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Abstract In a recent paper by the author (Chen in JHEP
02:115, 2020), the reduction of Feynman integrals in the
parametric representation was considered. Tensor integrals
were directly parametrized by using a generator method. The
resulting parametric integrals were reduced by constructing
and solving parametric integration-by-parts (IBP) identities.
In this paper, we furthermore show that polynomial equations
for the operators that generate tensor integrals can be derived.
Based on these equations, two methods to reduce tensor inte-
grals are developed. In the first method, by introducing some
auxiliary parameters, tensor integrals are parametrized with-
out shifting the spacetime dimension. The resulting para-
metric integrals can be reduced by using the standard IBP
method. In the second method, tensor integrals are (partially)
reduced by using the technique of Gröbner basis combined
with the application of symbolic rules. The unreduced inte-
grals can further be reduced by solving parametric IBP iden-
tities.
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1 Introduction

One of the most important issues in today’s high energy
physics is the calculation of Feynman amplitudes. Gener-
ally, Feynman amplitudes are expressed in terms of tensor
integrals, that is, Feynman integrals with Lorentz indices. A
widely used strategy to calculate tensor integrals is to first do
a tensor reduction to write tensor integrals as linear combina-
tions of scalar integrals, and then reduce the scalar integrals
by using the integration-by-parts (IBP) method [2–4].

For one-loop integrals, the tensor reduction can be imple-
mented by the well-known Passarino–Veltman reduction [5].
Multiloop tensor integrals can be reduced to scalar integrals
by using the projector technique (see e.g. Ref. [6]). Specif-
ically, an amplitude is written as a linear combination of
some tensor structures. The coefficient of a tensor structure
is extracted by applying a projector to the amplitude. In prac-
tice, the tensor structures and the corresponding projectors
are process-dependent. A general algorithm can be devel-
oped in principle. However, the calculation of the projectors
for high-rank tensor integrals, which involves the inversion
of a large matrix, is quite cumbersome. Recently, in Refs.
[7,8] it was shown that due to the four-dimensional nature of
the external states the number of projectors could be much
smaller by considering helicity amplitudes. These methods
explicitly make use of the structures of the amplitudes for
the process under consideration. Hence they break down for
a general tensor integral.

An alternative to tensor reduction is to directly parametrize
tensor integrals, as was suggested in Ref. [9]. It was suggested
in Ref. [10] that it was possible to derive IBP relations directly
in the Lee–Pomeransky representation [11]. Parametric inte-
grals could be reduced to master integrals by solving these
linear relations. In this paper, we follow a similar approach
developed in Ref. [1] (referred to as paper I hereafter). A
tensor integral is parametrized by applying a sum of chains
of index-shifting operators to a scalar integral. The advan-
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tage of this method is that the parametrization can be applied
to arbitrary tensor integrals, and can easily be implemented
in automatic calculations. The resulting parametric integrals
can directly be reduced by solving parametric IBP identities.
As was mentioned in paper I, the reduction in the paramet-
ric representation was advantageous over the traditional IBP
method in several aspects. Comparing with the momentum-
space IBP method, fewer IBP identities are generated for a
reduction. Symbolic rules can easily be generated in the para-
metric representation.1 Furthermore, symmetries of integrals
(under permutations of indices) are more transparent in the
parametric representation.

The drawback of this approach is that the highest degree
(to be specified in Sect. 2) of the parametric integrals
increases fast with the tensor ranks. Consequently, the num-
ber of linear relations to be solved increases rapidly. In this
paper, we will show that this problem can be solved by
directly constructing and solving polynomial equations for
operators that generate tensor integrals. Based on these equa-
tions, two approaches to reduce tensor integrals are provided.

This paper is organized as follows. In Sect. 2, we give a
brief review of the method developed in paper I. In Sect. 3,
we describe the two methods to reduce tensor integrals. Some
examples are provided in Sect. 4.

2 Linear relations between parametric integrals

We consider a L-loop integral

M = π− 1
2 Ld

∫
ddl1d

dl2 · · · ddlL 1

Dλ1+1
1 Dλ2+1

2 · · · Dλn+1
n

,

(2.1)

where d is the dimensionally regularized spacetime dimen-
sion, and Di are inversed propagators. We define

∑n
i=1 xi Di ≡∑L

i, j=1 Ai j li · l j + 2
∑L

i=1 Bi · li + C . Following the con-
vention used in paper I, this integral is parametrized by the
integral

I (λ0, λ1, . . . , λn) = sL/2
g e−iπλ f M

= �(−λ0)∏n+1
i=1 �(λi + 1)

∫
d�(n+1)Fλ0

×
n+1∏
i=1

x
λi
i ≡

∫
d�(n+1)I(−n−1), λ /∈ Z

−.

(2.2)

Here sg is the determinant of the dimensionally regular-
ized spacetime metric and λ f ≡ 1

2dL − n − ∑n
i=1 λi . λ0

1 Symbolic rules can also be generated in the regular momentum-space
IBP method [12]. However, this has to be done sector by sector, which
is much more complicated.

is related to the spacetime dimension through λ0 = − d
2 .

