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Abstract By using the subregion CV conjecture, we
numerically investigate the behavior of the holographic sub-
region complexity (HSC) and compare it with the holo-
graphic entanglement entropy (HEE) in the unbalanced holo-
graphic superconductors, which indicates that both the HEE
and HSC can be used as good probes to the phase transition
in unbalanced holographic superconductors. We observe that
the HEE and HSC exhibit a similar linear growth behavior
with the change of width for a strip geometry. However, for
different fixed widths, the HSC exhibits different behaviors
with the change of the temperature, while the behavior of
HEE remains consistent. In particular, we find that there are
certain conditions that make it difficult to observe the phase
transition of this system through the HSC approach. Further-
more, we also note that the unbalance parameter has different
effects on the HSC, while the HEE always increases as the
unbalance parameter increases.

1 Introduction

The Anti-de Sitter/conformal field theories (AdS/CFT) cor-
respondence [1–3] has been proven to be a powerful tool
in studying strongly coupled systems and quantum informa-
tion properties. In recent years, it has been widely applied to
study the holographic superconductor model [4–6]. The sim-
ple holographic superconductor model dual to gravity theo-
ries was constructed by applying a scalar field and a Maxwell
field coupled in an AdS black hole background. The physi-
cal picture is that the AdS black hole becomes unstable and
scalar hair condenses as one tunes the temperature of black
hole. This condensation of the scalar hair induces the sym-
metry breaking, which results in the non-vanishing vacuum
expectation value of the dual operator in the field theory side.
In the past decade, a number of holographic superconductor
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models have been explored. These models have shown many
characteristic properties exhibited in real superconductors,
see [7,8] for reviews.

In addition, two of the most important aspects that have
received wide attention in the context of the AdS/CFT cor-
respondence are holographic entanglement entropy (HEE),
introduced in [9,10], and holographic complexity, initiated
by the works of [11–14]. In a strongly coupled system, the
entanglement entropy is a powerful tool to keep track of the
degrees of freedom. Especially, a simple and elegant method
of calculating the entanglement entropy of CFTs from the
minimal area surface in the gravity side was proposed by
Ryu and Takayanagi. In this way, the HEE has been applied
to disclose properties of phase transitions in various holo-
graphic superconductor models [15–32]. It shows that the
HEE is a good probe to explore the properties of holographic
superconductors.

On the other hand, the quantum complexity describes how
many simple elementary gates are needed to obtain a target
state from a certain simple reference state. In the holographic
framework, there have been two distinct proposals to eval-
uate the complexity of a holographic boundary state, which
are referred to as the CV conjecture (complexity = volume)
[11,12] and the CA conjecture (complexity = action) [13,14],
respectively. The former relates the complexity of the CFT
state to the size of the wormhole, while the latter relates the
complexity of the CFT state to the bulk action evaluated in
a particular spacetime region known as the Wheeler-DeWitt
patch. It should be noted that the above two conjectures of
holographic complexity are proposed for the global space-
time. Inspired by the HEE proposal, the CV conjecture for
the whole boundary system is generalized for the subregion
[33]. The complexity for a subsystem on the boundary equals
the volume of the extremal codimensional-one hypersurface
enclosed by Ryu–Takayanagi surface. This is usually referred
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to as the holographic subregion complexity (HSC) [34–36],
which will be the focus of this paper.

More recently, several authors have studied the holo-
graphic complexity in different types of holographic super-
conductors and argued that it may be used as another inde-
pendent probe to the physics of the phase transition [37–42].
However, there are still many ambiguities about the behavior
of HSC in holographic superconductors. Especially for the
behavior of HSC with temperature changes, it is different
from the HEE in some models [38,41], while it is similar to
the behavior of HEE in some cases [42,43]. As pointed out
in [44], since the entanglement entropy grows in a very short
time during the thermalization process of a strongly coupled
system, it is usually not enough to describe the rich geo-
metric structure. The time evolution of HSC after a thermal
quench has been recent another interesting direction [45–49].
For holographic superconductors, we expect to use the HSC
as a probe to capture the richer information of phase transi-
tion. Thus, it is meaningful to further analyze the behavior of
HSC in other holographic superconductors, such as unbal-
anced holographic superconductors [50–55].

