r → 0 (103)

with mi as some coefficients of the expansion, see [61–67]
for the similar examples. Now, we require that the mass will
continuously change the sign under the r → −r transform
and therefore will require instead Eq. (103):

m = m(r) = m1 r + m3 r
3 + · · ·

=
∞
∑

n=1

m2n+1 r
2n+1. (104)

Considering the Schwarzschild’s metric we will obtain cor-
respondingly:

g00 = f (r) = (1 − 2m1)

(

1 − 2m3
r2

1 − 2m1
+ · · ·

)

.

(105)

Our next, natural, assumption is that 1 − 2m1 	= 0 that
allows to perform the variables change:

t
√

1 − 2m1 → t, r /
√

1 − 2m1 → r (106)

5 We use here m as notation for a mass of some infinitely small volume
around a singularity in order to distinguish it from the M parameter in
the metric’s solution far away from the gravitating mass.

that will provide for the metric:

ds2 = (1 − 2m3 r
2 + · · · ) dt2

− (1 − 2m3 r
2 + · · · )−1 dr2 − (1 − 2m1) r

2

×
(

dθ2 + sin2 θ dφ2
)

= (107)

= (1 − 2m3 r
2 + · · · ) dt2

− (1 − 2m3 r
2 + . . . )−1 dr2 − r2 d�

′2. (108)

The obtained metric, to leading order in expansion with
respect to the powers of r , is similar to the static local
parametrization of the de Sitter space. Correspondingly, tak-
ing into account that the change of the value of the 2-d volume
does not change the spherical symmetry of the metric, we will
obtain for the scalar curvature at vicinity of r = 0 the well
known answer for the de Sitter space:

R = −24m3 = −12 / R2, (109)

with curvature

k = 1

R2 = 2m3 (110)

which can be positive or negative depending on the sign of
m3. We see, that the request of the analyticity of the met-
ric at r → 0 is satisfied if we will assume the continuous
change of the mass sign at r → −r transition through r = 0
singularity.

An another singularity we shortly discuss in the given
framework is the Big Bang singularity. We make the fol-
lowing propositions which are natural in the model. First of
all, we consider the second Friedmann equation at vicinity
t = 0 point only and do not try to obtain any analytical
solution valid at later time. Second of all, we assume that
the Universe is vacuum dominated at the initial moments of
time’s evolution, all other possible contributions in the equa-
tion arise at later moments of time and are not relevant for us.
The third proposition is the consequence of the formalism:
we do not separate between the cosmological constant and
vacuum energy density in the equation taking the function in
the r.h.s. of the equation as an overall vacuum energy density
of our part of the manifold, which as well is an initial cos-
mological constant in the approach. This density is negative
and depends on time, the proposed sign of the function is dic-
tated by the anti-gravity repulsion between the parts of the
extended manifold, the dependence on time must be intro-
duced because of the observation that the interaction between
the parts of the general manifold should decrease during the
evolution and because of the general structure of the constant
in the proposed framework. Consequently, we will obtain for
the second Friedmann equation for the only our part of the
manifold the following expression:

ä

a
= �(t), (111)
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for simplicity we absorbed all the coefficients in the definition
of �. Now, let’s consider a couple of simple models for �(t)
function and corresponding results for the scaling factor a(t)
in FRW metric.

The first example we take is the following one:

� = �0 / tβ. (112)

Here we perform the following change of the variable:

z = tα, a = a(z) (113)

that provides for Eq. (111)

α (α − 1)

t2−α

da

dz

+ α2

t2−2α

d2a

dz2

= a(z)
�0

tβ
. (114)

We look for an analytical solution at vicinity of t = 0, there-
fore we have:

2 − α > 2 − 2 α → α > 0 (115)

2 − α = β → α

= 2 − β > 0 → β < 2. (116)

Correspondingly, for the β < 2 we obtain at t → 0:

