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Abstract We consider a three-dimensional rotating AdS
black hole, which is a solution of Hořava gravity in the low-
energy limit that corresponds to a Lorentz-violating version
of the BTZ black hole, and we analyze the effect of the break-
ing of Lorentz invariance on the possibility that the black hole
can act as a particle accelerator by analyzing the energy in
the center-of-mass (CM) frame of two colliding particles in
the vicinity of its horizons. We find that the critical angular
momentum of particles increases when the Hořava parame-
ter ξ increases and when the aether parameter b increases.
Also, the particles can collide on the inner horizon with arbi-
trarily high CM energy if one of the particles has a critical
angular momentum, possible for the BSW process. Here it is
essential that, while for the extremal BTZ black hole the par-
ticles with critical angular momentum only can exist on the
degenerate horizon, for the Lorentz-violating version of the
BTZ black hole the particle with critical angular momentum
can exist in a region away from the degenerate horizon. It is
worth mentioning that the results exposed in this manuscript
can be applied for the covariant version of Hořava gravity,
where the covariant definition of the center-of-mass energy
is well defined.
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1 Introduction

Bañados, Silk and West (BSW) [1] demonstrated that two
particles colliding near the degenerate horizon of an extreme
Kerr black hole could create a large center-of-mass (CM)
energy if one of the particles has a critical angular momen-
tum; thus, extreme Kerr black holes can act as natural particle
accelerators. Nowadays, this process is known as the BSW
mechanism; it was found for the first time by Piran, Shaham
and Katz in 1975 [2–4]. The same mechanism also occurs for
non-extremal ones [5], and it is a universal property of rotat-
ing black holes [6]. Also, it was shown that a similar effect
exists for non-rotating charged black holes [7]. Moreover,
the extension of the BSW mechanism to non-extremal back-
grounds shows that particles cannot collide with arbitrarily
high energies at the outer horizon and that ultra-energetic col-
lisions can only occur near the Cauchy horizon of a Kerr black
hole with any spin parameter [8]. Non-extremal Kerr–de Sit-
ter black holes could also act as particle accelerators with
arbitrarily high CM energy if one of the colliding particles has
the critical angular momentum [9]. The BSW mechanism has
been extensively studied for different black hole geometries
[10–30]. Furthermore, the formation of black holes through
the BSW mechanism was investigated in [31].

Nowadays, one could think that Lorentz invariance may
not be fundamental or exact, but is merely an emergent sym-
metry on sufficiently large distances or low energies. It has
been suggested in Ref. [32] that giving up Lorentz invari-
ance by introducing a preferred foliation and terms that con-
tain higher-order spatial derivatives can lead to significantly
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improved UV behavior, and the corresponding gravity theory
is dubbed Hořava gravity. On the other hand, there was pro-
posed a Lorentz-violating theory of gravity with an aether
vector field uμ, determining a preferred rest frame at each
spacetime point; the so-called Einstein–Aether (EA) gravity
theory [33]. More precisely, uμ breaks local boost invariance,
while rotational symmetry in a preferred frame is preserved.
Because Hořava and the EA theories are both modifications
of gravity which break Lorentz symmetry, maybe the two are
related. In fact, in the limit where higher than second order
derivative terms of the Hořava theory can be ignored (which
corresponds to the IR limit of the theory), one obtains the
EA theory with the additional constraint that the aether vec-
tor should be hypersurface orthogonal. Then one can express
the aether in terms of a scalar T as

uμ = ∂μT√
gμν∂μT ∂νT

. (1)

The arguments given suggest that the E A theory can be seen
dynamically as a covariant version of the low-energy regime
of Horǎva gravity. The three-dimensional Hořava gravity [34]
admits a Lorentz-violating version of the BTZ black hole, i.e.
a black hole solution with AdS asymptotics, only in the sector
of the theory in which the scalar degree of freedom propa-
gates infinitely fast [35]. Remarkably, in contrast to general
relativity, the three-dimensional Hořava gravity also admits
black holes with positive and vanishing cosmological con-
stant. The propagation of a massive scalar field is stable in this
background [36]. Also, new kinds of orbits are allowed, such
as unstable circular orbits and trajectories of the first kind for
the motion of photons [37], and particles [38]. The aim of
this work is to consider three-dimensional rotating Hořava
AdS black holes [35] and to study, via the BSW mechanism,
the possibility of obtaining an unbounded energy in the CM
frame of two colliding particles and to analyze the effect of a
Lorentz breaking symmetry on this. The BSW mechanism in
the case of the Hořava–Lifshitz black hole was studied in four
spacetime dimensions [40,41] and in two spacetime dimen-
sions [42]. It is worth mentioning that for extreme rotating
black holes in four-dimensional Hořava gravity the funda-
mental parameter of Hořava gravity can avoid an infinite
value of the CM energy [40]. On the other hand particle
motions on EA black holes have been studied very recently
in [43,44].