One motivation of selecting the unbalanced system is that
it is quite interesting in the condensed matter framework. An
unbalanced model is based on an emergence of supercon-
ducting state near a quantum critical point [56]. This is a
relevant theme both in the condensed matter and finite den-
sity QCD contexts [57]. The mechanism of this model is that
the superconducting state occurs where the two fermionic
species contribute with unbalanced populations or unbal-
anced chemical potentials. The unbalanced chemical poten-
tial can be produced by the presence of magnetic impurities in
the system or by an external magnetic field inducing Zeeman
splitting of single-electron energy levels. In the holographic
framework, Ref. [50] gives a holographic description of a
2+1-dimensional unbalanced superconductor by introducing
a secondU (1) gauge field in the bulk theory. This is discussed
in more detail in next section.

In this paper, we would like to investigate the behavior of
HSC and examine whether the HSC approach is still useful in
the unbalanced holographic superconductors. We will focus
on the time-independent HSC for a straight strip geometry at
AdS boundary and compare it to the behavior of HEE. We
will see that the HEE and HSC show similar linear growth
behaviors with the change of width. The HSC can indeed
respond to phase transitions as the HEE does. However, for
different fixed widths, the HSC exhibits different behaviors,
while the HEE remains consistent. In particular, we find that
there are certain conditions that make it difficult to observe
phase transitions through the HSC approach. Furthermore,
the HSC and HEE also show different behaviors for the influ-
ence of unbalance parameter β.

This work is organized as follows. In Sect. 2, we briefly
review the unbalanced holographic superconductor model,

and give the complete equations of motion to be solved. In
Sect. 3, we present the fully back-reacted solution of the
holographic system. In Sect. 4, we will present our results
for both the HEE and HSC of this system. The conclusion
and discussions are included in Sect. 5.

2 Unbalanced holographic superconductors

In this section, we begin with a brief review the holographic
model for the minimal unbalanced superconductor in 2 + 1
dimensions. The dual gravity description of this unbalanced
superconductor is defined by the following action [50]

S = 1

2κ2
4

∫
dx4√−g

[
R + 6

L2 − 1

4
FabF

ab

−1

4
YabY

ab − V (|ψ |) − |∂ψ − iq Aψ |2
]

, (1)

where F = d A and Y = dB are the two field strengths
associated to the gauge fields U(1)A and U(1)B , and ψ rep-
resents a scalar field with potential V (|ψ |) = m2ψ†ψ . Note
that the scalar ψ is minimally coupled to gauge field A and
uncharged with respect to gauge field B. When Y = 0, the
system reduces to the model introduced in [5,6].

In the holographic framework, the non-trivial charged field
under the U(1)A gauge field in an asymptotically AdS4 black
hole background leads to the breaking of a U(1)A “charge”
symmetry, which characterizes the onset of superconductiv-
ity [4–6]. Turning on the temporal component of the gauge
field U(1)B can make the system obtain the chemical poten-
tial mismatch, which can also be interpreted as the chem-
ical potential for the U(1)B “spin” symmetry [58]. These
two gauge fields correspond to two conserved currents in the
boundary theory. Indeed, this extended holographic model
can study many strong coupling physics of unbalanced mix-
tures, such as the strong-coupling generalization of the two-
current model proposed by Mott [59,60], the mixed spin-
electric linear response, and Larkin–Ovchinnikov–Fulde–
Ferrel (LOFF) phase [61,62] in strongly coupled supercon-
ductors.

Including the backreaction, our ansatz for the metric and
matter fields is given by

ds2 = − f (r)e−χ(r)dt2 + dr2

f (r)
+ r2

L2 (dx2 + dy2), (2)

ψ = ψ(r), Aadx
a = φ(r)dt, Badx

a = v(r)dt. (3)

Then the Hawking temperature of such a black hole is
expressed as

T = f ′(rH )e−χ(rH )/2

4π
, (4)
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where rH corresponds to the event horizon of the black hole
satisfying f (rH ) = 0. From above assumptions, we can
obtain the corresponding independent equations of motion
as follows