The measure d�(n) ≡ ∏n+1
i=1 dxiδ(1 − ∑

j |x j |), where the
sum in the delta function runs over any nontrivial subset of
{x1, x2, . . . , xn+1}. F is a homogeneous polynomial of xi of
degree L + 1, defined by F(x) ≡ F(x) +U (x)xn+1. U and
F are Symanzik polynomials, defined by U (x) ≡ det A,

and F(x) ≡ U (x)
(∑L

i, j=1(A
−1)i j Bi · Bj − C

)
. In this

paper, we define the degree of a parametric integral by
� ≡ ∑n

i=1 λi .
As is proven in paper I, the parametric integral satisfies

the following identities:

0 =
∫

d�(n+1) ∂

∂xi
I(−n) + δλi0

∫
d�(n) I(−n)

∣∣∣
xi=0

,

i = 1, 2, . . . , n + 1, λ /∈ Z
−, (2.3)

where δλi0 is the Kronecker delta. We define the index-
shifting operators Ri , Di , and Ai , with i = 0, 1, . . . , n, such
that

Ri I (λ0, . . . , λi , . . . , λn) =(λi + 1)I (λ0, . . . , λi + 1, . . . , λn), (2.4a)
Di I (λ0, . . . , λi , . . . , λn) =I (λ0, . . . , λi − 1, . . . , λn), (2.4b)

Ai I (λ0, . . . , λi , . . . , λn) =λi I (λ0, . . . , λi , . . . , λn), λ /∈ Z
−. (2.4c)

It is understood that

I (λ0, . . . , λi−1,−1, . . . , λn) ≡
∫

d�(n) I(−n)
∣∣∣
xi=0

, and

(2.5a)

Ri I (λ0, . . . , λi−1,−1, . . . , λn) ≡ 0. (2.5b)

The product of two operators are defined by successive
action. That is, (XY )I (λ) ≡ X (Y I (λ)). It is easy to get
the following commutation relations:

Di R j − R j Di =δi j , (2.6)

Di A j − A j Di =δi j Di , (2.7)

Ri A j − A j Ri = − δi j Ri . (2.8)

We formally define operators Dn+1 and Rn+1, such that
Dn+1 I = I , and Ri

n+1 I = (An+1+1)(An+1+2) · · · (An+1+
i)I , with An+1 ≡ −(L + 1)A0 −∑n

i=1(Ai + 1). Notice that
Rn+1, Dn+1, and An+1 do not obey the commutation relations
listed above. It is easy to rewrite Eq. (2.3) in the following
form:

D0
∂F(R)

∂Ri
− Di ≈ 0, i = 1, 2, . . . , n + 1. (2.9)

Here we use “≈” instead of “=” to indicate that these iden-
tities are valid only when they are applied to nontrivial para-
metric integrals I (λ). It should be noted that Xi0 is ill-defined
for Xi = Ri , Di , or Ai . Thus Ri , Di , and Ai are not lin-
ear operators on the linear space of parametric Feynman
integrals. Notice that Rn+1 does not commute with Ri for
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i = 0, 1, . . . , n. We assume that Rn+1 in F(R) is to the right
of U (R). Explicitly, we have

0 ≈ D0U (R) − 1, (2.10a)

0 ≈ D0

(
∂F(R)

∂Ri
+ ∂U (R)

∂Ri
Rn+1

)
− Di . (2.10b)

Obviously, for two functions f and g, f ≈ 0 implies f g ≈ 0.
By using the homogeneity of U and F , it can be proven that

D0F + A0 − 1 ≈ 0. (2.11)

Due to the D0-dependence, Eq. (2.9) may shift the space-
time dimension [4,9]. Identities free of dimensional shift can
be obtained by using a method similar to the parametric-
annihilator method [10,11,13,14] or the syzygy-equation
method [15]. Specifically, let fi be a list of polynomials in
the R of degree γ , satisfying the following equations:

n∑
i=1

fi
∂U

∂Ri
= a1U + b1F, (2.12a)

n∑
i=1

fi
∂F

∂Ri
= a2U + b2F, (2.12b)

where a and b are also polynomials in the R. By virtue of
Eqs. (2.10) and (2.11), we have

0 ≈
n∑

i=1

{
D0

[
∂F(R)

∂Ri

+ ∂U (R)

∂Ri
(An+1 + 1)

]
− Di

}
fi

= D0

n∑
i=1

∂F(R)

∂Ri
fi

+D0

n∑
i=1

∂U (R)

∂Ri
fi (An+1 − γ + 1) −

n∑
i=1

Di fi

= D0F
[
b2 + (An+1 − 1)b1

]
+D0U

[
a2 − (An+1 + 1)b2 + An+1a1 − (A2

n+1 − 1)b1

]

−
n∑

i=1

Di fi

≈ −A2
n+1b1 − A0An+1b1 + An+1(a1 + b1 − b2)

+A0(b1 − b2) + a2 −
n∑

i=1

Di fi . (2.13)

Obviously the last line in the above equation is free of dimen-
sional shift. In practical calculations, symbolic rules can be
derived by solving these identities. We prescribe that Ri is of
degree 1, Di is of degree − 1, and Ai is of degree 0. Then in
the case of the absence of negative indices (as is the case for
Method II, to be described in the next section), the ordering
of monomials in Eq. (2.13) is consistent with the ordering of
the corresponding parametric integrals. Symbolic rules can
easily be generated out of Eq. (2.13) in this case. For example,
for the tadpole integral with a mass m, we have a symbolic

IBP identity m2R1 − (A0 + A1 + 1) ≈ 0. According to the
ordering, R1 is superior to A0 and A1, so this equation is
solved by R1 ≈ 1

m2 (A0 + A1 +1). Correspondingly we have

the symbolic rule I (− d
2 , i) = 2i−d

2m2i
I (− d

2 , i − 1).

