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Abstract Since, in Einstein gravity, a massless scalar field
with lightlike gradient behaves as a null dust, one could
expect that it can act as the matter source of Vaidya geome-
tries. We show that this is impossible because the Klein–
Gordon equation forces the null geodesic congruence tangent
to the scalar field gradient to have zero expansion, contradict-
ing a basic property of Vaidya solutions. By contrast, exact
plane waves travelling at light speed and sourced by a scalar
field acting as a null dust are possible.

1 Null dust and Vaidya’s spacetime

The Vaidya solutions of the Einstein equations [1,2]

Rab − 1

2
gab R = 8πTab (1)

(where Rab is the Ricci tensor of the metric gab, R is its trace,
and Tab is the matter energy-momentum tensor)1 are used to
study gravitational collapse, the formation and evolution of
event and apparent horizons, and as toy models of evaporat-
ing black holes. Vaidya geometries are also useful in string
theory and holography (e.g., [4,5]). The source of a Vaidya
geometry is a null dust, described by the stress-energy tensor

Tab = ρ �a�b , (2)

where ρ is the dust density and the four-vector �a is null and
geodesic,

�c�c = 0 , �c∇c�
a = −

(
�b∇b ln ρ + ∇b�b

)
�a , (3)

as follows from the conservation equation ∇bTab = 0 (see
Ref. [6] for a review on the null dust). Contrary to time-
like geodesics, for which the normalization selects the proper

1 We follow the notation of Ref. [3] and use units in which the speed
of light and Newton’s constant are unity.

a e-mail: agiusti@ubishops.ca (corresponding author)

time as the parameter along the curve, for null geodesics the
null normalization of the four-tangent does not impose affine
parametrization. As a consequence, in general, the covari-
ant conservation equation ∇bTab = 0 for the stress-energy
tensor (2) gives non-affinely parametrized geodesics. Since
the components �μ of a null vector can be reparametrized as
�μ → �̄μ = f �μ (where f > 0 is a function of the coordi-
nates) without changing its normalization, a representation
can be chosen in which ρ is unity by choosing f = √

ρ, but
the corresponding null geodesics followed by the null dust
are not affinely parametrized [6].

A null dust appears frequently in classical and quan-
tum gravity, in Vaidya spacetimes [1,2], pp-waves [6–8],
Robinson-Trautman geometries [9], twisting solutions of the
Einstein–Maxwell equations [9–11], in studies of classical
and quantum gravitational collapse, horizon formation, mass
inflation [12–21], black hole evaporation [22–24], and canon-
ical Hamiltonians [4,6,25]. Colliding scalar field-null dust
solutions were studied in [26,27]. A null dust is interpreted
as a coherent zero rest mass field that propagates at light
speed in the null direction �a , in the geometric optics limit.
In this sense, null dust is more closely related to fundamen-
tal fields than its timelike counterpart [6], which explains
its widespread use as a matter source in the investigation of
fundamental questions in gravity.

An outgoing Vaidya solution [1,2] (see also [28,29]) is
given by the line element

ds2 = −
(

1 − 2m(u)

r

)
du2 − 2dudr + r2d�2

(2) , (4)

where u is a retarded null coordinate, m(u) is a regular mass
function, and d�2

(2) ≡ dϑ2 + sin2 ϑ dϕ2 is the line element
on the unit 2-sphere. The only non-vanishing component of
the Ricci tensor is

Ruu = − 2m′(u)

r2 , (5)
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where a prime denotes differentiation with respect to u. The
stress-energy tensor of the null dust sourcing the Vaidya
geometry is

Tab = − m′(u)

4πr2 �a�b , (6)

where the vector �a is null and geodesic. For the outgoing
Vaidya metric, it is �a = −∂au [28,29].