α (α − 1)
da

dz
= a(z)�0 (117)

that in turn provides

a(t) = a0 e
�0 t2−β

(2−β) (1−β) . (118)

We see, that there is an analytical inflation scenario in the
example when

�0 > 0, 1 − β > 0 (119)

or when

�0 < 0, 1 − β < 0. (120)

The another example we can discuss is for the following form
of the � function:

� = �0 e
−β tγ ≈ �0

(

1 − β tγ
)

. (121)

We again introduce new variable:

z = t2 + f (t), f (t) ∝ tα, α > 2. (122)

Therefore, at vicinity of t → 0 we can write

2
da

dz
= a(z)�0 (123)

that provides a solution:

a(t) = a0 e
�0
2 t2 (124)

which is as well an analytic inflation solution for the scale
factor at the case of �0 > 0.

We notice, that in general we have to consider the prob-
lem of singularity simultaneously for the both parts of the
extended manifold. There are different possible scenario
arise in this case, which depend on the directions of the time’s
arrows and initial values of the cosmological constants for the
separated manifolds. We postpone this task for the separate
publication.

There are also additional types of singularities present in
the general relativity. For example, there are soft singulari-
ties, see [68–74], which can be crossed smoothly when some
additional properties of the matter are assumed. We note,
see [75–80] for example, that in this models quite naturally
arise a notion of the negative energy density of the matter,
that, in some extend, is similar to the proposed in the paper.
In general, therefore, it will be interesting to understand the
intersections of the approaches which operate with ideas of
some extended cosmology picture.

12 Summary and discussion

Let’s us summarize the main propositions and results of the
formalism. First of all, in the approach we introduced and
considered the different manifolds A and B related by the
CPTM symmetry transform. These two, or more, manifolds
are parts of the extended solution of the classical Einstein’s
equations, the interpretation of the second manifold as pop-
ulated by the negative gravitational mass is an usual one in
fact, the discussion of this issue, for example, can be found
in [5]. The proposed model also has some similarities to CPT
symmetric Universe model considered in [91,92] and mod-
els of [93,94]. There are as well two-time direction mod-
els proposed for the solution of the Universe’s low initial
entropy value, see [81–90] and more sophisticated two-times
direction models of [95–97], which structure, nevertheless,
is quite different from proposed here. The idea of nega-
tive energy/anti-gravity regions in some type of an extended
solution of Einstein equation also have been considered in
the literature, see for example [8–10,98–100]. In general, of
course, there are some similarities and differences of these
approaches with the formalism proposed here, it will be inter-
esting to analyze the intersection points of the formalisms.

The main consequences of the set-up proposed in the paper
is that we always have a system of two fields related by the
symmetry and with different time directions in each mani-
fold. We also note, that unlike to [101], for example, the dif-
ferent terms in the general action are present with the same
sign, see Eqs. (11)–(13). The difference between the terms
in the action is appearing due the CPTM symmetry request
applied to the scalar fields, for the metric the symmetry is
precise when the cosmological constant is zero.
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The next basing part of the formalism is an additional
bi-scalar term in the general action which “glue” the man-
ifolds, see Eqs. (36) and (38). This term provides an effec-
tive interaction between the points of extended manifold, the
cosmological constant arises there as a consequence of these
interactions. In general, we can not define a priori the form
of the interaction term, the simplest and mostly obvious way
to introduce this term is to define it through a propagator of
scalar field which connects different points of the extended
general solution, kind a quantum wormhole in some sense.

The choose of the propagator of the scalar field as the inter-
action term is not arbitrary of course. The introduced CPTM
symmetry transforms the usual scalar field of the A manifold
into an another scalar field of B manifold. The properties of
the quantized B-field are different from the A-field, there are
also two possibility to determine the B-field. Each possibil-
ity depends on the type of the closed time path defined for
A-B manifolds together in correspondence to the positions
of in and out states for the A,B fields. Nevertheless, in spite
to the different propagators of two B fields, the main conse-
quence of the application of the CPTM transform is that the
overall “classical” zero modes contribution of A and B fields
together in the energy-stress tensor is precise zero. This is
a first important consequence of the proposed symmetry, it
solves the zero mode problem of the cosmological constant.