3 Reduction of tensor integrals

According to the derivation in paper I, a tensor integral can
be parametrized by2

Mμ1μ2 ···μr
i1i2 ···ır ≡ π− 1

2 Ld
∫

ddl1d
dl2 · · · ddlL

lμ1
i1
lμ2
i2

· · · lμr
ir

Dλ1+1
1 Dλ2+1

2 · · · Dλn+1
n

= s−L/2
g eiπλ f

[
Pμ1
i1

Pμ2
i2

· · · Pμr
ir

I (− d

2
, λ1, λ2, . . . , λn)

]
pμ=0

,

(3.1)

where the operator

Pμ
i (p) ≡ − ∂

∂pi,μ
− B̃μ

i + 1

2

L∑
j=1

Ãi j p
μ
j , (3.2)

where Ãi j ≡ D0U (A−1)i j and B̃μ
i ≡ ∑L

j=1 Ãi j B
μ
j . Thus

a tensor integral is parametrized by a linear combination of
parametric integrals of the form

Mi = fi ( Ã, B̃)I (λ0, λ1, . . . , λn). (3.3)

Obviously Ã(x) is of degree L − 1 in x , and B̃(x) is of
degree L in x . Due to the B̃ term in Eq. (3.2), the high-
est degree of parametric integrals for a L-loop rank-r tensor
integral is Lr , which increases rapidly with r for multiloop
integrals. Consequently, the linear system to be solved is very
large for a high-rank tensor integral. A solution to this prob-
lem is to directly reduce fi in Eq. (3.3) without substituting
the explicit forms of the B̃.3 As is derived in Appendix A,
the B̃ satisfy the following equations:

L∑
j,k=1

∂A jk

∂Ri
B̃ j · B̃k−2

L∑
j=1

∂B j

∂Ri
· B̃ j +D0A0

∂U

∂Ri
+ ∂C

∂Ri
+Di ≈ 0. (3.4)

Based on these equations, we trade the reduction of the fi
in Eq. (3.3) to a problem of polynomial reduction. The dif-
ficulty is that in Eq. (3.4) the D do not commute with the
B̃. We provide two methods to solve this problem, as will be
described in the next two subsections.

2 This expression is consistent with the parametrization used in Ref.
[16].
3 The Ã term is less problematic, so we do not need to pay much
attention to it.
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3.1 Method I

In this subsection, by introducing some auxiliary parameters,
we will show that the B̃ can be expressed as linear combi-
nations of the D, which are of degree − 1 (according to the
prescription at the end of Sect. 2). Consequently, the corre-
sponding parametric integrals are of lower degrees. First, we
need to extend the definition of the parametric integrals to
include integrals with negative indices. We define [10]

I (λ0, λ1, . . . , λi−1,−m, λi+1, . . . , λn)

≡ lim
λi→−m

I (λ0, λ1, . . . , λi−1, λi , λi+1, . . . , λn)

= (−1)m−1 �(−λ0)∏n+1
j �=i �(λ j + 1)

×
∫

d�(n)

[
∂m−1Fλ0

∂xm−1
i

]

xi=0

n+1∏
j �=i

x
λ j
j , m ∈ N . (3.5)

It is easy to see that this definition is consistent with Eq. (2.9).
The definition of the degree of an integral should also be
modified. We define the degree of a nonnegative index λi
by di ≡ λi , and the degree of a negative index λi by di ≡
−1−λi . The degree of an integral is defined by � ≡ ∑n

i=1 di .
Let ai j and bi j be the solutions of

∑
j

bi j
∂A(R)

∂R j
= 0, (3.6a)

∑
j

ai j
∂B(R)

∂R j
= 0, (3.6b)

where A and B are defined in Sect. 2 (below Eq. (2.1)). Solu-
tions of these two equations may be linearly dependent. We
denote those linearly dependent solutions by ci j . By default,
we assume that these solutions are excluded from ai j and bi j .
For brevity, we denote

∂

∂ai
≡

∑
j

ai j
∂

∂R j
, Dai ≡

∑
j

ai j D j , (3.7a)

∂

∂bi
≡

∑
j

bi j
∂

∂R j
, Dbi ≡

∑
j

bi j D j , (3.7b)

∂

∂ci
≡

∑
j

ci j
∂

∂R j
, Dci ≡

∑
j

ci j D j . (3.7c)

Bμ
i is of the form

∑
u BiuQ

μ
u , where Qμ

u are the (linearly
independent) external momenta. Similarly we have B̃μ

i =∑
u B̃iu Q

μ
u . By virtue of Eq. (3.4), we have

− 2
∑
u,v, j

Qu · Qv

∂Bju

∂bi
B̃ jv + ∂C

∂bi
+ Dbi ≈ 0, (3.8a)

∑
j,k

∂A jk

∂ai
B̃ j · B̃k + D0A0

∂U

∂ai
+ ∂C

∂ai
+ Dai ≈ 0, (3.8b)

∂C

∂ci
+ Dci ≈ 0. (3.8c)

Generally speaking, the matrix
∂Bju
∂bi

is not invertible.
However, we can always make it invertible by introducing
some auxiliary parameters xn+1, xn+2, . . . through the trans-
formation Biu → Biu + ∑

k ck xk , where ck are some con-
stants. This is equivalent to adding some auxiliary propaga-
tors of the form

∑
ci j li · Q j . We denote the inverse of

∂Bju
∂bi

by β ju,i . That is,

∑
k

βiu,k
∂Bjv

∂bk
= δi jδuv. (3.9)

Similarly, we can always make the Gram matrix Qu · Qv

invertible by introducing some auxiliary external momenta.
(Notice that we assume that the Q are linearly independent.)
Then Eq. (3.8a) is solved by

B̃iu ≈ 1

2

∑
j,v

guvβiv, j

(
∂C

∂b j
+ Dbj

)
≡ B̄iu, (3.10)

where guv is the inverse of Qu · Qv .
Since the B̃ are of degree L , while the D (hence the B̄)

are of degree − 1, by expressing B̃iu in terms of B̄iu , the cor-
responding parametric integrals are of much lower degrees.
However, we cannot directly apply Eq. (3.10) to a chain of
B̃, because the B̄ do not commute with the B̃. It is easy to
get the commutation relations

[
B̄iu, B̃ jv

] =1

2
guv Ãi j , (3.11a)