ψ ′′ + ψ ′
(

f ′

f
+ 2

r
− χ ′

2

)
+ 1

f

(
q2eχφ2

f
− m2

)
ψ = 0,

(5)

φ′′ + φ′
(

2

r
+ χ ′

2

)
− 2q2ψ2

f
φ = 0, (6)

f ′ + f

(
1

r
+ rψ ′2

2

)
+ rψ2

2

(
eχq2φ2

f
+ m2

)

+ reχ (φ′2 + v′2)
4

− 3r

L2 = 0, (7)

χ ′ + rψ ′2 + reχq2φ2ψ2

f 2 = 0, (8)

v′′ + v′
(

2

r
+ χ ′

2

)
= 0, (9)

where the prime denotes the derivative with respect to r . In
the following we will work in units L = 1 and 2κ2

4 = 1.
We also take the standard choice of mass and charge as
m2 = −2 , q = 2. For this case, in which m2 > −9/4,
the Breitenlohner-Freedman bound [63] is respected.

In order to solve the equations of this complex system, we
have to specify the boundary conditions. At the horizon rH ,
the regularity condition gives the boundary conditions

φ(rH ) = v(rH ) = 0. (10)

Near the AdS boundary (r → ∞), the asymptotic behaviors
of the solutions are

ψ(r) = ψ1

r
+ ψ2

r2 + · · · , (11)

φ(r) = μ − ρ

r
+ · · · , v(r) = δμ − δρ

r
+ · · · , (12)

f (r) = r2 − �

2r
+ · · · , χ(r) = 0 + · · · , (13)

where μ (δμ) and ρ (δρ) are the corresponding chemical
potential (chemical potential mismatch) and charge density
(charge density mismatch) in the dual boundary field theory,
and � is the mass of black hole interpreted as the energy
density of the dual field theory, respectively. According to
the AdS/CFT correspondence, ψ1 and ψ2 can be dual to
the source while the other is the vacuum expectation value.
Specifically we will choose ψ1 as the source and ψ2 corre-
sponds to the vacuum expectation values 〈O2〉. We turn off
the source, i.e., ψ1 = 0 to describe a spontaneous symmetry
breaking. Thus, if ψ2 �= 0 the state is superconducting while
if ψ2 = 0 (or ψ = 0) the state is normal. From the equa-
tions of motion for the system, we can get the useful scaling
symmetries in the forms

r → αr, (x, y, t) → (x, y, t)/α, φ → αφ, v → αv, f → α2 f.

(14)

Using above symmetries, we can set rH = 1.

3 Condensation and phase transition

In this part, we are looking for the physical properties of phase
transition in this model through the behaviors of the scalar
condensation. For the normal phase, the metric becomes the
U (1)2-charged Reissner–Nordström-AdS4 black hole. Thus,
we have

ds2 = − f (r)dt2 + dr2

f (r)
+ r2(dx2 + dy2), (15)

f (r) = r2

(
1 − r3

H

r3

)
+ μ2r2

H

4r2

(
1 − r

rH

)
(1 + β2), (16)

where β = δμ/μ is the unbalance parameter, and the gauge
fields are

φ(r) = μ
(

1 − rH
r

)
= μ − ρ

r
, (17)

v(r) = δμ
(

1 − rH
r

)
= δμ − δρ

r
. (18)

For purpose of getting the solutions in the superconduct-
ing phase where ψ(r) �= 0, we will first make a coordinate
transformation from r -coordinate to z-coordinate by defin-
ing z = rH/r , then we will solve these equations by using
the numerical shooting method. In the following we shall
work in the grand-canonical ensemble with fixed chemical
potentials μ = 1.

The condensate of the scalar operator as a function of
temperature with different values of the unbalance parameter
β is shown in Fig. 1. It can be seen clear from the Fig. 1
that the condensation of the operator emerges at the critical
temperature Tc, which implies the appearance of the phase
transition. Obviously, this phase transition here is a typically
second order transition in our choice of parameters. From
Fig. 1, we can find that the critical temperature Tc decreases
as the unbalance parameter β increases, which means that
it is harder for the scalar condensation to form in highly
unbalanced systems. This result corresponds to the fact that
the unbalance hinders the condensation, which is consistent
with Refs. [50,51].