In three spacetime dimensions the collision of two parti-
cles near the horizon of a BTZ black hole was studied in Refs.
[45–47]. In Refs. [45,46] the authors found that the particle
with the critical angular momentum could exist inside the
outer horizon of the BTZ black hole regardless of the parti-
cle energy with the BSW process being possible on the inner
horizon for the non-extremal BTZ black hole. Also, the BSW
process could also happen for the extremal BTZ black hole,

where the particle with the critical angular momentum could
only exist on the degenerate horizon. On the other hand, in
Ref. [47], the authors studied the collision of two particles
on the event horizon and outside of the BTZ black hole, and
they showed that although in principle the CM energy of two
ingoing particles can be arbitrarily large on the event horizon,
if either of the two particles has a critical angular momen-
tum and the other has a non-critical angular momentum, the
critical particles never reach the event horizon. However, the
motion of a particle with a subcritical angular momentum is
allowed for near an extremal rotating BTZ black hole and
the CM energy for a tail-on collision at a point can be arbi-
trarily large in a critical angular momentum limit. Also, the
BSW effect is possible on the outer horizon in the extremal
warped AdS3 black hole, and the particle with critical angular
momentum can reach the degenerate horizon when a condi-
tion on its energy is fulfilled [48], which resembles what
occurs in the extremal Kerr–AdS black hole; however, in the
extremal Kerr–AdS black hole two conditions must be ful-
filled [9]; besides, this effect is also possible on the inner
horizon for the non-extremal warped AdS3 black hole.

The manuscript is organized as follows: in Sect. 2 we
give a brief review of three-dimensional EA black holes and
its equivalence with the three-dimensional rotating Hořava
black holes in the low-energy limit. Then, in Sect. 3, we
study the motion of particles in this background. In Sect. 4, we
obtain the CM energy of two colliding particles, and in Sect. 5
we study the radial motion of a particle with critical angular
momentum and we investigate the possibility that the black
hole acts as a particle accelerator. Finally, our conclusions
are in Sect. 6.

2 Three-dimensional Einstein–Aether black holes and
Hořava gravity equivalence

The (2+1)-dimensional EA theory with a cosmological con-
stant � is described by the action

Sæ = 1

16πGæ

∫
d3x

√−g(−R − 2� + Læ) , (2)

where R is the Ricci scalar, g is the determinant of the metric
and

Læ = −Mαβ
μν∇αu

μ∇βu
ν , (3)

where the time vector uμ satisfies the unit constraint uαuα =
1. Mαβ

μν is defined by

Mαβμν = c1g
αβgμν +c2g

αμgβν +c3g
ανgβμ+c4u

αuβgμν .

(4)
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The ci are dimensionless coupling constants. Now, by impos-
ing the requirement that the aether is hypersurface orthogo-
nal, locally, this implies that there is a function T for which

uα = ∂αT√
gμν∂μT ∂νT

, (5)

and, working in a gauge where T is identified with the time
coordinate t , we have

uμ = Nδμt . (6)

So, by replacing Eq. (6) in the action (2), the low-energy
limit of the action of Hořava gravity in 2 + 1 dimensions is
recovered, that is, the action in a preferred foliation is given
by [34]

SH = 1

16πGH

∫
dT d2xN

√
g [L2 + L4] , (7)

where the Lagrangian L2 is given by

L2 = Ki j K
i j − λK 2 + ξ

(
(2)R − 2�

)
+ ηaia

i , (8)

where Ki j , K , and (2)R correspond to extrinsic, mean, and
scalar curvature, respectively, and ai is a parameter related
to the lapse function N via ai = −∂i ln N and without the
higher-order operators L4, which corresponds to the set of
all the terms with four spatial derivatives that are invariant
under diffeomorphisms. The parameters of the two theories
are related by the following correspondence:

GH

Gæ
= ξ = 1

1 − c13
,
λ

ξ
= 1 + c2 ,

η

ξ
= c14 , (9)

where GH is a coupling constant with the dimensions of
length squared. The above arguments suggest that the EA
theory can be seen as a covariant version of the IR limit of
Hořava gravity. In the covariant formulation of the theory the
preferred time T becomes a scalar field that defines the pre-
ferred foliation at the level of the solution. The line element
in the preferred foliation is written as

ds2 = N 2dT 2 − gi j (dx
i + NidT )(dx j + N jdT ) , (10)

where gi j is the induced metric on the constant-T hyper-
surfaces, and g is the determinant of gi j . Another important
characteristic of this theory is that only in the sector η = 0,
Hořava gravity admits asymptotically AdS solutions [35].
Therefore, assuming stationary and circular symmetry the
most general metric is given by

ds2 = Z(r)2dt2 − 1

F(r)2 dr2 − r2(dφ + 
(r)dt)2 , (11)

and, by assuming the aether to be hypersurface orthogonal,
as a result

ut = ±
√
Z(r)2(1 + F2(r)U 2(r)) , ur = U (r) . (12)

The theory admits the BTZ “analogue” to the three-dimensional
rotating Hořava black holes described by the solution

F(r)2 = Z(r)2 = −M + J̄ 2

4r2 − �̄r2 , 
(r) = − J

2r2 ,

U (r) = 1

F(r)

(a
r

+ br
)

, (13)

where

J̄ 2 = J 2 + 4a2(1 − ξ)

ξ
, �̄ = � − b2(2λ − ξ − 1)

ξ
. (14)

The sign of the effective cosmological constant �̄ determines
the asymptotic behavior (flat, dS, or AdS) of the metric. Also,
J̄ 2 can be negative; this occurs when either ξ < 0 or ξ > 1,
a2 > J 2/(4(ξ −1)). The aether configuration for this metric
is given explicitly by

ut =
√

F2 +
(a
r

+ br
)2

, ur = 1

F2

(a
r

+ br
)

, uφ = 0 ,

(15)

where a and b are constants that can be regarded as mea-
sures of aether misalignment, with b as a measure of the
asymptotical misalignment, such that for b �= 0 the aether
does not align with the timelike Killing vector asymptoti-
cally. Note that, for ξ = 1 and λ = 1, the solution becomes
the BTZ black hole and, for ξ = 1 and λ �= 1, the solution
becomes the BTZ black hole with a shifted cosmological con-
stant �̄ = �−2b2(λ−1). However, there is still a preferred
direction represented by the aether vector field which breaks
Lorentz invariance for λ �= 1 and b �= 0. The locations of
the inner and outer horizons, r = r±, are given by

r2± = − M

2�̄

⎛

⎝1 ±
√

1 + J̄ 2�̄

M2

⎞

⎠ , (16)

and the Hawking temperature TH is given by TH =
−�̄(r2+−r2−)

2πr+ . For J̄ �= J (ξ �= 1), there is a curvature singular-

ity due to the Ricci scalar R = −6�̄+ 1
2r2

(
J̄ 2 − J 2

)
, which

is divergent at r = 0, in contrast to the BTZ black holes where
the Ricci and Kretschmann scalars are finite and smooth at
r = 0. Considering M > 0 and a negative cosmological con-
stant �̄ < 0, the condition J̄ 2|�̄| ≤ M2 must be fulfilled for
the solution to represent a black hole. For 0 < J̄ 2|�̄| < M2

the black holes have inner and outer horizons r− and r+, the
extremal case corresponds to J̄ 2|�̄| = M2, while for J̄ 2 < 0
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Fig. 1 The behavior of the lapse function as a function of r , with
M = 1, λ = 1, a = 1, b = 1, � = −1, J = 1.2, for different values of
ξ

the black holes have an outer horizon r+, but no inner hori-
zon r−. The value of ξ for which the black hole is extremal
is given by [36]