[
B̄μ
i , B̃ν

j

]
=1

2

∑
u,v

guvQ
μ
u Q

ν
v Ãi j ≡ 1

2
η′μν Ãi j . (3.11b)

By virtue of these commutation relations, together with
Eq. (3.10), it can be shown that the operator Pμ

i defined in
Eq. (3.2) can be replaced by (for the proof, see Appendix B)

Pμ
i ≈ − ∂

∂ p̄i,μ
− B̄μ

i + 1

2

∑
j

Ãi j p̄
μ
j , (3.12)

where p̄i are vectors such that p̄i · Q j = 0. The B̄ are free
of D0, and thus will not shift the spacetime dimension. Due
to the definition of βi j,k , the B̄ commute with the Ã. Thus by
applying operators Pμ

i , tensor integrals are parametrized by
integrals of the form f ( Ã)I (− d

2 , . . .). It remains to reduce
chains of Ã.
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Similar to
∂Bj
∂bi

, the matrix
∂A jk
∂ai

can be made invertible by
introducing some auxiliary parameters through the transfor-
mation Ai j → Ai j + ∑

k ck xk . This is equivalent to adding
some auxiliary propagators of the form

∑
i j ci j li ·l j . Let αi j,k

be the matrix such that

∑
k

αi j,k
∂Amn

∂ak
= 1

2

(
δimδ jn + δinδ jm

)
. (3.13)

As is derived in Appendix C, Eq. (3.8b) is solved by

Ãi j

(
A0 + E

2

)
≈ −B̄i ·B̄ j−

∑
k

αi j,k

(
Dak + ∂C

∂ak

)
≡ Āi j ,

(3.14)

where B̄μ
i ≡ ∑

u B̄iu Q
μ
u , and E is the number of the external

momenta. We have the following commutation relation:

[
Āi j , Ãkl

] ≈ 1

2

(
Ãik Ã jl + Ãil Ã jk

) − Ãi j Ãkl . (3.15)

By virtue of Eqs. (3.14) and (3.15), we get

Ãi2 j2 Ãi3 j3 · · · Ãin jn Āi1 j1

≈ Ãi1 j1 Ãi2 j2 · · · Ãin jn

(
A0 + E

2

)

−1

2
( Ãi1i2 Ã j1 j2 + Ãi1 j2 Ãi2 j1) Ãi3 j3 · · · Ãin jn

−1

2
( Ãi1i3 Ã j1 j3 + Ãi1 j3 Ãi3 j1) Ãi2 j2 Ãi4 j4 · · · Ãin jn

− · · ·
−1

2
( Ãi1in Ã j1 jn + Ãi1 jn Ãin j1) Ãi2 j2 Ãi3 j3 · · · Ãin−1 jn−1

≡ �
i1i2···in
j1 j2··· jn . (3.16)

The proof of this equation can be found in Appendix D. A
chain of Ã can further be reduced to a sum of chains of Ā by
solving this equation. Currently we have not worked out the
general solution to this equation yet. However, this is not a
problem in practice, because this equation system is small in
size and can easily be solved by brute force.

After applying Eq. (3.12) and solutions of Eq. (3.16), ten-
sor integrals are parametrized by scalar integrals defined in
dimension d. The resulting scalar integrals can be reduced by
solving IBP identities free of dimensional shift, which can be
obtained by multiplying both sides of Eqs. (3.10) and (3.14)
with Ai j . Together with Eq. (3.8c), we have

∂C

∂ci
+ Dci ≈ 0, (3.17a)

∑
j

B̄ ju Ai j ≈ Biu, (3.17b)

∑
k

Āik Ak j ≈
(
A0 + E

2

)
δi j . (3.17c)

These identities are nothing but the correspondences of the
momentum-space IBP identities [13] in the parametric rep-
resentation [14].

As a byproduct, Eq. (3.10) provides a method to construct
differential equations in the parametric representation with-
out shifting the spacetime dimension. Let s be a kinematic
variable, and assume that Ai j is free of s. Then we have

∂

∂s
= −D0

∂F
∂s

= −D0
∂F

∂s

= −D0U

⎛
⎝ ∑
i, j,u,v

A−1
i j Biu B jv

∂Qu · Qv

∂s

+2
∑

i, j,u,v

Qu · Qv A
−1
i j Biu

∂B jv

∂s
− ∂C

∂s

⎞
⎠

≈ −
∑
i,u,v

B̄iu Biv
∂Qu · Qv

∂s
− 2

∑
i,u,v

Qu · Qv B̄iu
∂Biv
∂s

+ ∂C

∂s
.

(3.18)

3.2 Method II

In this subsection, we will show how to reduce tensor inte-
grals without introducing auxiliary parameters by using the
technique of Gröbner basis. In principle, we can generate
a Gröbner basis [17] out of Eqs. (2.10a) and (3.4)4 (for a
brief introduction to Gröbner bases and relevant topics, see
e.g. Ref. [18]). Then the reduction of Feynman integrals is
just a matter of polynomial reduction. The idea to use Gröb-
ner bases to reduce Feynman integrals was first suggested
by Ref. [19]. The method of the s-basis [20,21], a variant
of the Gröbner basis, was implemented in the early version
of FIRE [22]. However, experience shows that generating
a Gröbner basis for a noncommutative algebra is extremely
time-consuming, which makes it less efficient for the reduc-
tion of Feynman integrals in practice. In this subsection, we
try to solve this problem by converting the problem of a non-
commutative algebra to the one of a commutative algebra.
Though the Gröbner basis for the commutative algebra is not
the full Gröbner basis for the corresponding noncommuta-
tive algebra, it can be used to greatly simply integrals to be
reduced in practice.