2 Scalar field as a null dust and the impossibility of
scalar field-sourced Vaidya geometries

Scalar field theory is the simplest field theory and scalar fields
are ubiquitous in particle physics, cosmology, scalar-tensor
gravity, and in models of classical and quantum gravity in
general [3,30–37]. A null dust can be achieved by means
of a scalar field φ with null gradient ∇cφ∇cφ = 0 [6,38].
This result follows from a specification of the dynamics. For
example, a Klein-Gordon scalar field with null gradient ∇cφ

constitutes an imperfect fluid of type II in the Hawking-Ellis
classification [39]. Imposing the (weak, or strong, or dom-
inant) energy condition, forces a scalar potential V (φ) that
could potentially be present to vanish identically and this
type II fluid becomes a null dust, as discussed in detail in
Ref. [40].2 (Indeed, the condition V = 0 is satisfied in the
stress-energy tensor (8) below.)

It is well known [42–44] that a scalar field φ with timelike
gradient, ∇cφ∇cφ < 0, is equivalent to an irrotational perfect
fluid with four-velocity

uc = ∇cφ√−∇aφ∇aφ
. (7)

Scalar fields with spacelike gradients are less interesting and
seldom considered from this point of view [45]. However,
recently Ref. [40] has proposed an interesting alternative
interpretation as a superposition of a left-going (or, in spheri-
cal symmetry, incoming) and a right-going (in spherical sym-
metry, outgoing) null dust with an additional perfect fluid. In
general, a certain geometry solving the Einstein equations
can be attributed to more than one source (see [41] for a
discussion in the context of scalar fields).

There remains the case ∇cφ∇cφ = 0: the stress-energy
tensor of a massless, minimally coupled, scalar field φ is
simply

T (φ)
ab = ∇aφ∇bφ − 1

2
gab∇cφ∇cφ . (8)

2 This null dust can be interpreted also as an imperfect fluid with energy
density, radial pressure, and heat flux density all equal, as discussed in
[40].

The covariant conservation equation ∇bT (φ)
ab = 0 for the

stress-energy tensor (8) gives the Klein-Gordon equation

gab∇a∇bφ ≡ �φ = 0 . (9)

The structure of the scalar field stress-energy tensor (8)
matches that of the Tab of a null dust if �a ≡ ∇aφ is light-
like. Because �a is a gradient, only an irrotational dust can
be reproduced this way. Now, the divergence of �a is

∇c�c = ∇c∇cφ ≡ �φ = 0 (10)

by virtue of the Klein–Gordon equation of motion for φ. The
covariant conservation equation ∇bTab = 0 satisfied by any
dust, including the null dust with ρ = 1, gives

�̄b∇b�̄c = − (∇a �̄a
)
�̄c (11)

which is the non-affinely parametrized geodesic equation.
However, since �φ = 0, the right hand side vanishes and �̄a

must be null and tangent to
affinely-parametrized null geodesics.

As noted in the previous section, since a null vector is
defined up to a multiplicative (positive) factor, one could
choose a different parametrization of the null dust in which
its stress-energy tensor is instead written as Tab = ρ �a�b

[6,38]. For a general null dust, the covariant conserva-
tion equation ∇bTab = 0 gives non-affinely parametrized
geodesics [6].

Now consider the congruence of null geodesics tangent
to the null vector �a (outgoing null geodesics for the geom-
etry (4), or ingoing null geodesics for the geometry (15)).
Let us focus on the outgoing Vaidya spacetime (4) first: by
comparing the relation �a = −∇au valid in Vaidya’s geom-
etry with �a = ∇aφ specifying that the null dust is generated
by a scalar field, we obtain (apart from an irrelevant additive
integration constant) φ = −u, so the scalar field is outgoing
at the speed of light. However, this result is in contradiction
with the Klein–Gordon equation �φ = 0 because3

�φ = ∇c�c = −∇c∇cu

= − 1√−g
∂μ

(√−g gμν∂νu
)

= − 1√−g
∂μ

(√−g gμu)

= − 1

r2 sin ϑ
∂r

(
r2 sin ϑ gur

)
= 2

r
, (12)

where we used the fact that

(
gμν

) =

⎛
⎜⎜⎝

0 −1 0 0
−1

(
1 − 2m

r

)
0 0

0 0 1
r2 0

0 0 0 1
r2 sin ϑ

⎞
⎟⎟⎠ (13)