Thereby, the action for the two fields is based on the closed
time paths. There are two variants of the time paths consid-
ered in the paper which correspond to the two types of the
B scalar field. The second variant we considered is the same
as the time path in the Keldysh–Schwinger, [54–56] in-in
QFT formalism, see also [57]. The next step we made is a
construction of the QFT for the A and B fields in A and B
manifolds. We again considered only two obvious possibil-
ities for the corresponding QFT, both based on the choose
of Feynman propagator GF as propagator of the scalar field
of A manifold and and two different propagators for the B
field obtained after the application of the CPTM transform
to GF . In both cases the full QFT can be constructed, with
the self-interaction vertices of the fields and direct interaction
between the A,B manifolds included. In the case of the direct
interaction between the A, B manifolds, the Keldysh propa-
gator is revealed in the formalism. It is demonstrated, that due
the presence of the physical sources in the Lagrangian, in the
partition function we can eliminate the quantum vacuum con-
tributions into the cosmological constants values ending with
only contributions from the vertices of the quantum effective
action of corresponding QFT, see Eqs. (78)–(79). In both
cases the leading perturbative contribution to the constant is
provided by the first term of the Eq. (79) effective action.

We obtain, therefore, that in the case of the simplest
Lagrangian with one source for the fields, Eq. (39), the con-
stant has a wrong sign for the A manifold for the two types
the B scalar field. In turn, in the case of the Lagrangian with

two sources for each field, Eq. (49), the parameters of the
Lagrangian can be chosen in a way that the constant of our,
A manifold, will have the correct sign. Effectively it was
achieved only by introduction in the Lagrangian of the second
sources for the scalar fields, the reasons and consequences of
this construction must be clarified in the subsequent research.
Of course, in the approach the constants are not really con-
stants, we talk only about bare values of some infinite series
for the functions. Nevertheless, their finiteness in the flat
space-time is related to the renormalizability of the corre-
sponding effective action. Choosing a renormalizable field
theory we will achieve a finite cosmological constant, that,
of course does not guarantee it’s smallness. We also notice,
that in the framework the constants are result of the presence
of classical solutions of the corresponding A and B fields
equations of motion. Namely, reformulating, the cosmolog-
ical constant in this case this is an interaction of the conden-
sate of scalar field (classical solution) with the manifold of
interest trough the manifold’s curvature.

Concerning the bare value of the constant, we speculate
that the mostly natural value for the constant is zero at the
case of flat space time. This result can be provided immedi-
ately if we will consider the massless scalar fields, the bare
cosmological constant will arise then as consequence of cur-
vature corrections to the flat propagators of the scalar fields.
Another possibility for the zero bare values of the constants
of A and B manifolds in the model with two sources is a
precise cancellation of the bare value due the cancellation of
the sources in the expressions, in this case the mass of the
scalar fields is arbitrary. In general, in the case of the non-
zero masses of the scalar fields, the constant’s smallness can
be provided or by the super large mass of the fields or by very
small values of the sources of the A and B field. In the first
case, in order to provide the smallness of the cosmological
constants, the proposed mass must be very heavy at least at
the present epoch. It means, in general, that the propagation
of the fields must be very small. In the second case, when the
sources of the fields are very small, see Eq. (96), the values of
the sources are responsible for the smallness of the constant.
Interesting issue, also, is a presence of the curvature in the
final expression for the cosmological parameter through the
effective action for the scalar fields. In this case, the effec-
tive action consists expressions with the powers of curvature
higher then in ordinary Einstein equations. The construction
of these types of the terms can be performed on the base of
gauge invariance of the action similarly to done in QCD and
gravity at high energies, see [113–123].