Since ∂A
∂Ri

, ∂B
∂Ri

, and ∂C
∂Ri

are constants, the l.h.s. of Eq. (3.4)

is a polynomial of B̃μ
i and Di , except for the ∂U

∂Ri
term. By

4 Here Eq. (2.10a) is considered because D0U contributes to B̃μ
i . We

notice that the B̃ are not uniquely determined. It is easy to see that
for a shift δlμi of the loop momenta the corresponding shift of B̃μ

i is
δ B̃μ

i = D0Uδlμi .
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using Eq. (2.10) and the identity Di f (R)− f (R)Di = ∂ f (R)
∂Ri

,
we can write Eq. (3.4) in the following form:

L∑
j,k=1

∂A jk

∂Ri
B̃ j · B̃k − 2

×
L∑
j=1

∂B j

∂Ri
· B̃ j + ∂C

∂Ri
+ A0Di (D0U − 1) + Di (D0U + 1) ≈ 0.

(3.19)

For simplicity, we denote y0 ≡ D0U , B̃μ
i ≡ ∑

j yi j Q
μ
j ,

zi ≡ Di , and wi ≡ A0Di . Equations (2.10a) and (3.19)
give rise to polynomial equations in y, z, and w. Since z
and w do not commute with y, we assume that z and w are
always to the left of y. The noncommutativity problem can
be solved by avoiding multiplying y by z or w from the right-
hand side. When we try to generate a Gröbner basis by using
the Buchberger algorithm [17], terms of the form yi z j or
yiw j may arise, which are in contradiction with the ordering
we use. In order to avoid this kind of terms, we multiply
monomials free of z and w by an auxiliary variable z0, and
add to the polynomial equation system following equations:

zi z j = wiw j = ziw j = 0. (3.20)

Terms of the form yi z j (or yiw j ) arise only when we multi-
ply an equation f ≈ 0 by z j (or w j ). However, the l.h.s. of
the obtained equation f z j ≈ 0 (or f wi ≈ 0) is immediately
replaced by zero due to Eq. (3.20) (Notice that each mono-
mial of f is linear in z or w.) Thus we can identify yi z j (or
yiw j ) with z j yi (or w j yi ), since it never appears in practice.
Consequently, the Gröbner basis for the polynomial equation
system can be generated by using the Buchberger algorithm
assuming all the variables are commutative. Finally we will
remove polynomial equations in Eq. (3.20) from the gener-
ated Gröbner basis. One may use some other algorithms to
generate the Gröbner basis. Then terms of the form yi z j or
yiw j may not be eliminated at the intermediate steps. How-
ever, as far as we only pick those equations linear in z or w

at the final step, the obtained basis is valid. Because all poly-
nomial equations are homogeneous in z and w, equations of
higher degrees in z and w never affect those linear in z or
w. There is another type of identities. Generally the y are
not independent. They are related to each other through the
relation

yi = yi (R). (3.21)

In practice, we first eliminate Ri from Eq. (3.21), and add
the resulting equations to the polynomial equation system.

After obtaining the Gröbner basis, integrals of the form in
Eq. (3.3) can be reduced by reducing the polynomial fi with
respect to the basis. The resulting polynomials may contain

terms of the form wi y j yk · · · I (λ). This kind of terms can be
further reduced by replacing them by

wi y j yk · · · I (λ) = A0
∑
a

∂y j yk · · ·
∂ya

(
∂ya(R)

∂Ri
I (λ)

)
+ y j yk · · ·wi I (λ).

(3.22)

A0 in the above equation can be replaced by its eigenvalue.
∂y j yk ···

∂ya
and y j yk · · · wi can further be reduced with respect

to the Gröbner basis. Terms of the form zi y j yk · · · can be
reduced similarly.

4 Examples

As an example, we consider the two-loop massless sunset
diagram

I1

(
−d

2
, λ1, λ2, λ3

)
= eiπ(λ1+λ2+λ3)

(2π)d

×
∫

ddl1d
dl2

1

l2(1+λ1)
1 l2(1+λ2)

2 (l1 + l2 + p)2(1+λ3)
,

(4.1)

with p2 = 1. We first try to reduce the corresponding tensor
integrals by using Method II. The polynomial F(R) for this
integral is

F1(R) = −R1R2R3 +R1R2R4 +R1R3R4 +R2R3R4. (4.2)

The operator B̃μ
i is

B̃μ = D0

(
R2R3

R1R3

)
pμ ≡

(
y2

y1

)
pμ. (4.3)

We define y3 ≡ D0U = D0(R1R2 + R1R3 + R2R3). Fol-
lowing the algorithm described in Sect. 3.2, we first gen-
erate a Gröbner basis out of Eq. (3.19). All the calcula-
tions can be done by using Mathematica. The Gröber basis
is generated with the built-in function GroebnerBasis.
A degree-reverse-lexicographic order is used. To reveal the
correct degree in Ri , we introduce another auxiliary vari-
able x and rescale the variables by z0 → xz0, and yi →
x L−1yi . Experiences show that it is less efficient to gener-
ate a full basis. In practice, we exclude polynomials with
degrees larger than 4. In Mathematica, this can be imple-
mented by representing yi by a pattern y[_], and set-
ting y/: y[_]ˆ n_ = ComplexInfinity /;n>4.
Finally, we get a basis of size 12, among which some
are
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(Here we have replaced the auxiliary variables x and z0

by 1.)