ξe = − 1

2(M2 − 4a2(b2 + �))

(
b2(J 2 + 8a2λ) + �(J 2 + 4a2)

−
(
(b2(J 2 + 8a2λ) + �(J 2 + 4a2))2

+4b2(J 2 + 4a2)(2λ − 1)(M2 − 4a2(b2 + �))
)1/2)

, (17)

where the subscript e refers to the extremal parameter, that
is, the value of ξ such that the two horizons (inner and outer)
coalesce. The value of ξ for which the black hole turns
from having two horizons to having one horizon is given by
ξc = 4a2+J 2

4a2 , and the value of ξ for which the effective cos-

mological constant �̄ changes sign is ξ = (2λ−1)b2

b2+λ
. In Fig.

1, we show the behavior of the lapse function F(r)2, for a
choice of parameters, and different values of ξ , where we can
observe the existence of one horizon for ξ > ξc (ξ = 1.80)
with J̄ 2 < 0, one horizon with r− = 0, for ξ = ξc ≈ 1.36
or J̄ = 0, two horizons for ξe < ξ < ξc, and one degenerate
horizon for ξ = ξe ≈ 1.07.

Besides the existence of inner and outer horizons, what
is perhaps the most interesting feature within the context
of Lorentz-violating gravity theories is that they can have
universal horizons, which are given by [35]

(r±
u )2 = M − 2ab

2(b2 − �̄)
± 1

2(b2 − λ)

×
[
(M − 2ab)2 − (4a2 + J̄ 2)(b2 − �̄)

] 1
2

. (18)

In Fig. 2, we plot the behavior of the horizons as a function of
the parameter b, and as a function of a in Fig. 3, for a choice
of parameters. One observes different zones. One of them is
limited by r− and r+; and it is described by the existence of
the aether, where the roots r±

u are imaginary, and therefore
there are no universal horizons. Other zones are characterized
by two real and distinct universal horizons inside the region
between r− and r+, outside r−, and inside r+; and a particular

Fig. 2 The behavior of the horizons as a function of the parameter b,
with M = 1, ξ = 1.2, λ = 1, a = 1, � = −1, and J = 1.2. We set
b ≈ −0.84, r+

u = r−
u

Fig. 3 The behavior of the horizons as a function of the parameter a,
with M = 1, ξ = 1.2, λ = 1, b = 1, � = −1, and J = 1.2. We set
a ≈ −1.52, and −0.37, r+

u = r−
u

zone where the two universal horizons coincide and which
is given by

r2
u = M − 2a±(M, J̄ , b)b

2(b2 − �̄(b))
, (19)

where a± are the roots of

(4a2 + J̄ 2)(b2 − �̄(b))

ξ(M − 2ab)2 = 1 . (20)

In the region between r−
u and r+

u , the aether turns imaginary
and the foliation cannot be extended until the singularity. So,
if this region is located between the inner and outer horizon
then the BSW process is not possible on the inner horizon r−
because the aether is imaginary.

3 Equations of motion

In this section, we find the equations of motion of massive
probe particles around the three-dimensional Hořava AdS
black hole. It is important to emphasize [49] that in a Lorentz-
violating scenario, particles will be generically coupled to
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the aether field generating UV modifications of the matter
dispersion relations; moreover, one might also expect radia-
tive corrections in the infrared sector, but these contributions
are suppressed by well-known mechanisms. In our analysis
we are interested in the infrared limit of the theory; so the
presence of higher-order terms (L4) related to the UV behav-
ior of the theory is ignored and in this case the theory can
be formulated in a covariant fashion, and it then becomes
equivalent to a restricted version of EA theory [35]. Since
our analysis is focused on the low-energy part of the theory,
the interaction between the massive particle and the aether
field is ignored, thus the presence of aether field only affects
the background spacetime geometry. It is worth mention-
ing that a similar analysis was performed in [39], where the
authors analyzed the evolution of the photon around the static
neutral and charged aether black holes using the Hamilton–
Jacobi equation. Therefore, the massive particles follow the
typical geodesics in such black holes spacetime, which can
be derived from the Lagrangian of a test particle, which is
given by [50]

L = 1

2
gμν ẋ

μ ẋν , (21)

where ẋμ = dxμ/dτ , and τ is an affine parameter along
the geodesic that we choose as the proper time. So, for the
three-dimensional rotating Hořava AdS black hole described
by the metric (11), the Lagrangian reads

2L =
(
Z2(r) − r2
2(r)

)
ṫ2− 1

Z2(r)
ṙ−r2φ̇2−2r2
(r)ṫ φ̇ .