In any case, the origin of the scalar field in the formal-
ism is not clear. We can speculate that this field represents
some quantum fluctuations of the scalar curvature in the
Einstein-Hilbert action which is not accounted by the classi-
cal equations of motion. The non-propagating of these kind of
fields can be understood, for example, as result of their large
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masses. This mass, in turn, leads to the definition of some
new length which related to the plank mass and cosmolog-
ical constant value combination. Of course, it is not clear,
if this large mass mechanism is satisfactory in general and
preferable in comparison with the framework with massless
scalar fields. The cosmological constant, or parameter more
precisely in the formalism, is evolving with the time and in
order to understand the details of it’s smallness some details
of an evolution of the constant with the time must be clari-
fied. In general, it is quite possible that the evolution begins
from the small mass of the field or large curvature, or large
constants correspondingly, and all parameters are decreasing
with the time resulting in their now days values.

In the article we also shortly discuss the possibilities of
singularities crossing dictated by the formalism. Our consid-
eration of the subject is oversimplified, an extended applica-
tion of the model to the problem we postpone for an another
publication, nevertheless we notice the following. The sym-
metry of the model leads and dictates the special behavior of
the mass parameter of the metric near the black hole singular-
ity, in some extend the expansion of the parameter at vicin-
ity of singularity is similar to the order parameter behavior
in Landau–Ginzburg theory. As consequence of this hypo-
thetical expansion, which is nevertheless is dictated by the
requests of the analiticity of the metric and CPTM symme-
try transform, we obtain that the singularity disappears and
instead we obtain some final value of the scalar curvature in
r = 0 point, this value is given by the m3 expansion coeffi-
cient of the mass parameter. Similarly, the Big Bang singular-
ity at t = 0 can be crossed analytically if we, following to the
ideas of the paper, assume that at initial moment of the time
the only contribution to the Friedmann equation is the mutual
interaction of the two parts of the extended manifold. This
interaction is anti-gravitational one, it is repulsion, it should
decrease with the time ans as a consequence we obtain that
there are analytical and exponentially growing scaling factors
in FRW Universe metric. Of course, our calculations are far
from complete. In general we need to consider the evolution
of two manifolds related by CPTM symmetry, this mutual
evolution can be different and depends on which type of the
time paths in the manifolds we will choose. Also, the corre-
sponding scale factors will depend on the �0 zero values for
both manifolds, which interconnection can be quite compli-
cated. Concerning the further time evolution of the a(t) we
have to account the consequent appear of the matter and radi-
ation contributions in the equation as well as the proposition
of the model that the cosmological constant is not constant but
some complicated functional of interacting quantum fields
which depend on time. Interesting to speculate and discuss,
therefore, if that this “non-homogeneity”of the cosmological
constant can be related to problem of Hubble tension, see for
example [124–129] and references therein.

There are also the following issues which we did not dis-
cussed in the paper but which are arising naturally inside the
framework. The first important question we can ask is about
the renormalizability of the whole Eq. (36) action. Namely,
an expansion of the full scalar propagators in the Sint term
of action will lead to the appearance in the action new terms
with different types of the dependence on the curvature tensor
similarly to the higher curvature gravity theories. This is an
immediate consequence of the possible adiabatic expansion
of the curved propagators directly in Eq. (41) and, therefore,
the issue about a renormalizability of the Eq. (36) action is
an interesting one.

Another issue is about the definition of the propagator of
the scalar field of A manifold. In fact, for the hypothetical A
and B scalar fields, we are not constrained by the choice of the
Feynman propagator as the main one. We can, for example,
to choose the Wheeler propagator instead:

GW = 1

2
(GF − GD) , (125)

see [102–108], it arises naturally in the Eq. (55) expressions.
In the case of two types of scalar fields, this choice of A-
field propagator will lead to the following propagator of the
B-field:

CPT M(GW ) = − 1

2
(GF − GD) , CPT M(GW ) = 1

2
(GF − GD)

(126)

for the first and second types of the field correspondingly.
In the second case we obtain the totally symmetrical QFT, a
construction of the in-in formalism for both cases is an inter-
esting task. An advantage of this choice, also, is that in this
case the free quanta of the scalar fields are absent and in some
sense these particles are unobservable, see [105–108]. It is
an important property of the field related to the cosmological
constant and dark energy of course. The disadvantage of this
choice is that there is no acceptable QFT based on this type of
propagators, see discussion in [105–108] anyway. Definitely,
it is interesting problem for the further investigation.