0 ≈ y3 − 1, (4.4)

0 ≈ y2
1 + w2y

2
3 − w2y3 + z2y

2
3 + z2y3, (4.5)

0 ≈ 2y2
2 − w1y2 + w2y2 + w3y2 + w1y3y2 − w2y3y2

− w3y3y2 + 2w2y
2
3 − w1y1 + w2y1 − w3y1

− 2w2y3+w1y1y3−w2y1y3+w3y1y3+z1y3y2+z1y2

− z2y3y2 − z2y2 − z3y3y2 − z3y2

+ z1y1 + z1y1y3 + 2z2y
2
3 − z2y1 − z2y1y3

+ 2z2y3 + z3y1 + z3y1y3 − y2 + y1. (4.6)

The generated basis is complete in the sense that a mono-
mial yi11 yi22 yi33 can be reduced with respect to the Gröb-
ner basis as far as one of the following conditions is sat-
isfied: i1 > 1, i2 > 1, or i3 > 0. The polynomial
reduction can be carried out by using the built-in function
PolynomialReduce.

Though the basis is complete in this example, the reduc-
tion is not. The reason for this is that when we use Eq. (3.22)
to reduce terms of the form wi y j yk . . ., we get terms

of the form
∂y j (R)

∂Ri
, which is not a polynomial in the y.

The unreduced integrals can further be reduced by apply-
ing symbolic rules. Symbolic rules are derived by solving
symbolic IBP identities generated by Eq. (2.13). Exclud-
ing some redundant rules, and considering the symmetries
under permutations of indices, we get the following rules:

I1(i0, i1, i2, i3) = − I (i0, i1 − 1, i2, i3)

i1 (i0 + i1 + 1)

×
[
(i1 − 1)2 + (2i2 + 2i3 + 7) (i1 − 1)

+ 6i2
0 + i2

2 + i2
3

+ (5 (i1 − 1) + 5i2 + 5i3 + 17) i0

+7i2 + 2i2i3 + 7i3 + 12] , i1 > 0,

(4.7a)

I1(i0, i1, i2, i3) =I1(i0, i2, i1, i3), i2 > 0, (4.7b)

I1(i0, i1, i2, i3) =I1(i0, i3, i2, i1), i3 > 0. (4.7c)

Dimensional recurrence relations can be derived by explicitly
solving IBP identities. We have

I1(i0, 0, 0, 0) = (i0 + 2)I1(i0 + 1, 0, 0, 0)

6(2i0 + 3)(3i0 + 4) (3i0 + 5)
. (4.8)

Obviously these rules are complete in the sense that any inte-
gral of the form I1(i0, i1, i2, i3) can be reduced to the master
integral I (− d

2 , 0, 0, 0) by applying these rules.
Alternatively, we can do the reduction by using Method I.

Since the first equation in Eq. (3.6) has no solution, we need
to extend the polynomial F1 by introducing two auxiliary
parameters, which is equivalent to introducing two auxiliary
propagators l1 · p and l2 · p. We denote

I2(− d

2
, λ1, λ2, λ3, λ4, λ5)

= eiπ
∑5

i=1 λi

(2π)d

∫
ddl1d

dl2

× 1

l
2(1+λ1)
1 l

2(1+λ2)
2 (l1 + l2 + p)2(1+λ3)(l2 · p)1+λ4 (l1 · p)1+λ5

.

(4.9)

The polynomials A, B, Ā and B̄ for this integral are

A =
(
R1 + R3 R3

R3 R2 + R3

)
, (4.10)

Bμ =
(
R3 + 1

2 R5

R3 + 1
2 R4

)
pμ, (4.11)

Ā =1

2

( −2D2
5 − 2D1 −2D4D5 + D1 + D2 − D3 + 2D4 + 2D5 − 1

−2D4D5 + D1 + D2 − D3 + 2D4 + 2D5 − 1 −2D2
4 − 2D2

)
, (4.12)

B̄μ =
(
D5

D4

)
pμ. (4.13)

Then tensor integrals can be parametrized by using the
method described in Sect. 3.1. For example, we have

1

(2π)d

∫
ddl1d

dl2
lμ1 l

ν
2

l21 l
2
2 (l1 + l2 + p)2l2 · pl1 · p (4.14)

=
[
B̄μ

1 B̄ν
2

− 1

2
Ã12(gμν − pμ pν)

]
I2

(
− d

2
, 0, 0, 0, −1,−1

)
(4.15)

=
[
B̄μ

1 B̄ν
2

+ 1

d − 1
Ā12(gμν − pμ pν)

]
I2

(
− d

2
, 0, 0, 0, −1,−1

)
(4.16)

= pμ pν I2

(
− d

2
, 0, 0, 0, −2, −2

)

+ 1

2(d − 1)

(
gμν − pμ pν

) [
−2I2

(
− d

2
, 0, 0, 0, −2, −2

)
(4.17)
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+ I2

(
− d

2
, −1, 0, 0, −1,−1

)
+ I2

(
− d

2
, 0, −1, 0, −1,−1

)

− I2

(
− d

2
, 0, 0,−1, −1,−1

)
(4.18)

+ 2I2

(
− d

2
, 0, 0, 0,−2, −1

)
+ 2I2

(
− d

2
, 0, 0, 0, −1,−2

)

−I2

(
− d

2
, 0, 0, 0, −1,−1

)]
. (4.19)

It is easy to check that this result is consistent with the one
obtained by using the standard tensor-reduction method. The
resulting scalar integrals can further be reduced by solving
IBP identities generated by using Eq. (3.17).

As a less trivial example, we consider the reduction of the
rank-4 massless double-box integral,

1

πd

∫
ddl1d

dl2
lμ1 l

ν
1 l

α
2 l

β
2

l21l
2
2(l1 + k1)2(l1 − k2)2(l1 + l2 + k1)2(l1 + l2 − k2)2(l1 + l2 − k2 − k3)2

, (4.20)

with k2
i = 0, i = 1, 2, 3, and (k1 + k2 + k3)

2 = 0. This
integral can easily be parametrized by using Eqs. (3.1) and
(3.2). The highest degree of the resulting parametric integrals
is 8. (The highest degree of the scalar integrals obtained by
using the traditional tensor-reduction method is 4.) However,
the degrees can be reduced by using Method II. Following the
algorithm described in Sect. 3.2, we get a Gröbner basis of
size 46 for the top topology within a few seconds. Similar to
the case of the first example, polynomials with degrees larger
than 4 are excluded from the basis. After applying this basis,
the highest degree of the resulting integrals becomes 3, which
can further be (partially) reduced by applying symbolic rules.