(22)

Since this Lagrangian is independent of the cyclic coor-
dinates (t, φ), their conjugate momenta (�t ,�φ) are con-
served. The equations of motion are obtained from �̇q −
∂L
∂q = 0, where �q = ∂L/∂q̇ are the conjugate momenta to
the coordinate q, given by

�t =
(
Z2(r) − r2
2(r)

)
ṫ + −r2
(r)φ̇ ≡ E , �r = 1

Z2(r)
ṙ ,

�φ = r2φ̇ − r2
(r)ṫ ≡ −L , (23)

where E and L are dimensionless integration constants asso-
ciated with each of them. The Hamiltonian

H = �t ṫ + �φφ̇ + �r ṙ − L (24)

yields

2H = −E ṫ + L φ̇ − ṙ2

Z2(r)
≡ m2 . (25)

Now, we solve the above equations for ṙ2 in order to obtain
the radial equation which allows us to characterize the possi-
ble movements of the test particles without an explicit solu-
tion of the equations of motion,

ṫ = E + L
(r)

Z2(r)
, (26)

φ̇ = − E
(r)

Z2(r)
+ L

(−
(r)2

Z2(r)
+ 1

r2

)
, (27)

ṙ2 = Z2(r)

(
1

Z2(r)
(E + L
(r))2 − L2

r2 − m2
)

. (28)

The above equations represent all nonzero 3-velocity compo-
nents u = (ṫ, ṙ , φ̇) for the geodesic motion that will be used
in the next section to obtain the CM energy of two collid-
ing particles falling freely from rest with the same rest mass
m0 in the three-dimensional rotating Hořava AdS black hole
background. We will assume ṫ > 0 for all r > r+, so that
the motion is forward in time outside the horizon. So, the
following condition must be fulfilled:

E + L
(r) > 0, for all r > r+ . (29)

Now, we write the equation of motion of the particle in the
radial direction as ṙ2 + V (r) = 0, where V is the effective
potential of the particle in the radial direction, reading

V (r) = −
(

(E + L
(r))2 − Z2(r)

(
L2

r2 + m2
))

. (30)

By analyzing this effective potential we can determine if a
particle can reach the event horizon. The motion of the parti-
cle is allowed in regions where V (r) ≤ 0, and it is prohibited
in regions where V (r) > 0. It is clear that the particle can
exist on the event horizon r = r+ because Z2(r+) = 0, and
then the effective potential is negative. On the other hand,
when r → ∞ it is easy to show that the effective potential
approximates

V (r → ∞) ≈ −m2�̄r2 . (31)

This expression shows that the existence of a massive particle
at infinity depends on the effective cosmological constant (�̄)
and not on its energy E . Therefore, massive particles cannot
exist at infinity in the AdS case, as is shown in Fig. 4 for
different values of the parameter ξ , and in Fig. 5 for the case
r−
u = r+

u .

4 The CM energy of two colliding particles

In order to calculate the CM energy of two colliding par-
ticles, we use the expressions of the components of the 3-
velocity derived in the last section to obtain the CM energy
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Fig. 4 The behavior of the effective potential V (r) for massive par-
ticles m = 1 as a function of r for different values of ξ and M = 1,
λ = a = b = 1, � = −1, J = 1.2, E = 10. The left figure shows
the behavior of the effective potential for L = 2, and r > 0.35, where

inequality (29) is satisfied, while the right figure shows the behavior of
the effective potential for L = −2, where inequality (29) is satisfied for
all r

Fig. 5 The behavior of the effective potential V (r) when r−
u = r+

u
for massive particles m = 1 as a function of r with ξ = 1.2, M = 1,
λ = b = 1, � = −1, J = 1.2, and E = 10. For L = 2, r > 0.35, in
order to satisfy the inequality (29), while that for L = −2, the inequality
(29) is satisfied for all r

of the colliding particles. Also, we consider that the parti-
cles have the same rest mass, m0, energies E1 and E2 and
angular momenta L1 and L2, respectively. From the relation