4 HEE and HSC of the holographic model

In this part, we will calculate the HEE and HSC in this holo-
graphic model. We consider a straight strip geometry A with
a finite width along the x direction and infinitely extending
in y direction as: − 

2 ≤ x ≤ 
2 ,− R

2 < y < R
2 , where  is
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Fig. 1 The condensate of the scalar operator O2 versus temperature
for different values of the unbalance parameter β. The colored curves
correspond to β = 0 (red, Tc = 0.09012), β = 1 (green, Tc = 0.06909)
and β = 1.5 (blue, Tc = 0.05002), respectively.

defined as the size of region A and R is a regulator which
can be set to infinity. The hypersurface γA in z-coordinate
starts from z = ε at x = 

2 , then extends into the bulk until it
reaches z = z∗, and returns back to the AdS boundary z = ε

at x = − 
2 , where ε is UV cutoff. It is easy to obtain the

induced metric on the hypersurface γA as follow

ds2
induced = 1

z2

{[
1 + 1

z2 f

(
dz

dx

)2
]
dx2 + dy2

}
. (19)

According to the Ryu–Takayanagi proposal [9], the entan-
glement entropy of A is given by the formula

S = Area(γA)

4GN
, (20)

whereGN is the Newton’s constant in the dual gravity theory.
By using the induced metric (19), the entanglement entropy
in the strip geometry can be evaluated as

S = R

2G4

∫ /2

−/2

dx

z2

√
1

z2 f

(
dz

dx

)2

+ 1, (21)

The minimality condition gives us

dz

dx
= 1

z

√(
z4∗ − z4

)
f , (22)

with the turning point z = z∗ for the minimal surface which
satisfies the condition dz

dx |z=z∗ = 0. Integrating the condition,
we have

x(z) =
∫ z∗

z
dz

z√
(z4∗ − z4) f (z)

, (23)

which obeys, with a UV cutoff ε,

x(ε → 0) = 

2
. (24)

Substituting Eq. (22) into Eq. (21), the HEE can be rewritten
as

S = R

2G4

∫ z∗

ε

dz
z2∗
z3

1√(
z4∗ − z4

)
f (z)

= R

2G4

(
s + 1

ε

)
,

(25)

where the first term s is the finite part of entanglement entropy
and thus is physical important. While the second term is
divergent (ε → 0) and represents the area law [9].

On the other hand, following the subregion CV conjecture
[33], the subregion complexity of the system A is propor-
tional to the volume surrounded by the minimal surface γA

as follows

C = Volume(γA)

8πLGN
. (26)

Thus, the HSC in the strip geometry is

C = R

4πLG4

∫ z∗

ε

x(z)dz

z4
√

f
= R

4πLG4

[
c + F(z∗)

ε2

]
, (27)

where the term c is a finite term, which is physically impor-
tant. The term F(z∗)/ε2 is divergent and the value of F(z∗) in
different situations can be found numerically [38]. For more
details on the regularization of HSC, see Refs. [64,65].

Now we are in a position to study the behaviors of HSC
and HEE of this system numerically. Figure 2 shows our
results for the HEE and HSC as functions of the strip width
 at a fixed temperature T = 0.04, which is below the tran-
sition temperature Tc. From the left panel, we find that the
curves go linearly with  for the large , which means that
the area law holds in unbalanced holographic superconduc-
tors. It also can be seen from the left panel that the HEE in
the superconducting phase is always less than the one in the
normal case. This property holds for different values of the
unbalance parameter β. This is consistent with the expecta-
tion that in the superconducting phase the degrees of freedom
decrease due to the formation of Cooper pairs [15]. From the
right panel in Fig. 2, we also see the expected linear growth
behavior for the large  and the HSC in the superconducting
phase is less than the one in the normal case for the large .
But different from the case of HEE, we observe that, for the
small strip width , the HSC in the normal is less than the
one in the superconducting phase case.