Contrary to the first example, the generated symbolic rules
for the double-box integral are incomplete. We denote a
scalar integral by

I3

(
− d

2
, λ1, . . . , λ7

)
≡ eiπ

∑7
i=1 λi

πd

∫
ddl1d

dl2

× 1

l
2(λ1+1)
1 l

2(λ2+1)
2 (l1 + k1)2(λ3+1)(l1 − k2)2(λ4+1)

× 1

(l1+l2+k1)2(λ5+1)(l1+l2−k2)2(λ6+1)(l1+l2−k2−k3)2(λ7+1)
.

(4.21)

Integrals that cannot be reduced by applying the obtained
symbolic rules are those with λ4 = λ5 = λ6 = λ7 = 0.
These unreduced integrals can easily be reduced by solv-
ing parametric IBP identities. The number of independent
IBP identities to be solved is much smaller than that in the
traditional momentum-space IBP method. This is because
the number of unreduced scalar integrals in the former is
much smaller. For example, since only those integrals with
λ4 = λ5 = λ6 = λ7 = 0 cannot be reduced by applying the
symbolic rules, there are only dozens of unreduced integrals

with degree 5 in the top topology. However, there are more
than one thousand momentum-space integrals with degree 5.

All the above calculations are done by using a Mathemat-
ica code, which takes about one hour in total on a laptop
(with two kernels). As a comparison, the helicity–amplitude
methods [7,8] obviously break down for this example, since
it is not a full amplitude. And we fail to carry out the ten-
sor reduction by using the standard projector method on the
same machine due to the lack of memory (about 2 GiB).
So, instead, we first carry out the tensor reduction by using
Method I, described in Sect. 3.1, and do the IBP reduction
with the regular IBP method, which takes about 400 seconds
by using FIRE6 [23]. We fail to carry out the reduction by
using the Mathematica version of FIRE after a running of
several hours (due to the lack of memory too).

To validate the algorithm, we reduced the amplitudes for
the QCD corrections to the Higgs two-photon decay by using
both methods. The result was consistent with the one obtained
by combining the tensor reduction with the traditional IBP
method.

5 Summary

In this paper, the reduction of tensor integrals is considered.
Following the method developed in paper I, a tensor integral
is parametrized by applying a sum of chains of operators Ã
and B̃ to a scalar integral (cf. Eq. (3.1)). Because the B̃ are
of degree L , the resulting parametric integrals are of high
degrees for multiloop high-rank tensor integrals. We show
that polynomial equations for the B̃ can be constructed (cf.
Eq. (3.4)). Based on these equations, two methods to reduce
the degrees of parametric integrals are provided.

In the first method, by introducing some auxiliary parame-
ters, we show that the B̃ can be traded by the B̄ (cf. Eqs. (3.10)
and (3.12)), and the Ã can be traded by the Ā (cf. Eq. (3.16)).
The corresponding parametric integrals are of much lower
degrees. The parametrizing result is consistent with the one
obtained by using the tensor-reduction method. However, the
former is much easier to carry out for high-rank tensor inte-
grals. The resulting parametric integrals can be reduced by
solving dimensional-shift-free IBP identities (cf. Eq. (3.17)).

In the second method, a Gröbner basis is generated out of
these polynomial equations of B̃. Tensor integrals are par-
tially reduced by using this basis. The unreduced integrals
can further be reduced by solving parametric IBP identities
combining with the application of symbolic rules. By virtue
of the positivity of the indices, symbolic rules can easily be
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generated. The number of independent parametric IBP iden-
tities to be solved is much smaller than that in the regular
IBP method.
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Appendix A: Derivation of Eq. (3.4)

For simplicity, we use a center dot to denote both the inner
product of two vectors and the product of two matrices. By
using the identity ∂A−1

∂Ri
= −A−1 · ∂A

∂Ri
· A−1, Eq. (2.10) leads

to

D0
∂U

∂Ri
Rn+1 − Di ≈ −D0

∂F

∂Ri

= D0
∂U

∂Ri
(C − B · A−1 · B)

+D0U

(
B · A−1 · ∂A

∂Ri
· A−1 · B

−2
∂B

∂Ri
· A−1 · B + ∂C

∂Ri

)

≈ −D0FD0
∂U

∂Ri
+ B̃ · ∂A

∂Ri
· B̃

−2
∂B

∂Ri
· B̃

+ ∂C

∂Ri
. (A.1)

In the last step of the above equation, we have replaced D0U
by 1 or vice versa. For the first term in the last line, we have

− D0FD0
∂U

∂Ri
= −D0(F −URn+1)D0

∂U

∂Ri

≈ (A0 − 1)D0
∂U

∂Ri
+ Rn+1D0

∂U

∂Ri

= (A0 − 1)D0
∂U

∂Ri
+ D0

∂U

∂Ri
(Rn+1 + 2)

= (A0 + 1)D0
∂U

∂Ri
+ D0

∂U

∂Ri
Rn+1

= D0A0
∂U

∂Ri
+ D0

∂U

∂Ri
Rn+1. (A.2)

Combining the above equations we get

B̃ · ∂A

∂Ri
· B̃−2

∂B

∂Ri
· B̃+D0A0

∂U

∂Ri
+ ∂C

∂Ri
+Di ≈ 0. (A.3)

Appendix B: Proof of Eq. (3.12)

We first define

B ′μ
i (q ′) ≡

(
∂

∂q ′
iμ

+ B̄μ
i + 1

2

∑
i ′

Ãii ′q
′μ
i ′

)
, (B.1)

where q ′ are vectors defined in the linear space generated by
the external momenta Q. We will show that

B̃μn
in

· · · B̃μ2
i2

B̃μ1
i1

≈
[
B ′μn
in

(q ′) · · · B ′μ2
i2

(q ′)B ′μ1
i1

(q ′)
]
q ′=0

.