ECM = √
2m0

√
1 + gμνu

μ
1 u

ν
2, where u1 and u2 denote the

3-velocities of the particles, we obtain

E2
CM

2m2
0

= 4Z2r2(r2 − L1L2) + (K1K2 − H1H2)

4Z2r4 , (32)

where

Ki = 2Eir
2 − J Li ,

Hi =
√

(2Eir2 − J Li )2 − 4r2Z2(r2 + L2
i ) , (33)

and the subscript takes the values i = 1, 2. Also, when the
particles arrive at the event horizon r = r+, Z2(r+) → 0,

H1 →
√
K 2

1 and H2 →
√
K 2

2 , the CM energy (32) at the
horizon is

E2
CM

2m2
0

(r → r+) = 1

4Z2r4+

(
K1K2 −

√
K 2

1

√
K 2

2

)
. (34)

From the last expression we note that if K1K2 < 0 the E2
CM

on the horizon will be a negative infinity; therefore the CM
energy will be imaginary and so it is not a physical solution.
In fact, we can set K1 < 0 and K2 > 0 without loss of gen-
erality; however, K1 < 0 outside the event horizon is in con-
tradiction with condition (29). However, when K1K2 ≥ 0,
the numerator of this expression will be zero and the value
of ECM will be undetermined. Now, in order to find the lim-
iting value of the CM energy at the horizon we can use the
L’Hôpital rule, obtaining

E2
CM

2m0
= r2+(K1(r+) + K2(r+))2 + (K1(r+)L2 − K2(r+)L1)

2

2r2+K1(r+)K2(r+)
.

(35)

Now, the numerator of the above expression is finite at the
horizon and if Ki (r+) = 0 the CM energy of two col-
liding particles on the horizon could be arbitrarily high,
ECM

∣∣
Ki=0 → ∞. So, from Ki (r+) = 0 we see that the

critical angular momentum is given by

Lci = 2r2+Ei

J
, i = 1, 2. (36)

On the other hand, when K1(r+) and K2(r+) are both zero,
then ECM is finite at the horizon. In this case H1(r+) =
H2(r+) = 0 and

E2
CM

2m0
= 1 − L1L2

r2+
. (37)

Therefore, in order to obtain an infinite CM energy only
one of the colliding particles must have the critical angu-
lar momentum, making the BSW process possible. In Figs.
6 and 7 we show the behavior of E2

CM(r+) versus L1 for dif-
ferent values of the Hořava parameter ξ and the aether mis-
alignment parameter b, respectively. We observe that there
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Fig. 6 The behavior of the CM energy E2
CM(r+) at the horizon as a

function of L1 for different values of ξ with M = 1, λ = a = b = 1,
� = −1, and J = 1.2

is a critical value of the angular momentum for particle 1
at which the CM energy blows up. Clearly the figures show
that when the parameter ξ increases, L1 = Lc increases, and
the same behavior occurs when the parameter b associated to
the aether field increases. Note that only in the extremal case,
the limiting value of the critical angular momentum has to be
reached from the left of the asymptotic value in order to get a
positive CM energy E2

CM(r+); this indicates that the particles
with angular momentum |L1| > Lc start from rest at a finite
distance r0 > r+ outside the event horizon and then fall into
it. The value of r0 will be shown in the next section; in all the
other cases it has to be reached from the right. Additionally,
in Fig. 8, we have plotted Lc in terms of the Hořava parame-
ter ξ for different values of the energy E . It is shown that the
critical angular momentum Lc increases when the energy of
particle 1 increases or the Hořava parameter increases.