The next question which we did not consider here is about
the different definitions of bi-scalar functions in Eq. (38).
There are a few additional possibilities exist. For example,
instead the scalar fields we can consider any other fields with
the similar overall zero contribution of the zero modes to the
energy-stress tensor. In this set-up the problems with the ori-
gin of the fields and it’s sources will arise as well of course
and it will also request a clarification. Additionally, we can
consider the bi-scalar functions in Eq. (38) outside the QFT,
there are plenty of possibilities exist for that. Nevertheless, in
this case some different mechanisms of the smallness of the
cosmological constant value must be established and clari-
fied.

123



253 Page 18 of 22 Eur. Phys. J. C (2021) 81 :253

Concluding we note that there are many different open
questions that arise in the framework of the formalism and
which investigation can help to understand and resolve the
puzzle of the cosmological constant.

Acknowledgements The author kindly acknowledges useful discus-
sions of the subject with M. Zubkov.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: ...].

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.

Appendix A: Propagators of scalar field

For the simplicity we firstly calculate the Dyson propagator
for the scalar filed φ:

GD(x, y) = −ı < T̃ (φ(x) φ(y)) >

= −ı
(

θ(x0 − y0) < φ(y) φ(x) >

+ θ(y0 − x0) < φ(x) φ(y) >
)

=
{− ı D(y − x), x0 > y0

− ı D(x − y), y0 > x0 . (A.1)

Here

D(x − y) = < φ(x) φ(y) >

=
∫

d3k

(2π)3 2 ωk
e−ı ωk (x0−y0)+ık(x−y) (A.2)

is Wightman function. Using the θ function representation

θ(x0 − y0) = ı

2π

∫

dω
e−ı ω (x0−y0)

ω + ı ε
(A.3)

we obtain for the first term in the r.h.s. of Eq. (A.1):

∫

dω
e−ı ω (x0−y0) eı ωk (x0−y0)

ω + ı ε

×
∫

d3k

(2π)4 2 ωk
e−ık(x−y) (A.4)

with

< φ−(k) φ+(k
′
) >= δk k′ , ωk =

√

k2 + m2. (A.5)

After the variables change

ω − ωk → ω, k → −k (A.6)

we obtain for this term:
∫

d4k

(2π)4 2 ωk

e−ı ω (x0−y0)+ık(x−y)

ω + ωk + ı ε

=
∫

d4k

(2π)4 2 ωk

e−ı k (x−y)

ω + ωk + ı ε
. (A.7)

For the second one we have:

−
∫

d4k

(2π)4 2 ωk

e−ı k (x−y)

ω − ωk − ı ε
(A.8)

that provides for the propagator:

GD(x, y) = −
∫

d4k

(2π)4

e−ı k (x−y)

k2 − m2 − ı ε
. (A.9)

The similar calculations provide for the Feynman propagator

GF (x, y) = −ı < T (φ(x) φ(y)) >

= −ı
(

θ(x0 − y0) < φ(x) φ(y) >

+θ(y0 − x0) < φ(y) φ(x) >
)

=
{− ı D(x − y), x0 > y0

− ı D(y − x), y0 > x0 (A.10)

the following answer:

GF (x, y) =
∫

d4k

(2π)4

e−ı k (x−y)

k2 − m2 + ı ε
. (A.11)

Appendix B: Propagator of scalar field in curved mani-
fold

We begin from the usual definition of the quadratic with
respect to the fluctuations part of the Eq. (39) Lagrangian:

Lε2 = √−g
(

ε G−1
F ε

)

= −√−g ( ε � ε ) (B.1)

with

� = 1√−g
∂ν

( √−g gνμ∂μ

) + m2

= ∂μ∂ μ + m2 + M1 (B.2)

and following formal definition of the Green’s function:

�x G(x, y) = 1√−g(x)

�x

(

∂μ∂ μ + m2 + M1

)−1

xy
= − 1√−g(x)

δ4(x − y)

(B.3)
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which we can rewrite as

√−g(x) �xG(x, y) =
(

∂ν

(√−g gνμ∂μ

) + m2 √−g
)

x
G(x, y)

=
(

∂μ∂ μ + m2 + N1

)

x
G(x, y)

= −δ4(x − y). (B.4)

From Eq. (B.2) and Eq. (B.4) we have the following definition
of N1 operator:

N1 = (√−ggμν − ημν
)

∂μ∂ν

+ (√−g − 1
)

m2 + √−g
(

∂μg
μν

)

∂ν

−
√−g

2
gμνgρσ

(

∂μg
ρσ

)

∂ν. (B.5)

The precise perturbative solution of the propagator of scalar
field in the curved space time is given, therefore, by the fol-
lowing expression:

G(x, y) = G0(x, y) +
∫

d4z G0(x, z) N1(z)G(z, y)

(B.6)

with
(

∂μ∂ μ + m2
)

x
G0(x, y) = − δ4(x − y). (B.7)

Here we do not define precisely which G0(x, y) propaga-
tor to use in Eq. (B.6), it must satisfy Eq. (B.7) with arbi-
trary boundary conditions. The Eq. (B.6) representation of
the propagator is usefull due the few reasons. First of all, it can
be used in the weak field approximation, expanding N1 oper-
ator in terms of hμν we will obtain perturbative expression for
the propagator with required precision. Another interesting
application of Eq. (B.6) is to use it as a reformulatedF recur-
sive formula for the adiabatic expansion of the G(x, y), see
[109–112]. In this case, inserting the adiabatic series in both
sides of Eq. (B.6), we will obtain some non-local relations
between the al(x, y) coefficients of the adiabatic expansion.

In the formalism we can use the Eq. (B.6) for the calcula-
tion of the variation of the cosmological constant with respect
to the metric. The non-trivial variation of the interaction part
of the action, Eq. (41), is provided by the variation of the
full propagator in the curved space time. We have for this
variation:

δ G(x, y) =
∫

d4z G0(x, z) (δ N1(z)) G(z, y)

+
∫

d4z G0(x, z) N1(z) (δ G(z, y)) . (B.8)

The same we can rewrite as:
∫

d4z
(

δ4(x − z) − G0(x, z) N1(z)
)

δ G(z, y)

=
∫

d4z G0(x, z) (δ N1(z)) G(z, y) (B.9)

or
∫

d4x
(

δ4(p − x) − G0(p, x) N1(x)
)−1

×
∫

d4z
(

δ4(x − z) − G0(x, z) N1(z)
)

δ G(z, y)

=
∫

d4x
(

δ4(p − x)

−G0(p, x) N1(x))
−1

×
∫

d4z G0(x, z) (δ N1(z)) G(z, y) (B.10)

that provides finally:

δ G(x, y) =
∫

d4 p
∫

d4z
(

δ4(x − p)

−G0(x, p) N1(p))
−1 G0(p, z) (δ N1(z)) G(z, y).