3 Greek indices now denote tensor components in a particular coordi-
nate system.
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and
√−g = r2 sin ϑ . Clearly, �φ = 2/r �= 0 and the

Klein–Gordon equation cannot be satisfied. Although a scalar
field with lightlike gradient is a null dust realization, a scalar
field-sourced outgoing Vaidya geometry is impossible. More
generally, if one considers radial outgoing and ingoing null
geodesics with tangents �a and na in the outgoing Vaidya
geometry (4), their expansions are easily found to be

θ(�) = ∇c�
c = 2

r
, θ(n) = 2m(u) − r

r2 . (14)

Clearly, both expansions are non-vanishing for r > 2m.
Put in other words, the congruence of outgoing radial null
geodesics that is deemed to have �c = ∇cφ as its four-
tangent field is twist-free (because �c is a gradient), shear-
free (because of spherical symmetry), but cannot be also
expansion-free in this geometry.

The same argument, adapted to the replacement u → v,
demonstrates the impossibility of ingoing Vaidya solutions
of the form

ds2 = −
(

1 − 2m(v)

r

)
dv2 + 2dvdr + r2d�2

(2) (15)

(where v is the advanced null coordinate) sourced by a scalar
field, that would have to be φ = −v.

It is possible to obtain analytic solutions of the Einstein
equations (1) travelling at the speed of light and sourced by
scalar fields acting as a null dust, provided that the expan-
sions of the associated null rays are allowed to vanish. As an
example, consider an exact plane wave sourced by a scalar
field with null four-gradient. This plane wave, described in
[46], is given in null coordinates by the Szekeres form [47]

ds2 = −2 e−M(u)dudv + e−U (u)
(

eV (u)dx2 + e−V (u)dy2
)

,

(16)

where [46]

e−U = f (u) + 1

2
, (17)

eV =
⎛
⎝1 +

√
1
2 − f

1 −
√

1
2 − f

⎞
⎠

λ1/2

, (18)

e−M = k f ′(u)

( 1
2 + f

) α2−1
2

( 1
2 − f

)α2 , (19)

φ = φ0 + λ2

2
ln

⎛
⎝1 +

√
1
2 − f

1 −
√

1
2 − f

⎞
⎠ , (20)

and where f (u) is an arbitrary (but regular) function of u,
λ1,2 and k are constants, and [46]

α2 = λ2
1

4
+ λ2

2 . (21)

In this case we have

∇μφ = − λ2 f ′(u)√
1
2 − f (1 + 2 f )

δμu (22)

and

(
gμν

) =

⎛
⎜⎜⎝

0 −eM 0 0
−eM 0 0 0

0 0 eU−V 0
0 0 0 eU+V

⎞
⎟⎟⎠ , (23)

using which one obtains

∇cφ∇cφ = guuφ′(u) = 0 . (24)

In this case �c ≡ ∇cφ can be a null vector without contra-
dicting the vanishing of the divergence ∇c�c = �φ = 0
because we have planar, instead of spherical, symmetry and
null geodesics with tangents �c can form a non-expanding
congruence.

3 Conclusions

Vaidya geometries sourced by a massless scalar field φ acting
as a null dust cannot be solutions of the Einstein equations (1).
The physical reason is that these spherically symmetric
geometries must necessarily have non-vanishing expansion,
which contradicts the Klein–Gordon equation �φ = 0. In
fact, an (irrotational) null dust created from a lighlike scalar
field gradient �a = ∇aφ must necessarily have zero diver-
gence ∇c�c = �φ, which is incompatible with the expanding
(contracting) nature of the outgoing (ingoing) Vaidya geome-
tries. By contrast, the exact plane wave (16) can be sourced
by a scalar field with lightlike gradients because the require-
ment of zero divergence ∇c�c = 0 is allowed by the planar
symmetry of this geometry.
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