5 Radial motion of the particle with critical angular
momentum

Now, we will study the radial motion of the particle with
critical angular momentum and energy E . As we have men-
tioned, the particle can reach the event horizon of the black
holes if the square of the radial component of the 3-velocity
ṙ2 in Eq. (28) is positive or V is negative in the neighborhood
of the black hole horizon. We will denote the explicit form
of ṙ2 with the critical angular momentum by Rc(r), which is
given by

Rc = (r2 − r2+)
(
J 2m2r2(r2 − r2−)�̄ + E2(J 2(r2 − r2+) + 4(r2 − r2−)r4+�̄)

)

J 2r4 ,

(38)

and it vanishes on the event horizon. Also, for some values
of the parameters, Rc can be positive, which implies that par-
ticles with critical angular momentum can exist outside the
event horizon; however, as we shall see, they cannot reach the

Fig. 7 The behavior of the CM energy E2
CM(r+) at the horizon as a

function of L1 for ξ = 1.2 (top panel) and for ξ = 1.8 (bottom panel)
for different values of b with M = 1, λ = a = 1, � = −1, and J = 1.2

Fig. 8 The behavior of Lc as a function of ξ for different values of the
energy E = 1, 5, 10, 15, 20 with M = 1, λ = a = b = 1, � = −1,
and J = 1.2

event horizon unless r+ = r−. Particles with critical angu-
lar momentum can reach the event horizon if the condition
dRc

dr

∣∣∣
r=r+

> 0 is satisfied. From (38) we find

dRc

dr

∣∣∣
r=r+

= 2�̄(r2+ − r2−)

r+

(

m2 + 4E2r2+
J 2

)

< 0 , (39)

for r+ �= r−; therefore, the massive particle with the criti-
cal angular momentum cannot exist just outside of the event
horizon r � r+ if the background is AdS. In Fig. 9 we plot the
behavior of Rc and dRc

dr as a function of r for this background.
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On the other hand, particles with critical angular momen-

tum can reach the Cauchy horizon r− if dRc

dr

∣∣∣
r=r−

> 0. From

(38) we find

dRc

dr

∣∣∣
r=r−

= −2(r2+ − r2−)

r−

(
2E2r2+
r4−

+ �̄

(

1 + 4E2r4+
J2r2−

))

.

(40)

Therefore, the massive particle with critical angular momen-

tum can reach the Cauchy horizon when −�̄

(
1 + 4E2r4+

J 2r2−

)
>

2E2r2+
r4−

and we have the condition that the two universal hori-

zons coincide to avoid the zone where the aether turns imag-
inary. For J̄ 2 < 0 there is no inner horizon r−, so the BSW
mechanism does not occur.

Furthermore, for the extremal black hole r+ = r− we
obtain

Rc = − (r2 − r2+)2
(
J 2m2r2�̄ + E2(J 2 + 4r4+�̄)

)

J 2r4 (41)

and

dRc

dr

= −2(r2 − r2+)2
(
J 2m2r2(r2 + r2+)�̄ + 2E2r2+(J 2 + 4r4+�̄)

)

J 2r5
.

(42)

Then clearly Eqs. (41) and (42) are zero on the event horizon,
and it is necessary to calculate d2Rc

dr2 |r=r+ :

d2Rc

dr2

∣∣∣
r=r+

= 8

(

m2|�̄| − E2 (J 2 − J̄ 2)

J 2r2+

)

. (43)

If d2Rc

dr2

∣∣∣
r=r+

> 0, the particle with critical angular momen-

tum will reach the degenerate horizon. This is fulfilled when

E2 <
m2|�̄|J 2r2+
J 2 − J̄ 2

. (44)

Therefore, particles with critical angular momentum satis-
fying the condition (44) will arrive at the degenerate hori-
zon and thus the BSW process is possible. Note also that, if

d2Rc

dr2 > 0, RC has a zero also at r0 = E
√
J 2−4r4+|�̄|
Jm

√
|�̄| which

is greater than r+, and the particles with critical angular
momentum can exist at r+ ≤ r ≤ r0. In Fig. 9 we plot
the behavior of Rc and dRc

dr as a function of r for the three-
dimensional extremal and non-extremal rotating Hořava AdS
black hole. We observe that the particle with critical angular

momentum can reach the degenerate horizon if the condition
(44) is satisfied, and thus the BSW process is possible. It is
worth highlighting that this result is different from the usual
rotating BTZ black holes (ξ = 1 and λ = 1), where the mas-
sive particles only can exist on the degenerate horizon [46].
Additionally, Fig. 10 shows that for the non-extremal case
the region where dRc

dr > 0 is inside the event horizon r+, in

particular dRc

dr

∣∣∣
r=r−

> 0, the massive particles with critical

angular momentum can reach the inner horizon r−.