The behaviors of HEE and HSC as functions of the tem-
perature T for different unbalance parameters β with  = 2
are presented in Fig. 3. The left panel is the case of HEE and
right panel shows the case of HSC. In both cases, we can
see clearly that the HEE and HSC have a discontinuous slop
at the critical temperature Tc, which implies the non-trivial
reorganization of the degrees of freedom in the system. The
discontinous change of the slop marks the phase transition
point, which indicates that the system has undergone a phase
transition from the normal state to the superconducting one.
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c

Fig. 2 The HEE (left) and HSC (right) as functions of the stripe width 

for various unbalance parameters β with a fixed temperature T = 0.04.
The dashed and solid curves in each panel indicate the normal and

surperconducting phases. The colored curves correspond to β = 0
(red), β = 1 (green) and β = 1.5 (blue), respectively

c

Fig. 3 The HEE (left) and HSC (right) as functions of the tempera-
ture T for a fixed  = 2. The dashed and solid curves in each panel
indicate the normal and surperconducting phases. The colored curves

correspond to the unbalance parameter β = 0 (red, Tc = 0.09012),
β = 1 (green, Tc = 0.06909) and β = 1.5 (blue, Tc = 0.05002),
respectively

c

Fig. 4 The HEE (left) and HSC (right) as functions of the tempera-
ture T for a fixed  = 8. The dashed and solid curves in each panel
indicate the normal and surperconducting phases. The colored curves

correspond to unbalance parameter β = 0 (red, Tc = 0.09012), β = 1
(green, Tc = 0.06909) and β = 1.5 (blue, Tc = 0.05002), respectively

Moreover, we can also see that the critical temperature Tc
of the phase transition decreases as the unbalance parameter
β increases, which is completely consistent with the result
of Fig. 1. As can be seen from the left panel of Fig. 3, the
HEE in the superconducting phase is always less than the one
in the normal case and drops as the temperature decreases.
In contrast, as shown in the right panel of Fig. 3, when the
temperature decreases to be lower than the critical value Tc
, the values of HSC for the superconducting state is larger
than that for the normal state and increases as the tempera-

ture decreases. This behavior of the HSC is similar to that
found in the previous Refs. [38,41].

We also give the HEE and HSC as functions of the tem-
perature T for a large width  = 8 in Fig. 4. As shown in the
picture, the slopes of HEE and HSC present again a discontin-
uous change at the critical temperatures Tc. This means that
both the HEE and HSC can be used to search for the critical
phase transition temperature. Furthermore, for a large fixed
width , the behavior of HSC as a function of the tempera-
ture is quite similar to the case of HEE, i.e., both the HEE
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and HSC in the superconducting phase are less than the ones
in the normal case and drop as the temperature decreases. It
should be noted that, this feature is consistent with the result
of complexity for pure states in holographic superconductors
discussed in Ref. [39].

The physical interpretations for behaviors of HEE are
explicit, since the entanglement entropy is a measure of the
degrees of freedom in the field theory, as the temperature
decreases, the condensate turns on at the critical temperature
and the formation of Cooper pairs suppresses of the degree of
freedom of the system. The jump of the slop of HEE indicates
that the system undergoes the second order phase transition.
On the other hand, combining with the results of Figs. 3 and 4,
we find that the HSC exhibits different behaviors as a function
of the temperature for different fixed widths . It seems that
the dependence of HSC on the temperature in holographic
superconducting systems is not universal. In fact, for the HSC
in two different operators, similar phenomena have also been
found in the Refs. [42,43], but the underlying mechanism is
still unclear.

It should be noted that since the different behaviors of HSC
for different fixed widths, and our choice of widths is arbi-
trary, a question arises: Are there certain specific parameter
choices that make it difficult for us to observe the phase tran-
sition of this system through the HSC approach? With more
calculations, we find that the behavior of HSC does indeed
have a slow change process as the width  increases. For each
selected unbalance parameter β, we give the corresponding
example and show the results in Fig. 5. As shown in the figure,
for each set of parameters, we find that the HSC and its slope
are continuous around the critical temperature. In particular,
from the left panel of Fig. 5, we can see that the HSC in the
superconducting phase has a non-monotonic behavior. This
means that for some specific parameters, we cannot read the
critical temperature of the phase transition directly form the
plot of HSC. From this perspective, although both the HEE
and HSC can be used as probes for holographic supercon-
ducting phase transitions, the HEE is the one that performs
better.