(B.2)

This equation can easily be proved by iteration. By virtue of
Eq. (3.10), it holds when n = 1. Suppose that this equation
holds for n = N , then we have

[
B ′μN+1
iN+1

(q ′) · · · B ′μ2
i2

(q ′)B ′μ1
i1

(q ′)
]
q ′=0

= B̄μN+1
iN

[
B ′μN
iN

(q ′) · · · B ′μ2
i2

(q ′)B ′μ1
i1

(q ′)
]
q ′=0

+ 1

2

n∑
j=1

Ã j,N+1

[
B ′μN
iN

(q ′) · · · B ′μ j−1
i j−1

(q ′)B ′μ j+1
i j+1

(q ′) · · · B ′μ1
i1

(q ′)
]
q ′=0

≈ B̃μN
iN

· · · B̃μ2
i2

B̃μ1
i1

B̄μN+1
iN+1

+ 1

2

n∑
j=1

(
B̃μN
iN

· · · B̃μ j−1
i j−1

B̃
μ j+1
i j+1

· · · B̃μ1
i1

Ã j,N+1

)

≈ B̃μN+1
iN+1

· · · B̃μ2
i2

B̃μ1
i1

. (B.3)

In the last line we have used the commutation relation
Eq. (3.11b). Then, by using Eq. (B.2), we have

Pμ
i ≈ − ∂

∂pi,μ
− ∂

∂q ′
iμ

− B̄μ
i + 1

2

L∑
j=1

Ãi j (p
μ
j − q ′μ

j ).

(B.4)

We split p into two parts, p̄ and p′, such that p′ lies in the
linear space generated by Q and p̄ is orthogonal to Q. We
introduce a new set of momenta, k = 1

2 (p′ + q ′) and k′ =
p′ − q ′. Then it is easy to get

Pμ
i ≈ − ∂

∂ p̄i,μ
− ∂

∂kiμ
− B̄μ

i + 1

2

L∑
j=1

Ãi j ( p̄
μ
j + k′μ

j ).
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(B.5)

Because ∂
∂kiμ

commutes with k′μ
j , finally we can take kμ

i =
k′μ
i = 0; these two terms do not contribute, thus they can be

omitted. Hence

Pμ
i ≈ − ∂

∂ p̄i,μ
− B̄μ

i + 1

2

L∑
j=1

Ãi j p̄
μ
j . (B.6)

Appendix C: Derivation of Eq. (3.14)

We first consider the first term in Eq. (3.8b). By using
Eq. (3.10) and the commutation relation Eq. (3.11b), we have

∑
j,k

∂A jk

∂ai
B̃ j · B̃k ≈

∑
j,k

∂A jk

∂ai
B̄ j · B̃k

=
∑
j,k

∂A jk

∂ai
B̃ j · B̄k + 1

2

∑
j,k,u

δuu
∂A jk

∂ai
Ã jk

≈
∑
j,k

∂A jk

∂ai
B̄ j · B̄k + E

2

∑
j,k,u

∂A jk

∂ai
Ã jk . (C.1)

By virtue of the Laplace expansion of U (as the determinant
of A), the second term in Eq. (3.8b) becomes

D0A0
∂U

∂ai
=

∑
j,k

∂A jk

∂ai
Ã jk A0. (C.2)

Substituting the above two equations into Eq. (3.8b), and
multiplying both sides of the obtained equation by α jk,i , we
get

B̄ j · B̄k + Ã jk

(
A0 + E

2

)
+

∑
k

α jk,i

(
Dai + ∂C

∂ai

)
≈ 0.

(C.3)

Appendix D: Proof of Eq. (3.16)

We prove Eq. (3.16) by iteration. Obviously it holds when
n = 1, since in this case it is just Eq. (3.14). Now suppose
that this equation holds when n = m. Using Eqs. (3.14) and
(3.15), we get

�
j1 j2··· jm
i1i2···im Ãim+1 jm+1

≈ Ãi2 j2 Ãi3 j3 · · · Ãim jm Āi1 j1 Ãim+1 jm+1

= Ãi2 j2 Ãi3 j3 · · · Ãim jm

(
Ãim+1 jm+1 Āi1 j1 − Ãi1 j1 Ãim+1 jm+1

)

+ 1

2
Ãi2 j2 Ãi3 j3 · · · Ãim jm

(
Ãi1im+1 Ã j1 jm+1 + Ãi1 jm+1 Ãim+1 j1

)
.

(D.1)

Thus

Ãi2 j2 Ãi3 j3 · · · Ãim+1 jm+1 Āi1 j1

≈ �
j1 j2··· jm
i1i2···im Ãim+1 jm+1 + Ãi1 j1 Ãi2 j2 · · · Ãim+1 jm+1

− 1

2
Ãi2 j2 Ãi3 j3 · · · Ãim jm

(
Ãi1im+1 Ã j1 jm+1 + Ãi1 jm+1 Ãim+1 j1

)

= �
j1 j2··· jm+1
i1i2···im+1

. (D.2)

In the last line we have used the identity (A0+ E
2 ) Ãim+1 jm+1 =

Ãim+1 jm+1(A0 − 1 + E
2 ).
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