6 Final remarks

In this paper we considered the collision of two particles in
the vicinity of the horizon of a three-dimensional rotating
Hořava AdS black hole in the low-energy limit of the theory
described by a Lorentz-violating version of the BTZ black
hole, i.e. a black hole solution with AdS asymptotics, and
we analyzed the energy in the CM frame of the colliding
particles in order to investigate the effect of the breaking of
Lorentz invariance on the possibility that the black hole can
act as a particle accelerator. Thus, the differences observed
with respect to the BTZ metric are attributed to the breaking
of Lorentz invariance. It is worth mentioning that the results
found in this manuscript can be applied for the covariant
version of Hořava gravity, where the covariant definition of
the center-of-mass energy is well defined.

We showed that, depending on the parameters, the lapse
function can represent a spacetime without an event hori-
zon, i.e. a naked singularity, a black hole geometry with one
event horizon, an extremal black hole and finally a black hole
with two horizons. Also, one of the most interesting features
within the context of Lorentz-violating gravity theories is
that they can have universal horizons. Thus, it is possible to
observe different zones. One of them is limited by r− and
r+, and it is described by the existence of the aether, where
the roots of ru are imaginary. Other zones are characterized
by two real and distinct universal horizons inside the region
between r− and r+, outside r−, and inside r+; and we have
a particular point where the two universal horizons coincide.
In the region between r−

u and r+
u , the aether turns imaginary

and the foliation cannot be extended until the singularity. So,
if this region is located between the inner and outer horizons
then the BSW process is not possible on the inner horizon
r− because the aether is imaginary. We found the following
behavior:

• The existence of a massive particle at infinity depends
on the effective cosmological constant (�̄) and not on its
energy E . Thus, massive particles cannot exist at infinity
for Hořava AdS black holes in the low-energy limit.

123



Eur. Phys. J. C (2021) 81 :252 Page 9 of 11 252

Fig. 9 The behavior of Rc(r) (left panel) and dRc(r)/dr (right panel) as a function of r for the extremal (blue line) and non-extremal three-
dimensional rotating Hořava AdS black hole in the low-energy limit for different values of the parameter ξ , M = λ = a = b = 1, � = −1,
J = 1.2, m = 1 and E = 10

Fig. 10 The behavior of Rc(r) (left panel) and dRc(r)/dr (right panel)
as a function of r for the non-extremal three-dimensional rotating
Hořava AdS black hole at the low-energy limit for different values
of the parameter ξ , M = 1.2, λ = a = b = 1, �̄ = −1, J = 1,

m = 1 and E = 0.10. In these cases there are no universal horizons,
and the vertical lines correspond to the inner horizon, for each black
hole solution

• For a background with positive inner and outer horizons
r±, ξe < ξ < ξc, we found that the particles with critical
angular momentum will never reach the event horizon;
therefore, the black hole cannot act as a particle accel-
erator with unlimited CM energy on the event horizon.
On the other hand, the particles can collide on the inner
horizon with arbitrarily high CM energy, possible for the
BSW process. Also, we showed that the critical angu-
lar momentum increases when the Hořava parameter ξ

increases and the aether parameter b increases.
• For the extremal case, ξ = ξe, we found that the par-

ticle with critical angular momentum can exist on the
degenerate horizon as long as its conserved energy ful-

fills the condition E2 <
m2|�̄|J 2r2+
J 2− J̄ 2 with the BSW process

being possible. Also, we showed that the critical particle

can exist between r+ ≤ r ≤ r0, with r0 = E
√
J 2−4r4+|�̄|
Jm

√
|�̄| .

This result is different from the extremal BTZ black holes
where particles with critical angular momentum only can
exist on the degenerate horizon.

• For ξ = ξc, that is, r− = 0, the two sectors converge. This
occurs when J 2 +4a2(1−ξ) = 0 ( J̄ = 0). Also, the fine

tuning of the critical angular momentum Lc is bigger than
the extremal and the non-extremal cases, nevertheless the
particle with Lc will never reach the event horizon.

• In the range ξ > ξc the black hole only has one horizon
r+ > 0. For this case J 2 < 4a2(ξ − 1) and the BSW
mechanism is not possible.
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