To get further understanding of the effect of the unbalance
parameter on the HEE and HSC for different widths  , we
plot the corresponding results in Figs. 6 and 7 with a fixed
temperature T = 0.04, which is below the critical tempera-
ture Tc. Correspondingly, we find that in Fig. 6, the HEE in
the superconducting phase always increases with the increase
of the unbalance parameter β for each fixed width . This is
reasonable because as the chemical imbalance increases, the
critical temperature of the system decreases and the scalar
condensation is more difficult to form, which results in less
Cooper pairs available. However, we find that for different
widths, the effect of the unbalance parameter β on the HSC in
the superconducting phase has three different behaviors. The
specific examples are shown in Fig. 7. For small subregions

( = 1), the HSC in the superconducting phase decreases
monotonously with the increase of the unbalance param-
eter β. When the subregion enlarges, the influence of the
unbalance parameter β on HSC will exhibit a non-monotonic
behavior, e.g., for a fixed width  = 2, the HSC in the super-
conducting phase first decreases and reaches its minimum
at some threshold as the unbalance parameter β increases,
then increases monotonically. For large enough subregions
( = 8), we find that the effect of the unbalance parameter
β on the HSC is quite similar to the case of HEE, i.e., the
HSC monotonously increases as the unbalance parameter β

increases.

5 Summary and discussion

By using the subregion CV conjecture, in this paper, we have
investigated the HSC in unbalanced holographic supercon-
ductors. We calculated the HSC of a straight strip subregion
and compared it with the behaviors of the HEE, which shows
that, near the critical temperature Tc, both the HEE and HSC
are continuous and the slopes in terms of the temperature
have a jump. This jump of slope could be thought of as a
signature of the phase transition and corresponds to the sec-
ond order phase transition of the unbalanced superconducting
system. From the results of HSC and HEE, we observed that
as the unbalance parameter β increases, the critical temper-
ature of the phase transition decreases. Our results indicates
that both the HEE and HSC precisely captures the informa-
tion about the phase transitions, i.e., both of them can be
used as good probes to the phase transition in unbalanced
holographic superconductors.

We observed that HEE and HSC show similar linear
growth behavior with the increase of width  when the size
of the subregion was large. Furthermore, we found that the
HEE in the superconducting phase is always less than the one
in the normal case and drops as the temperature goes down.
However, for different fixed widths, the HSC in the super-
conducting phase can exhibit completely different behaviors
with the change of temperature. In particular, for given unbal-
ance parameters, we have found the corresponding examples,
which proves that there are certain specific parameter choices
that make it difficult for us to see the obvious change in the
slope of HSC near the critical temperature. Therefore, com-
pared with HSC, HEE can be more efficient to probe the
critical temperature of phase transition in unbalanced holo-
graphic superconductor. On the other hand, we found that the
HEE is always monotonically increasing with the increase
of the unbalance parameter, while the HSC displays more
diverse behaviors on the influence of the unbalance parame-
ter. This implies that, as another independent probe to phase
transition in holographic superconductor models, the HSC
has the potential to offer richer physical information. Thus,
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Fig. 5 The HSC as a function of the temperature T for various widths and different values of the unbalance parameter β. The panels from left to
right represent the cases: (1)  = 4.1 , β = 0 (left); (2)  = 4.5 , β = 1 (middle); (3)  = 6 , β = 1.5 (right)

Fig. 6 The HEE as a function of the unbalance parameter β for different widths  at T = 0.04. The left plot (red) is for  = 1, the middle one
(green) for  = 2, and the right one (blue) for  = 8

Fig. 7 The HSC as a function of the unbalance parameter β for different widths  at T = 0.04. The left plot (red) is for  = 1, the middle one
(green) for  = 2, and the right one (blue) for  = 8

the physical origins of these phenomena and deep insight
from the field theory side deserve further study.

It is worth noting here that only the second order phase
transition is involved in this unbalanced holographic super-
conductor model. It is interesting to study HSC in other holo-
graphic superconductor models with first order phase transi-
tion. In addition, in this work, we focused on the subregion
CV conjecture only, but it will be interesting to study the
complexity of holographic superconductor by the CA con-
jecture, and compare the results form the two conjectures.
We wish to report on the related works in future.
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