(B.11)

Taking variation of the N1 and assuming that the metric does
not depend on the cosmological constant, we obtain:

δ G(x, y) =
∫

d4 p
∫

d4z
(

δ4(x − p)

−G0(x, p) N1(p))
−1 G0(p, z) δ gμν(z)

√−g(z)

×
(

−1

2
gμν

(

gwp∂w∂p + m2 + (∂ρg
ρσ )∂σ

−1

2
gwpgρσ (∂wg

ρσ )∂p

)

+
(

∂μ∂ν − 1

2
gρσ (∂μg

ρσ )∂ν

+1

2
gρσ (∂ρgμν)∂σ

) )

G(z, y)

+
∫

d4 p
∫

d4z
(

δ4(x − p)

−G0(x, p) N1(p))
−1 δgμν(z)

× (−∂μ,z
(√−g G0(p, z) ∂ν,zG(z, y)

)

+1

2
∂ρ,z

(√−g gρσ gμν G0(p, z) ∂σ,zG(z, y)
)
)

(B.12)

or

δ G(x, y) = 1

2

∫

d4 p
(

δ4(x − p)

−G0(x, p) N1(p))
−1 G0(p, y) gμν(y) δ gμν(y)

+
∫

d4 p
∫

d4z
(

δ4(x − p)

−G0(x, p) N1(p))
−1 G0(p, z) δ gμν(z)

√−g(z)

×
(

∂μ∂ν − 1

2
gρσ (∂μg

ρσ )∂ν

+1

2
gρσ (∂ρgμν)∂σ

)

G(z, y)

123



253 Page 20 of 22 Eur. Phys. J. C (2021) 81 :253

+
∫

d4 p
∫

d4z
(

δ4(x − p)

−G0(x, p) N1(p))
−1 δgμν(z)

× (−∂μ,z
(√−g G0(p, z) ∂ν,zG(z, y)

)

+1

2
∂ρ,z

(√−g gρσ gμν G0(p, z) ∂σ,zG(z, y)
)
)

.

(B.13)

Now we can write the new term in the equations of motion for
the gravitational field. Taking variation of the cosmological
constant term in Sint for the A minifold, Eq. (41), with f = 1
source we obtain:

δ Sint = m6
p

2

∫

d4x
∫

d4y
√−g(x)

(

gμνδgμν
)

G(x, y)
√−g(y)

−m6
p

2

∫

d4x
∫

d4y
√−g(x) (δ G(x, y))

√−g(y) + · · ·
(B.14)

with similar contribution for B manifold added. If we intro-
duce in N1 expression a dependence of the metric on the cos-
mological constant, then we will need to take into account in
the variation also the following terms

δ

δgμν

(

A1(g)� + A2(g)�2 + · · ·
)

δgμν (B.15)

which arise in the variation after an expansion of the operator
with expect to the constant in the form of perturbative series.

Appendix C: Integrals of scalar propagators

There are the following integrals we need to calculate:

IF =
∫

d4y GF (x, y),

ID =
∫

d4y GD(x, y). (C.1)

For the first integral, using an equivalent to Eq. (A.11) rep-
resentation of the bare Feynman propagator, we can write:

IF = −ı
∫

d4y θ(x0 − y0)

×
∫

d3k

2ωk(2π)3 e−ı (ωk − ıε) (x0−y0) +ı k (x−y)

− ı
∫

d4y θ(y0 − x0)

∫

d3k

2ωk(2π)3 e−ı (ωk − ıε) (y0−x0)+ı k (y−x)

= ı
∫ −∞

∞
dy0 θ(y0)

∫

d3y

×eı k y
∫

d3k

2ωk(2π)3 e−ı (ωk − ıε) y0

−ı
∫ ∞

−∞
×dy0 θ(y0)

∫

d3y eı k y
∫

d3k

2ωk(2π)3

×e−ı (ωk − ıε) y0

= −2 ı
∫

dy0 θ(y0)

∫
d3k

2ωk

e−ı (ωk − ıε) y0
δ3(k)

= − ı

|m|
∫ ∞

0
dy0 e−ı (|m| − ıε) y0

= − 1

|m| (|m| − ıε)
. (C.2)

The same can be done for ID , we will obtain then:

ID = − I ∗
F = 1

|m| (|m| + ıε)
. (C.3)
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